江苏省无锡市东林中学九年级数学上学期期末考试试题

合集下载

江苏省无锡市第一学期九年级数学期末试卷(含解析)

江苏省无锡市第一学期九年级数学期末试卷(含解析)

江苏省无锡市第一学期九年级数学期末试卷(含解析)一、选择题1.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)2.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A .3cmB .6cmC .12cmD .24cm3.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )A .32或42B .3或4C .22或42D .2或44.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º5.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,06.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,ABAD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC = B .2ECAC= C .12DE BC = D .2ACAE= 7.一元二次方程x 2-x =0的根是( ) A .x =1 B .x =0C .x 1=0,x 2=1D .x 1=0,x 2=-18.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .169.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .12 10.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .411.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .3B .234C 1433D 223312.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.413.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根 14.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的15.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x二、填空题16.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)17.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.18.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____. 19.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.20.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.21.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.22.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.23.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__. 24.关于x 的方程220kx x --=的一个根为2,则k =______.25.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.26.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空)27.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.28.已知 x 1、x 2 是关于 x 的方程 x 2+4x -5=0的两个根,则x 1 + x 2=_____. 29.若点 M (-1, y 1 ),N (1, y 2 ),P (72, y 3 )都在抛物线 y =-mx 2 +4mx+m 2 +1(m >0)上,则y 1、y 2、y 3 大小关系为_____(用“>”连接). 30.已知3a =4b ≠0,那么ab=_____. 三、解答题31.某校举行秋季运动会,甲、乙两人报名参加100 m 比赛,预赛分A 、B 、C 三组进行,运动员通过抽签决定分组. (1)甲分到A 组的概率为 ; (2)求甲、乙恰好分到同一组的概率.32.如图,抛物线y=-x 2+bx+3与x 轴交于A ,B 两点,与y 轴交于点C ,其中点A (-1,0).过点A 作直线y=x+c 与抛物线交于点D ,动点P 在直线y=x+c 上,从点A 出发,以每秒2个单位长度的速度向点D 运动,过点P 作直线PQ ∥y 轴,与抛物线交于点Q ,设运动时间为t (s ).(1)直接写出b ,c 的值及点D 的坐标;(2)点 E 是抛物线上一动点,且位于第四象限,当△CBE 的面积为6时,求出点E 的坐标;(3)在线段PQ 最长的条件下,点M 在直线PQ 上运动,点N 在x 轴上运动,当以点D 、M 、N 为顶点的三角形为等腰直角三角形时,请求出此时点N 的坐标.33.在平面直角坐标系中,二次函数y=ax 2+bx+c(a≠0)的顶点A (-3,0),与y 轴交于点B (0,4),在第一象限内有一点P (m,n),且满足4m+3n=12. (1)求二次函数解析式.(2)若以点P 为圆心的圆与直线AB 、x 轴相切,求点P 的坐标.(3)若点A 关于y 轴的对称点为点A′,点C 在对称轴上,且2∠CBA+∠PA′O=90◦.求点C 的坐标.34.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.35.(如图 1,若抛物线 l 1 的顶点 A 在抛物线 l 2 上,抛物线 l 2 的顶点 B 也在抛物线 l 1 上(点 A 与点 B 不重合).我们称抛物线 l 1,l 2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.(1)如图2,抛物线 l 3:21(2)12y x =-- 与y 轴交于点C ,点D 与点C 关于抛物线的对称轴对称,则点 D 的坐标为 ;(2)求以点 D 为顶点的 l 3 的“友好”抛物线 l 4 的表达式,并指出 l 3 与 l 4 中y 同时随x 增大而增大的自变量的取值范围;(3)若抛物线 y =a 1(x -m)2+n 的任意一条“友好”抛物线的表达式为 y =a 2(x -h)2+k , 写出 a 1 与a 2的关系式,并说明理由.四、压轴题36.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?37.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD ⎛⎫⋅+⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.38.如图,⊙O 的直径AB =26,P 是AB 上(不与点A ,B 重合)的任一点,点C ,D 为⊙O 上的两点.若∠APD =∠BPC ,则称∠DPC 为直径AB 的“回旋角”.(1)若∠BPC =∠DPC =60°,则∠DPC 是直径AB 的“回旋角”吗?并说明理由; (2)猜想回旋角”∠DPC 的度数与弧CD 的度数的关系,给出证明(提示:延长CP 交⊙O 于点E );(3)若直径AB 的“回旋角”为120°,且△PCD 的周长为3AP 的长.39.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.40.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值;(3)如图③,若DE CF =,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .2.C解析:C 【解析】 【分析】易得圆锥的母线长为24cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径. 【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=, ∴圆锥的底面半径为:()24π2π12cm ÷=. 故答案为:C. 【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.3.A解析:A【解析】 【分析】利用A 、B 、C 、D 四点共圆,根据同弧所对的圆周角相等,得出ADC ABC ∠∠=,再作AE CD ⊥,设AE=DE=x ,最后利用勾股定理求解即可. 【详解】 解:如图所示,∵△ABC 、△ABD 都是直角三角形, ∴A,B,C,D 四点共圆, ∵AC=BC ,∴BAC ABC 45∠∠==︒, ∴ADC ABC 45∠∠==︒, 作AE CD ⊥于点E,∴△AED 是等腰直角三角形,设AE=DE=x,则AD 2x =,∵CD=7,CE=7-x, ∵AB 52= ∴AC=BC=5,在Rt△AEC 中,222AC AE EC =+, ∴()22257x x =+- 解得,x=3或x=4, ∴AD 232x ==2.故答案为:A.【点睛】本题考查的知识点是勾股定理的综合应用,解题的关键是根据题目得出四点共圆,作出合理辅助线,在圆内利用勾股定理求解.4.B解析:B 【解析】 【分析】根据垂径定理可得AB AC =,根据圆周角定理可得∠AOB=2∠ADC ,进而可得答案. 【详解】解:∵OA 是⊙O 的半径,弦BC ⊥OA , ∴AB AC =, ∴∠ADC=12∠AOB=29°. 故选B. 【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.C解析:C 【解析】外心在BC 的垂直平分线上,则外心纵坐标为-1.故选C.6.D解析:D 【解析】 【分析】 只要证明AC ABAE AD=,即可解决问题. 【详解】 解:A. 12AE EC = ,可得AE :AC=1:1,与已知2AB AD=不成比例,故不能判定 B.2ECAC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2ABAD=,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;12DE BC = D.2AC ABAE AD ==,可得DE//BC , 故选D. 【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.C解析:C 【解析】 【分析】利用因式分解法解方程即可解答.【详解】x2-x=0x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.8.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE∥BC,DE=12BC,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=12 BC,∴△ADE∽△ABC,∵DEBC=12,∴14ADEABCSS∆∆=,∵△ADE的面积为4,∴△ABC的面积为:16,故选D.【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.9.C解析:C【解析】【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=8,∴△OBC是等边三角形,∴OB=BC=8.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.10.B解析:B【解析】【分析】将x=2代入方程即可求得k的值,从而得到正确选项.【详解】解:∵一元二次方程x2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B.【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.11.C解析:C【解析】【分析】由A、C关于BD对称,推出PA=PC,推出PC+PE=PA+PE,推出当A、P、E共线时,PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.【详解】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴PA=PC,∴PC+PE=PA+PE,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c ∴AB DE BC EF= 即1.5 1.82EF = 解得:EF=2.4 故答案为D .【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.13.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.14.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣x 2+x =﹣(x 12-)2+14, ∴a =﹣1,该函数的图象开口向下,故选项A 错误;对称轴是直线x =12,故选项B 错误; 当x =12时取得最大值14,该函数有最高点,故选项C 错误; 在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.15.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减. 二、填空题16.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】根据黄金比值为12计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴1AP 22AB =⨯=故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.17.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.18.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2 -【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═12 ba-=-故答案为12 -.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=ba-,x1•x2=ca.19.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴解析:7 2【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+ 72= 故答案为:72. 【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.21.【解析】【分析】如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:【解析】【分析】如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵221417 AB=+=,∴8179 AO=.故答案为:817【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.22.【解析】【分析】设BC=EC=a,根据相似三角形得到,求出a的值,再利用tanA即可求解.【详解】设BC=EC=a,∵AB∥CD,∴△ABF∽△ECF,∴,即解得a=(-舍去)∴51-【解析】【分析】设BC=EC=a,根据相似三角形得到222a a =+,求出a 的值,再利用tan DAE ∠=tanA 即可求解.【详解】设BC=EC=a,∵AB ∥CD ,∴△ABF ∽△ECF , ∴AB EC BF CF =,即222a a =+解得1(-1舍去)∴tan DAE ∠=tanF=2EC a CF =. 【点睛】 此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义.23.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 24.1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【详解】把x=2代入方程得:4k−2−2=0,解得k=1故解析:1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【详解】把x=2代入方程得:4k−2−2=0,解得k=1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.25.(,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=解析:(32,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x ,则AE=4-x ,在RT △ABE 中,∵EA 2+AB 2=BE 2,∴(4-x )2+22=x 2,∴x=52, ∴BE=ED=52,AE=AD-ED=32, ∴点E 坐标(32,2). 故答案为:(32,2). 【点睛】 本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.26.>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次解析:>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数2y ax bx c =++的图像开口方向向上,所以有a >0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0. 27.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.28.-4【解析】【分析】根据根与系数的关系即可求解.【详解】∵x1、x2 是关于 x 的方程 x2+4x5=0的两个根,∴x1 x2=-=-4,故答案为:-4.【点睛】此题主要考解析:-4【解析】【分析】根据根与系数的关系即可求解.【详解】∵x1、x2是关于 x 的方程 x2+4x-5=0的两个根,∴x1+ x2=-41=-4,故答案为:-4.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1+ x2=-ba.29.y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=mx2 +4mx+m2 +1(m>0),对称轴为x=,观察二次函数的图象可知:y1<y3<y2.故答案为:y解析:y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=-mx2 +4mx+m2 +1(m>0),对称轴为x=422mm-=-,观察二次函数的图象可知:y1<y3<y2.故答案为:y1<y3<y2.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.30..【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此解析:43.【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得a b =43,故答案为:43.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.三、解答题31.(1)13;(2)13【解析】【分析】(1)直接利用概率公式求出甲分到A组的概率;(2)将所有情况列出,找出满足条件:甲、乙恰好分到同一组的情况有几种,计算出概率.【详解】解:(1)1 3(2)甲乙两人抽签分组所有可能出现的结果有:(A,A)、(A,B)、(A,C)、(B,A)、(B,B)、(B,C)、(C,A)、(C,B)、(C,C)共有9种,它们出现的可能性相同.所有的结果中,满足“甲乙分到同一组”(记为事件A)的结果有3种,所以P(A)=13.【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.32.(1)b=2,c=1,D(2,3);(2)E(4,-5) ;(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【解析】【分析】(1)将点A分别代入y=-x 2+bx+3,y=x+c 中求出b 、c 的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D 的坐标;(2))过点E 作EF ⊥y 轴,设E (x ,-x 2+2x+3),先求出点B 、C 的坐标,再利用面积加减关系表示出△CBE 的面积,即可求出点E 的坐标. (3)分别以点D 、M 、N 为直角顶点讨论△MND 是等腰直角三角形时点N 的坐标.【详解】(1)将A (-1,0)代入y=-x 2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x 2+2x+3,将点A 代入y=x+c 中,得-1+c=0,解得c=1,∴y=x+1,解2123y x y x x =+⎧⎨=-++⎩,解得1123x y =⎧⎨=⎩,2210x y =-⎧⎨=⎩(舍去), ∴D (2,3).∴b= 2 ,c= 1 ,D (2,3).(2)过点E 作EF⊥y 轴,设E (x ,-x 2+2x+3),当y=-x 2+2x+3中y=0时,得-x 2+2x+3=0,解得x 1=3,x 2=-1(舍去),∴B(3,0).∵C(0,3),∴CBE CBO CFE S S S梯形OFEB -S , ∴22111633(3)(23)(2)222x x x x x x , 解得x 1=4,x 2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直线AD 的解析式为y=x+1,设P (m ,m+1),则Q (m ,-m 2+2m+3),∴线段PQ 的长度h=-m 2+2m+3-(m+1)=219()24m, ∴当12m ==0.5,线段PQ 有最大值. 当∠D 是直角时,不存在△MND 是等腰直角三角形的情形;当∠M是直角时,如图1,点M在线段DN的垂直平分线上,此时N1(2,0);当∠M是直角时,如图2,作DE⊥x轴,M2E⊥HE,N2H⊥HE,∴∠H=∠E=90︒,∵△M2N2D是等腰直角三角形,∴N2M2=M2D,∠N2M2D=90︒,∵∠N2M2H=∠M2DE,∴△N2M2H≌△M2DE,∴N2H=M2E=2-0.5=1.5,M2H=DE,∴E(2,-1.5),∴M2H=DE=3+1.5=4.5,∴ON2=4.5-0.5=4,∴N2(-4,0);当∠N是直角时,如图3,作DE⊥x轴,∴∠N3HM3=∠DEN3=90︒,∵△M3N3D是等腰直角三角形,∴N3M3=N3D,∠DN3M3=90︒,∵∠DN3E=∠N3M3H,∴△DN3E≌△N3M3H,∴N3H=DE=3,∴N3O=3-0.5=2.5,∴N3(-2.5,0);当∠N是直角时,如图4,作DE⊥x轴,∴∠N4HM4=∠DEN4=90︒,∵△M4N4D是等腰直角三角形,∴N4M4=N4D,∠DN4M4=90︒,∵∠DN4E=∠N4M4H,∴△DN4E≌△N4M4H,∴N4H=DE=3,∴N4O=3+0.5=3.5,∴N4(3.5,0);综上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式;根据函数性质得到点坐标,由此求出图象中图形的面积;还考查了图象中构成的等腰直角三角形的情况,此时依据等腰直角三角形的性质,求出点N 的坐标.33.(1)24(3)9y x =+;(2)P(1511,2411);(3)C(-3,-5)或 (-3,2513) 【解析】【分析】(1)设顶点式,将B 点代入即可求;(2)根据4m+3n=12确定点P 所在直线的解析式,再根据内切线的性质可知P 点在∠BAO 的角平分线上,求两线交点坐标即为P 点坐标;(3)根据角之间的关系确定C 在∠DBA 的角平分线与对称轴的交点或∠ABO 的角平分线与对称轴的交点,通过求角平分线的解析式即可求.【详解】(1)∵抛物线的顶点坐标为A(-3,0),设二次函数解析式为y=a(x+3)2,将B (0,4)代入得,4=9a∴a=49∴24(3)9y x =+ (2)如图 ∵P (m,n),且满足4m+3n=12 ∴443n m =-+ ∴点P 在第一象限的443y x =-+上, ∵以点P 为圆心的圆与直线AB 、x 轴相切,∴点P 在∠BAO 的角平分线上,∠BAO 的角平分线:y=1322x +, ∴134=4223x x +-+, ∴x=1511,∴y=2411∴P(1511,2411)(3)C(-3,-5)或 (-3,2513)理由如下:如图,A´(3,0),可得直线L A´B的表达式为443y x=-+,∴P点在直线A´B上,∵∠PA´O=∠ABO=∠BAG, 2∠CBA+∠PA′O=90°,∴2∠CBA=90°-∠PA′O=∠GAB,在对称轴上取点D,使∠DBA=∠DAB,作BE⊥AG于G点,设D点坐标为(-3,t)则有(4-t)2+32=t2t=25 8,∴D(-3,25 8),作∠DBA的角平分线交AG于点C即为所求点,设为C1∠DBA的角平分线BC1的解析式为y=913x+4,∴C1的坐标为 (-3, 25 13);同理作∠ABO的角平分线交AG于点C即为所求,设为C2,∠ABO的角平分线BC2的解析式为y=3x+4,∴C2的坐标为(-3,-5).综上所述,点C的坐标为(-3, 2513)或(-3,-5).【点睛】本题考查了二次函数与图形的结合,涉及的知识点角平分线的解析式的确定,切线的性质,勾股定理及图象的交点问题,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.34.(1)抛物线的表达式为:228y x x =-++,直线AB 的表达式为:21y x =-;(2)存在,理由见解析;点P (6,16)-或(4,16)--或(17,2)+或(17,2)-.【解析】【分析】(1)二次函数表达式为:y=a (x-1)2+9,即可求解;(2)S △DAC =2S △DCM ,则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯,,即可求解;(3)分AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)二次函数表达式为:()219y a x =-+,将点A 的坐标代入上式并解得:1a =-,故抛物线的表达式为:228y x x =-++…①,则点()3,5B ,。

江苏省无锡市九年级上学期期末数学试卷 (解析版)

江苏省无锡市九年级上学期期末数学试卷 (解析版)

江苏省无锡市九年级上学期期末数学试卷 (解析版)一、选择题1.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O的位置关系是( ) A .点P 在O 上B .点P 在O 外C .点P 在O 内 D .无法确定2.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( ) A .213y y <<B .123y y <<C .213y y <<D .213y y <<3.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .194.二次函数y =3(x -2)2-1的图像顶点坐标是( ) A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)5.如图,⊙O 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE =OB ,已知∠DOB =72°,则∠E 等于( )A .18°B .24°C .30°D .26° 6.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .47.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )8.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .569.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( ) A .14B .34C .15D .3510.已知关于x 的一元二次方程 (x - a )(x - b ) -12= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( ) A .a < x 1< b <x 2B .a < x 1< x 2 < bC .x 1< a < x 2 < bD .x 1< a < b < x 211.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.412.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( )A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 13.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40 B .60 C .80 D .100 14.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上 B .对称轴是y 轴 C .有最低点 D .在对称轴右侧的部分从左往右是下降的15.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )二、填空题16.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .17.已知tan (α+15°)=3,则锐角α的度数为______°. 18.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.19.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.20.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____. 21.如图,在Rt △ABC 中,BC AC ⊥,CD 是AB 边上的高,已知AB =25,BC =15,则BD =__________.22.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____.23.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________;24.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .25.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.26.关于x 的方程220kx x --=的一个根为2,则k =______. 27.数据8,8,10,6,7的众数是__________.28.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin 13BAC B ∠=∠=,则线段OC 的最大值为_____.29.已知3a =4b ≠0,那么ab=_____. 30.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.三、解答题31.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y 2x 80=-+. 设这种产品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元? 32.抛物线y =﹣x 2+bx+c 的对称轴为直线x =2,且顶点在x 轴上. (1)求b 、c 的值;(2)画出抛物线的简图并写出它与y 轴的交点C 的坐标;(3)根据图象直接写出:点C 关于直线x =2对称点D 的坐标 ;若E(m ,n)为抛物线上一点,则点E 关于直线x =2对称点的坐标为 (用含m 、n 的式子表示).33.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB . (1)证明:△ADC ∽△ACB ;(2)若AD =2,BD =6,求边AC 的长.34.解方程:2670x x --= 35.如图,抛物线y =﹣13x 2+bx +c 交x 轴于A (﹣3,0),B (4,0)两点,与y 轴交于点C ,连接AC ,BC .(1)求此抛物线的表达式;(2)求过B 、C 两点的直线的函数表达式;(3)点P 是第一象限内抛物线上的一个动点.过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q .试探究点P 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点P 的坐标,若不存在,请说明理由;四、压轴题36.阅读理解:如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.解决问题:(1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与⊙A 的“最美三角形”的是 .(填序号)①ABM ;②AOP ;③ACQ(2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为12,求k 的值. (3)点B 在x 轴上,以B 为圆心,3为半径画⊙B ,若直线y=3x+3与⊙B 的“最美三角形”的面积小于32,请直接写出圆心B 的横坐标B x 的取值范围.37.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.38.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.39.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M ,N ,连接OP ,若点M 恰好在直线y =x +3上,求线段OP 的长度;(3)如图2,在抛物线上是否存在点Q (不与点C 重合),使△QAB 和△ABC 的面积相等?若存在,直接写出点Q 的坐标;若不存在,请说明理由.40.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断. 【详解】解:∵()8,6P -, ∴228610+= , ∵O 的直径为10,∴r=5, ∵OP>5, ∴点P 在O 外.故选:B. 【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.2.A解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.3.D解析:D 【解析】 【分析】由DE ∥BC 知△ADE ∽△ABC ,然后根据相似比求解. 【详解】 解:∵DE ∥BC ∴△ADE ∽△ABC.又因为DE =2,BC =6,可得相似比为1:3. 即ADE ABC 的面积的面积=2213:=19.故选D. 【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.4.D解析:D 【解析】 【分析】由二次函数的顶点式,即可得出顶点坐标. 【详解】解:∵二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ), ∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1). 故选:D . 【点睛】此题考查了二次函数的性质,二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ).5.B解析:B【解析】【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于∠E的方程,解方程即可求得答案.【详解】解:如图,连接CO,∵CE=OB=CO=OD,∴∠E=∠1,∠2=∠D∴∠D=∠2=∠E+∠1=2∠E.∴∠3=∠E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:B.【点睛】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键.6.B解析:B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.7.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.8.B解析:B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π共2个,∴卡片上的数为无理数的概率是21 = 63.故选B.【点睛】本题考查了无理数的定义及概率的计算. 9.D解析:D【解析】【分析】根据题意即从5个球中摸出一个球,概率为3 5 .【详解】摸到红球的概率=33 235=+,故选:D.【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键.10.D解析:D【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y=(x−a)(x−b),当y=0时,x=a或x=b,当y=12时,由题意可知:(x−a)(x−b)−12=0(a<b)的两个根为x1、x2,由于抛物线开口向上,由抛物线的图象可知:x1<a<b<x2故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.11.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.12.C解析:C【分析】一元二次方程有实数根,则根的判别式∆≥0,且k≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k≥0且k≠0,解得:116k≤且k≠0.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k≠0.13.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.14.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12-)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.15.A解析:A【解析】【详解】解:∵四边形ABCO是平行四边形,且OA=OC,∴四边形ABCO是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∴∠ADB=12∠AOB=30°故选A.二、填空题16.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.17.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=3∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.18.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.19.【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,sin DEC∠的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=15 2AB= ,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=15 2MN,∵DM⊥BC,DC=DB,∴CM=BM=13 2BC=,∴EM=CE-CM=5-3=2,∵DM=14 2AC,∴由勾股定理得,DE=25,∵CD=CE=5,CN⊥DE,∴DN=EN=5 ,∴由勾股定理得,CN=25,∴sin∠DEC=25 CNCE.25.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.20.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2 -【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x 1+x 2═12b a -=- 故答案为12-. 【点睛】 本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 21.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.22.2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x 的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】当y=1时,有x解析:2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x 的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】当y=1时,有x 2﹣2x+1=1,解得:x 1=0,x 2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案为:2或﹣1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x 的值是解题的关键.23.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键.24.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147.考点:概率公式.25.6+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A的两解析:63+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O作两边的垂线,垂足分别为D,E,连接AO,则Rt△ADO中,∠OAD=30°,OD=1,AD3∴S△ADO=12OD•AD3∴S四边形ADOE =2S △ADO∵∠DOE =120°,∴S 扇形DOE =3π, ∴纸片不能接触到的部分面积为:33π)=﹣π ∵S△ABC =12∴纸片能接触到的最大面积为:=+π.故答案为.【点睛】此题主要考查圆的综合运用,解题的关键是熟知等边三角形的性质、扇形面积公式. 26.1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故解析:1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.27.8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8 故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解解析:8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解题的关键.28.【解析】【分析】过点A 作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.解析:413833+ 【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AO AE =,进而求得6AE =,再通过证明AEB AOC ∆∆,可得出23OC BE =,根据三角形三边关系可得:BE OE OB ≤+,由勾股定理可得213OE =,求出BE 的最大值,则答案即可求出.【详解】解:过点A 作AE ⊥AO,并使∠AEO =∠ABC,∵OAE BAC AEO ABC ∠=∠⎧⎨∠=∠⎩, ∴ABC AEO ∆∆, ∴tan AC AO B AB AE ∠==,∵sin B ∠=,∴cos 13B ∠==,∴sin 2tan cos 3B B n B ∠∠===∠, ∴23AO AE =, 又∵4AO =,∴6AE =,∵90,90EAB BAO OAC BAO ∠+∠=︒∠+∠=︒, ∴ =EAB OAC ∠∠, 又∵AC AO AB AE=, ∴AEB AOC ∆∆, ∴23OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,∵OE ===,∴4OE OB +=,∴BE的最大值为:4,∴OC的最大值为:()284333=+. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 29..【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此解析:43.【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得a b =43,故答案为:43.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.30.2+【解析】【分析】设线段AB=x,根据黄金分割点的定义可知AD=AB,BC=AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点解析:【解析】【分析】设线段AB=x,根据黄金分割点的定义可知AD 35AB,BC35AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点,∴较小线段AD =BC =32x -,则CD =AB ﹣AD ﹣BC =x ﹣x =1,解得:x =故答案为:【点睛】 本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.三、解答题31.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.32.(1)b =4,c =﹣4;(2)见解析,(0,﹣4);(3)(4,﹣4),(4﹣m ,n)【解析】【分析】(1)根据图象写出抛物线的顶点式,化成一般式即可求得b 、c ;(2)利用描点法画出图象即可,根据图象得到C (0,﹣4);(3)根据图象即可求得.【详解】解:(1)∵抛物线y =﹣x 2+bx+c 的对称轴为直线x =2,且顶点在x 轴上,∴顶点为(2,0),∴抛物线为y =﹣(x ﹣2)2=﹣x 2+4x ﹣4,∴b =4,c =﹣4;(2)画出抛物线的简图如图:点C的坐标为(0,﹣4);(3)∵C(0,﹣4),∴点C关于直线x=2对称点D的坐标为(4,﹣4);若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为(4﹣m,n),故答案为(4,﹣4),(4﹣m,n).【点睛】本题主要考查了二次函数的图像及其对称性,熟练掌握二次函数的图像与性质是解题的关键.33.(1)见解析; (2)4.【解析】【分析】(1)根据两角对应相等的两个三角形相似即可证明;(2)利用相似三角形的对应边对应成比例列式求解即可.【详解】(1)证明:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB.(2)解:∵△ADC∽△ACB,∴ACAB =ADAC,AB=AD+DB=2+6=8∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.34.x1=7,x2=1【解析】【分析】观察原方程,可运用二次三项式的因式分解法进行求解.【详解】解:原方程可化为:(x-7)(x+1)=0,x-7=0或x+1=0;解得:x1=7,x2=1-.【点睛】本题考查了解一元二次方程的方法,解题的关键是熟练掌握因式分解法解一元二次方程.35.(1)y=﹣13x2+13x+4;(2)y=﹣x+4;(3)存在,(1,4)或(2,).【解析】【分析】(1)将点A,B的坐标代入y=﹣13x2+bx+c即可;(2)先求出点C的坐标为(0,4),设直线BC的解析式为y=kx+4,再将点B(4,0)代入y=kx+4即可;(3)先判断存在点P,求出AC,BC的长及∠OCB=∠OBC=45°,设点P坐标为(m,﹣13m2+13m+4),则点Q(m,﹣m+4),用含m的代数式表示出QM,AM的长,然后分①当AC=AQ时,②当AC=CQ时,③当CQ=AQ时三种情况进行讨论,列出关于m的方程,求出m的值,即可写出点P的坐标.【详解】(1)将点A(﹣3,0),B(4,0)代入y=﹣13x2+bx+c,得,33016403b cb c--+=⎧⎪⎨-++=⎪⎩,解得,134bc⎧=⎪⎨⎪=⎩,∴此抛物线的表达式为y=﹣13x2+13x+4;(2)在y=﹣13x2+13x+4中,当x=0时,y=4,∴C(0,4),设直线BC的解析式为y=kx+4,将点B(4,0)代入y=kx+4,得,k =﹣1, ∴直线BC 的解析式为y =﹣x +4; (3)存在,理由如下: ∴A (﹣3,0),B (4,0),C (0,4),∴OA =3,OC =OB =4,∴AC =22OA OC +=5,BC =22OB OC +=42,∠OCB =∠OBC =45°, 设点P 坐标为(m ,﹣13m 2+13m +4),则点Q (m ,﹣m +4), ∴QM =﹣m +4,AM =m +3,①当AC =AQ 时,则AC =AQ =5,(m +3)2+(﹣m +4)2=25,解得:m 1=1,m 2=0(舍去),当m =1时,﹣13m 2+13m +4=4, 则点P 坐标为(1,4);②当AC =CQ 时,CQ =AC =5,如图,过点Q 作QD ⊥y 轴于点D ,则QD =CD =OM =m ,则有2m 2=52, 解得m 1=522,m 2=﹣522(舍去); 当m =522时,﹣13m 2+13m +4=5216-, 则点P 坐标为(522,5216-); ③当CQ =AQ 时,(m +3)2+(﹣m +4)2=2m 2,解得:m =252(舍去); 故点P 的坐标为(1,4)或(522,521-).【点睛】本题考查求二次函数解析式、求二元一次方程解析式和解二次函数,解题的关键是掌握求二次函数解析式、求二元一次方程解析式和解二次函数. 四、压轴题36.(1)②;(2)±1;(3)23-<B x <3或73-<B x <23-- 【解析】【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k 的正负分类讨论,作图后根据最美三角形的定义求解EF ,利用勾股定理求解AF ,进一步确定∠AOF 度数,最后利用勾股定理确定点F 的坐标,利用待定系数法求k .(3)本题根据⊙B 在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB 的度数,继而按照最美三角形的定义,分别以△BND ,△BMN 为媒介计算BD 长度,最后与OD 相减求解点B 的横坐标范围.【详解】(1)如下图所示:∵PM 是⊙O 的切线,∴∠PMO=90°,当⊙O 的半径OM 是定值时,22PM OP OM =-∵1=2PMO S PM OM ••, ∴要使PMO △面积最小,则PM 最小,即OP 最小即可,当OP ⊥l 时,OP 最小,符合最美三角形定义.故在图1三个三角形中,因为AO ⊥x 轴,故△AOP 为⊙A 与x 轴的最美三角形. 故选:②.(2)①当k <0时,按题意要求作图并在此基础作FM ⊥x 轴,如下所示:。

江苏省无锡市九年级(上)期末数学试卷

江苏省无锡市九年级(上)期末数学试卷

九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.抛物线y=(x-1)2+2的顶点坐标是()A. (1,2)B. (1,−2)C. (−1,2)D. (−1,−2)2.一元二次方程x2=2x的根是()A. x=2B. x=0C. x1=0,x2=2D. x1=0,x2=−23.已知点A在半径为r的⊙O内,点A与点O的距离为6,则r的取值范围是()A. r<6B. r>6C. r≥6D. r≤64.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A. 7sin35∘B. 7cos35∘C. 7cos35∘D. 7tan35∘5.在比例尺是1:8000的地图上,中山路的长度约为25cm,该路段实际长度约为()A. 3200mB. 3000mC. 2400mD. 2000m6.如图,点A、B、C均在⊙O上,若∠ABC=40°,则∠AOC的大小是()A. 90∘B. 80∘C. 70∘D. 50∘7.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A. AB=12mB. MN//ABC. △CMN∽△CABD. CM:MA=1:28.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为()A. 12B. 25C. 310D. 139.若点M(-1,y1),N(1,y2),P(72,y3)都在抛物线y=-mx2+4mx+m2+1(m>0)上,则下列结论正确的是()A. y1<y2<y3B. y1<y3<y2C. y3<y1<y2D. y2<y1<y310.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x 轴于点A2,作正方形A2B2C2C1,按这样的规律进行下去,第2022个正方形(正方形ABCD看作第1个)的面积为()A. 5×(32)2020B. 5×(94)2022C. 5×(94)2021D. 5×(32)2022二、填空题(本大题共8小题,共16.0分)11.若xy=45,则2x−yx+y的值为______.12.若一组数据1,2,x,4的众数是1,则这组数据的方差为______.13.将函数y=-2x2的图象沿着x轴向右平移3个单位后所得到的图象的函数表达式为______.14.已知关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是______.15.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧MN的长度为______.16.小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为______.17.如图,在△ABC中,∠ACB=90°,AB=18,cos B=23,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E处,则线段AE的长为______.18.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为______.三、计算题(本大题共1小题,共8.0分)19.解方程:(1)x2-8x+6=0;(2)2(x-1)2=3x-3.四、解答题(本大题共9小题,共76.0分)20.计算(1)-12+|1-4sin60°|;(2)(3)0−(12)−2+tan45°.21.如图,在边长为1的正方形网格中,有一格点△ABC,已知A、B、C三点的坐标分别是A(1,0)、B(2,-1)、C(3,1).(1)请在网格图形中画出平面直角坐标系;(2)以原点O为位似中心,将△ABC放大2倍,画出放大后的△A′B′C′;(3)写出△A′B′C′各顶点的坐标:A′______,B′______,C′______;(4)写出△A′B′C′的重心坐标:______;(5)求点A′到直线B′C′的距离.22.抚顺市某校想知道学生对“遥远的赫图阿拉”,“旗袍故里”等家乡旅游品牌的了解程度,随机抽取了部分学生进行问卷调查,问卷有四个选项(每位被调查的学生必选且只选一项)A.十分了解,B.了解较多,C.了解较少,D.不知道.将调查的结果绘制成如下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查了多少名学生?(2)补全条形统计图;(3)该校共有500名学生,请你估计“十分了解”的学生有多少名?(4)在被调查“十分了解”的学生中有四名学生会干部,他们中有3名男生和1名女生,学校想从这4人中任选两人做家乡旅游品牌宣传员,请用列表或画树状图法求出被选中的两人恰好是一男一女的概率.23.如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.75.)24.如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的角平分线AD交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若∠CAB=60°,DE=33,求AC的长.25.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.26.如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的35?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)27.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=-x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=12DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.28.【发现问题】爱好数学的小明在做作业时碰到这样的一道题目:如图①,点O为坐标原点,⊙O的半径为1,点A(2,0).动点B在⊙O上,连结AB,作等边△ABC(A,B,C为顺时针顺序),求OC的最大值【解决问题】小明经过多次的尝试与探索,终于得到解题思路:在图①中,连接OB,以OB为边在OB的左侧作等边三角形BOE,连接AE.(1)请你找出图中与OC相等的线段,并说明理由;(2)线段OC的最大值为______.【灵活运用】(3)如图②,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.【迁移拓展】(4)如图③,BC=42,点D是以BC为直径的半圆上不同于B、C的一个动点,以BD为边作等边△ABD,请直接写出AC的最值.答案和解析1.【答案】A【解析】解:y=(x-1)2+2的顶点坐标为(1,2).故选:A.根据抛物线的顶点式解析式写出顶点坐标即可.本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.2.【答案】C【解析】解:∵x2=2x,∴x2-2x=0,∴x(x-2)=0,∴x=0或x-2=0,∴一元二次方程x2=2x的根x1=0,x2=2.故选:C.利用因式分解法即可将原方程变为x(x-2)=0,即可得x=0或x-2=0,则求得原方程的根.此题考查了因式分解法解一元二次方程.题目比较简单,解题需细心.3.【答案】B【解析】解:∵点A在半径为r的⊙O内,点A与点O的距离为6,∴r>6,故选:B.根据点与圆的位置关系即可判断.本题考查点与圆的位置关系,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.【答案】C【解析】解:由cosB==,得BC=7cosB=7cos35°,故选:C.根据余弦为邻边比斜边,可得答案.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.【答案】D【解析】解:设它的实际长度为xcm,根据题意得:1:8000=25:x,解得:x=200000,∵200000cm=2000m,∴该路段实际长度约为2000m.故选:D.首先设它的实际长度是xcm,然后根据比例尺的定义,即可得方程:1:8000=25:x,解此方程即可求得答案,注意统一单位.此题考查了比例线段.此题难度不大,解题的关键是理解题意,根据比例尺的定义列方程,注意统一单位.6.【答案】B【解析】解:∵∠ABC与AOC是同弧所对的圆周角与圆心角,∠ABC=40°,∴∠AOC=2∠ABC=80°.故选:B.直接根据圆周角定理即可得出结论.本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.7.【答案】D【解析】解:∵M、N分别是AC、BC的中点,∴MN是△ABC的中位线,CM=AM,∴MN∥AB,MN=AB,AB=2MN=12m,CM:MA=1:1,∴△CMN∽△CAB;故A,B,C正确,故选:D.由已知条件得出MN是△ABC的中位线,CM=MA,由三角形中位线定理得出MN∥AB,MN=AB,AB=2MN=12m,得出△CMN∽△CAB;即可得出结论.本题考查了三角形中位线定理;熟练掌握三角形中位线定理,并能进行推理计算是解决问题的关键.8.【答案】D【解析】解:∵以B为圆心BC为半径画弧交AD于点E,∴BE=BC=5,∴AE=,∴DE=AD-AE=5-4=1,∴CE=,∵BC=BE,BF⊥CE,∴点F是CE的中点,∴CF=,∴BF==,∴tan∠FBC=,即tan∠FBC的值为.故选:D.首先根据以B为圆心BC为半径画弧交AD于点E,判断出BE=BC=5;然后根据勾股定理,求出AE的值是多少,进而求出DE的值是多少;再根据勾股定理,求出CE的值是多少,再根据BC=BE,BF⊥CE,判断出点F是CE的中点,据此求出CF、BF的值各是多少;最后根据角的正切的求法,求出tan∠FBC的值是多少即可.(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰三角形的判定和性质的应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)此题还考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确一个角的正弦、余弦、正切的求法.(4)此题还考查了矩形的性质和应用,以及直角三角形的性质和应用,要熟练掌握.9.【答案】B【解析】解:观察二次函数的图象可知:y1<y3<y2.故选:B.利用图象法即可解决问题.本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.10.【答案】C【解析】解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,∵∠AOD=90°,∴AB=AD==,∠ODA+∠OAD=90°,∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,S=()2=5,正方形ABCD∴∠ABA1=90°,∠OAD+∠BAA1=90°,∴∠ODA=∠BAA1,∴△ABA1∽△DOA,∴=,即=,∴BA1=,∴CA1=,∴正方形A1B1C1C的面积=()2=5×,…,第n个正方形的面积为5×()n-1,∴第2022个正方形(正方形ABCD看作第1个)的面积为5×()2021.故选:C.先求出正方形ABCD的边长和面积,再求出第一个正方形A1B1C1C的面积,得出规律,根据规律即可求出第2016个正方形的面积.本题考查了正方形的性质以及坐标与图形性质;通过求出正方形ABCD和正方形A1B1C1C的面积得出规律是解决问题的关键.11.【答案】13【解析】解:由=,得x=y.===,故答案为:.根据等式的性质,可用y表示x,根据分式的性质,可得答案.本题考查了比例的性质,利用等式的性质得出x=y是解题关键.12.【答案】1.5【解析】解:∵数据1,2,x,4的众数是1,∴x=1,∴平均数是(1+2+1+4)÷4=2,则这组数据的方差为[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=1.5;故答案为:1.5.根据众数的定义先求出x的值,再根据方差的计算公式S2=[(x 1-)2+(x2-)2+…+(x-)2]进行计算即可.n本题考查了众数和方差:众数是一组数据中出现次数最多的数;一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(x n-)2].13.【答案】y=-2(x-3)2【解析】解:函数y=-2x2的图象沿着x轴向右平移3个单位后所得到的图象的函数表达式为:y=-2(x-3)2.故答案为:y=-2(x-3)2.利用抛物线的平移规律求解.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.14.【答案】m≤3且m≠2【解析】解:∵关于x的一元二次方程(m-2)x2+2x+1=0有实数根,∴m-2≠0且△≥0,即22-4×(m-2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故答案为m≤3且m≠2.根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义得到m-2≠0且△≥0,即22-4×(m-2)×1≥0,然后解不等式组即可得到m的取值范围.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.【答案】25π【解析】解:如图:连接OM,ON,∵⊙O与正五边形ABCDE的边AB、AE相切于点M、N,∴OM⊥AB,ON⊥AC,∵∠A=108°,∴∠MON=72°,∵半径为1,∴劣弧的长度为:=π,故答案为π.连接OM,ON,首先根据切线的性质和正五边形的性质求得圆心角的度数,然后利用弧长公式进行计算.本题考查了正多边形和圆的知识,解题的关键是能够连接OM和ON,从而求得劣弧所在扇形的圆心角,利用扇形弧长公式求解.16.【答案】216°【解析】解:母线长==15,设该扇形薄纸板的圆心角为n°,所以2π•9=,解得n=216,即该扇形薄纸板的圆心角为216°.故答案为216°.利用勾股定理计算出母线长=15,设该扇形薄纸板的圆心角为n°,利用弧长公式得到2π•9=,解得n=216.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.【答案】85【解析】解:如图,过点C作CF⊥AB于点F,∵∠ACB=90°,AB=18,cosB=,∴cosB==∴BC=12,在Rt△ABC中,AC==6∵cosB=∴BF=8∵旋转∴BC=CD,AC=CE,∠BCD=∠ACE,∵BC=CD,CF⊥BD∴BF=DF=8∴BD=16∵,∠BCD=∠ACE,∴△BCD∽△ACE∴即∴AE=8故答案为:8由题意可求BC=12,AC=6,由旋转的性质可得BC=CD,AC=CE,∠BCD=∠ACE,可证△BCD∽△ACE,可得,可求AE的长.本题考查了旋转的性质,勾股定理,锐角三角函数,相似三角形的判定和性质,灵活运用相关的性质定理、综合运用知识是解题的关键.18.【答案】125【解析】解:如图,连接OM,作OH⊥AB于H,CK⊥AB于K.∵OH⊥MN,∴MH=HN,∴MN=2MH=2,∵∠DCE=90°,OD=OE,∴OC=OD=OE=OM=,∴欲求MN的最大值,只要求出OH的最小值即可,∵OC=,∴点C的运动轨迹是以C为圆心为半径的圆,在Rt△ACB中,∵BC=3,AC=4,∴AB=5,∵•AB•CK=•AC•BC,∴CK=,当C,O,H共线,且与CK重合时,OH的值最小,∴OH的最小值为-=,∴MN的最大值=2=,故答案为.如图,连接OM,作OH⊥AB于H,CK⊥AB于K.由题意MN=2MH=2,OM=,推出欲求MN的最大值,只要求出OH的最小值即可.本题考查最小与圆的位置关系,勾股定理,轨迹等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.19.【答案】解:(1)∵a=1,b=-8,c=6,∴△=64-4×1×6=40>0,则x=8±2102=4±10,∴x1=4+10,x2=4-10;(2)∵2(x-1)2=3x-3,∴2(x-1)2-3(x-1)=0,∴(x-1)[2(x-1)-3]=0,即(x-1)(2x-5)=0,则x-1=0或2x-5=0,解得:x1=1,x2=52.【解析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.20.【答案】解:(1)-12+|1-4sin60°|=-23+4×32-1=-1;(2)(3)0−(12)−2+tan45°=1-4+1=-2.【解析】(1)直接利用特殊角的三角函数值以及二次根式的性质分别化简得出答案;(2)直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】-2,0 -4,2 -6,-2 -4,0【解析】解:(1)(2)(3)从图可知:A(-2,0),B(-4,2),C(-6,-2);(4)从图上可知重心坐标(-4,0);(5)由等积法得方程:d=2×3,所以d=.(1)根据所给的已知点的坐标画直角坐标系.(2)连接AO、BO、CO、并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.(3)从坐标系中读出各点的坐标即可.(4)要写出重心的坐标,先要作出重心,即三条中线的交点.再从坐标系中读出它的坐标.(5)由等积法列方程求解.本题综合考查了直角坐标系和位似图形的画法及三角形的重心,及高的求法.22.【答案】解:(1)15÷30%=50(人),答:本次调查了50名学生.(2)50-10-15-5=20(人),条形图如图所示:(3)500×1050=100(人),答:该校共有500名学生,估计“十分了解”的学生有100名.(4)树状图如下:共有12种等可能情况,其中所选两位参赛选手恰好是一男一女有6种.所以,所选两位参赛选手恰好是一男一女的概率P=612=12.【解析】(1)根据B组人数以及百分比计算即可解决问题;(2)求出C组人数,画出条形图即可解决问题;(3)用500ד十分了解”所占的比例即可;(4)先画出树状图,继而根据概率公式可求出两位参赛选手恰好是一男一女的概率.本题考查了折线统计图、树状图法求概率的知识,信息量较大,注意仔细认真审题,培养自己的读图能力,善于寻找解题需要的信息,属于中考常考题型.23.【答案】解:在Rt△CED中,∠CED=58°,∵tan58°=CDDE,∴DE=CDtan58∘=2tan58∘,在Rt△CFD中,∠CFD=22°,∵tan22°=CDDF,∴DF=CDtan22∘=2tan22∘,∴EF=DF-DE=2tan22∘−2tan58∘,同理:EF=BE-BF=ABtan45∘−ABtan70∘,∴ABtan45∘−ABtan70∘=2tan22∘−2tan58∘,解得:AB≈5.9(米),答:建筑物AB的高度约为5.9米.【解析】在△CED中,得出DE,在△CFD中,得出DF,进而得出EF,列出方程即可得出建筑物AB的高度;本题考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.24.【答案】证明:(1)连接OD,如图,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线;(2)连接BD,则∠ADB=90°,∵∠CAB=60°,AD平分∠CAB,∴∠CAD=∠DAB=30°,∵DE=33,∴AD=63,∴AB=12,连接OC,则OC=OA=6,∵∠CAB=60°,∴AC=OA=OC=6.【解析】(1)连接OD,如图,先证明OD∥AE,再利用DE⊥AE得到DE⊥OD,然后根据切线的判定定理得到结论;(2)连接BD,利用角平分线的定义和直角三角形的性质解答即可.本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.25.【答案】解:(1)设y=kx+b,∵直线y=kx+b经过点(40,300),(55,150),∴40k+b=30055k+b=150,解得:k=−10b=700.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,∴30<x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w最大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【解析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x的取值范围.此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.26.【答案】解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB-BP=10-t.∵PQ∥BC,∴APAB=AQAC,∴10−t10=2t6,解得t=3013;(2)∵S四边形PQCB=S△ACB-S△APQ=12AC•BC-12AP•AQ•sin A∴y=12×6×8-12×(10-t)•2t•810=24-45t(10-t)=45t2-8t+24,即y关于t的函数关系式为y=45t2-8t+24;(3)四边形PQCB面积能是△ABC面积的35,理由如下:由题意,得45t2-8t+24=35×24,整理,得t2-10t+12=0,解得t1=5-13,t2=5+13(不合题意舍去).故四边形PQCB面积能是△ABC面积的35,此时t的值为5-13;(4)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10-2t=2t,解得t=52;②如果EA=EQ,那么(10-2t)×610=t,解得t=3011;③如果QA=QE,那么2t×610=5-t,解得t=2511.故当t为52秒3011秒2511秒时,△AEQ为等腰三角形.【解析】(1)先在Rt△ABC中,由勾股定理求出AB=10,再由BP=t,AQ=2t,得出AP=10-t,然后由PQ∥BC,根据平行线分线段成比例定理得出=,列出比例式=,求解即可;=S△ACB-S△APQ=AC•BC-AP•AQ•sinA,即可得出y关(2)根据S四边形PQCB于t的函数关系式;(3)根据四边形PQCB面积是△ABC面积的,列出方程t2-8t+24=×24,解方程即可;(4)△AEQ为等腰三角形时,分三种情况讨论:①AE=AQ;②EA=EQ;③QA=QE,每一种情况都可以列出关于t的方程,解方程即可.本题考查了勾股定理,平行线的判定,四边形的面积,等腰三角形的判定,中心对称的性质,综合性较强,难度适中.运用分类讨论、方程思想是解题的关键.27.【答案】解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(-2,0),Rt△ABC中,tan∠ABC=2,∴ACBC=2,∴AC3=2,∴AC=6,∴A(-2,6),把A(-2,6)和B(1,0)代入y=-x2+bx+c得:−4−2b+c=6−1+b+c=0,解得:b=−3c=4,∴抛物线的解析式为:y=-x2-3x+4;(2)①∵A(-2,6),B(1,0),易得AB的解析式为:y=-2x+2,设P(x,-x2-3x+4),则E(x,-2x+2),∵PE=12DE,∴-x2-3x+4-(-2x+2)=12(-2x+2),x=1(舍)或-1,∴P(-1,6);②∵M在直线PD上,且P(-1,6),设M(-1,y),∴AM2=(-1+2)2+(y-6)2=1+(y-6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y-6)2+4+y2=45,解得:y=3±11,∴M(-1,3+11)或(-1,3-11);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y-6)2,y=-1,∴M(-1,-1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y-6)2+45=4+y2,y=132,∴M(-1,132);综上所述,点M的坐标为:∴M(-1,3+11)或(-1,3-11)或(-1,-1)或(-1,132).【解析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=-2x+2,根据PD⊥x轴,设P(x,-x2-3x+4),则E (x,-2x+2),根据PE=DE,列方程可得P的坐标;②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.28.【答案】3【解析】解:(1)如图①中,结论:OC=AE,理由:∵△ABC,△BOE都是等边三角形,∴BC=BA,BO=BE,∠CBA=∠OBE=60°,∴∠CBO=∠ABE,∴△CBO≌△ABE,∴OC=AE.(2)在△AOE中,AE≤OE+OA,∴当E、O、A共线,∴AE的最大值为3,∴OC的最大值为3.故答案为3.(3)如图1,连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值(如图2中)最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO-AB-AE=5-3-=2-,∴P(2-,).(4)如图4中,以BC为边作等边三角形△BCM,∵∠ABD=∠CBM=60°,∴∠ABC=∠DBM,∵AB=DB,BC=BM,∴△ABC≌△DBM,∴AC=MD,∴欲求AC的最大值,只要求出DM的最大值即可,∵BC=4=定值,∠BDC=90°,∴点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=2+2,∴AC的最大值为2+2.当点A在线段BD的右侧时,同法可得AC的最小值为2-2.(1)结论:OC=AE.只要证明△CBO≌△ABE即可;(2)利用三角形的三边关系即可解决问题;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2 +3;过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论;(4)如图4中,以BC为边作等边三角形△BCM,由△ABC≌△DBM,推出AC=MD,推出欲求AC的最大值,只要求出DM的最大值即可,由BC=4=定值,∠BDC=90°,推出点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大;本题考查四边形综合题、等边三角形的性质、等腰直角三角形的性质、全等三角形的判定和性质、圆等知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题,掌握旋转法添加辅助线,属于中考压轴题.。

九年级上册无锡数学期末试卷测试卷(解析版)

九年级上册无锡数学期末试卷测试卷(解析版)

九年级上册无锡数学期末试卷测试卷(解析版)一、选择题1.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为( )A .3cmB .5cmC .6cmD .8cm2.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3- B .3 C .3-D .33.方程 x 2=4的解是( )A .x 1=x 2=2B .x 1=x 2=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-44.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .1003mC .150mD .503m5.已知OA ,OB 是圆O 的半径,点C ,D 在圆O 上,且//OA BC ,若26ADC ∠=︒,则B 的度数为( )A .30B .42︒C .46︒D .52︒6.某篮球队14名队员的年龄如表: 年龄(岁) 18 19 20 21 人数5432则这14名队员年龄的众数和中位数分别是( ) A .18,19B .19,19C .18,4D .5,47.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .568.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )A .23B .25C .4D .69.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( ) A .1B .2C .3D .410.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2 B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+311.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个12.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题13.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.14.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.15.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .16.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.17.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)18.抛物线21(5)33y x =--+的顶点坐标是_______.19.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.20.若a b b -=23,则ab的值为________. 21.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC∆另一边的交点为点P ,则DP =__________.22.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.23.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .24.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.三、解答题25.习总书记在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题:(1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?26.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cm B.6cm×4.5cm C.7cm×4cm D.7cm×4.5cm27.在平面直角坐标系中,二次函数y=ax2+bx+2 的图象与x 轴交于A(﹣3,0),B (1,0)两点,与y 轴交于点C.(1)求这个二次函数的关系解析式,x 满足什么值时y﹤0 ?(2)点p 是直线AC 上方的抛物线上一动点,是否存在点P,使△ACP 面积最大?若存在,求出点P的坐标;若不存在,说明理由(3)点M 为抛物线上一动点,在x 轴上是否存在点Q,使以A、C、M、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.28.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少? (3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.29.如图,抛物线y=ax 2+bx+4(a ≠0)与x 轴交于点B (-3 ,0) 和C (4 ,0)与y 轴交于点A . (1) a = ,b = ;(2) 点M 从点A 出发以每秒1个单位长度的速度沿AB 向B 运动,同时,点N 从点B 出发以每秒1个单位长度的速度沿BC 向C 运动,当点M 到达B 点时,两点停止运动.t 为何值时,以B 、M 、N 为顶点的三角形是等腰三角形?(3) 点P 是第一象限抛物线上的一点,若BP 恰好平分∠ABC ,请直接写出此时点P 的坐标.30.解方程:(1)2620x x ++= (2)2(3)3(3)x x x -=-31.定义:如图1,点P 为∠AOB 平分线上一点,∠MPN 的两边分别与射线OA ,OB 交于M ,N 两点,若∠MPN 绕点P 旋转时始终满足OM •ON =OP 2,则称∠MPN 是∠AOB 的“相关角”.(1)如图1,已知∠AOB =60°,点P 为∠AOB 平分线上一点,∠MPN 的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°<α<90°),OP=3,若∠MPN是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数4yx=(x>0)图象上的一个动点,过点C的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.32.如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0)、B(5,0),与y轴相交于点C(0,53).(1)求该函数的表达式;(2)设E为对称轴上一点,连接AE、CE;①当AE+CE取得最小值时,点E的坐标为;②点P从点A出发,先以1个单位长度/的速度沿线段AE到达点E,再以2个单位长度的速度沿对称轴到达顶点D.当点P到达顶点D所用时间最短时,求出点E的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=12AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.【详解】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=12AB=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.∴该输水管的半径为5cm;故选:B.【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用.2.B解析:B【解析】【分析】根据题干可以明确得到p,q是方程2330x x-=的两根,再利用韦达定理即可求解.【详解】解:由题可知p,q是方程2330x x-=的两根,∴3,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键. 3.C解析:C【解析】【分析】两边开方得到x=±2.【详解】解:∵x2=4,∴x=±2,∴x1=2,x2=-2.故选:C.【点睛】本题考查了解一元二次方程-直接开平方法:形如ax2+c=0(a≠0)的方程可变形为2=cxa-,当a、c异号时,可利用直接开平方法求解.4.A解析:A 【解析】∵堤坝横断面迎水坡AB 的坡比是1:3,∴BC =AC 3, ∵BC=50,∴AC=503,∴()2222AB=AC +BC 503+50100==(m ).故选A5.D解析:D 【解析】 【分析】连接OC ,根据圆周角定理求出∠AOC ,再根据平行得到∠OCB ,利用圆内等腰三角形即可求解. 【详解】 连接CO , ∵26ADC ∠=︒ ∴∠AOC=252ADC ∠=︒ ∵//OA BC ∴∠OCB=∠AOC=52︒ ∵OC=BO , ∴B =∠OCB=52︒故选D.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.6.A解析:A 【解析】 【分析】根据众数和中位数的定义求解可得. 【详解】∵这组数据中最多的数是18, ∴这14名队员年龄的众数是18岁, ∵这组数据中间的两个数是19、19,∴中位数是19192+=19(岁),故选:A.【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.7.B解析:B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π,2共2个,∴卡片上的数为无理数的概率是21 = 63.故选B.【点睛】本题考查了无理数的定义及概率的计算.8.B解析:B【解析】【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故==故选:B.【点睛】本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.9.B解析:B【解析】【分析】将x=2代入方程即可求得k的值,从而得到正确选项.【详解】解:∵一元二次方程x2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B.【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.10.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y=x2的图象沿y轴向上平移2个单位长度,得到:y=x2+2,再沿x轴向左平移3个单位长度得到:y=(x+3)2+2.故选:A.【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.11.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得BC=12AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 12.B解析:B【解析】【分析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系二、填空题13.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.14.50【解析】【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径∴ACB 90∠=︒ ∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 15.15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.16.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:2 3【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360-=23, 故答案为23. 【点睛】 本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.17.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 18.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单.19.6+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A 的两解析:63+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】 解:如图,当圆形纸片运动到与∠A 的两边相切的位置时,过圆形纸片的圆心O 作两边的垂线,垂足分别为D ,E ,连接AO ,则Rt △ADO 中,∠OAD =30°,OD =1,AD 3∴S △ADO =12OD •AD 3 ∴S 四边形ADOE =2S △ADO 3∵∠DOE =120°,∴S 扇形DOE =3π, ∴纸片不能接触到的部分面积为:333π)=3﹣π ∵S △ABC =1233∴纸片能接触到的最大面积为:33=3+π.故答案为.【点睛】此题主要考查圆的综合运用,解题的关键是熟知等边三角形的性质、扇形面积公式. 20.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.21.1,,【解析】【分析】根据P的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB时∴△DCP∽△BCA ∴即,解得DP=1 如图:当P 在AB 上,即DP∥AC∴△DC解析:1,83,32【解析】 【分析】根据P 的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP ∥AB 时∴△DCP ∽△BCA∴DC DP BC AB =即263DP =,解得DP=1 如图:当P 在AB 上,即DP ∥AC∴△DCP ∽△BCA∴BD DP BC AC =即6264DP -=,解得DP=83 如图,当∠CPD=∠B ,且∠C=∠C 时,∴△DCP ∽△ACB∴PD CD AB AC =即243DP =,解得DP=32故答案为1,83,32.【点睛】本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P点是解答本题的关键.22.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可. 【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.23.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.24.【解析】【分析】作OH⊥AB,延长OH 交于E ,反向延长OH 交CD 于G ,交于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB∥CD,所以四边形ABCD 是平行解析:163【解析】【分析】作OH ⊥AB ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB ∥CD ,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH ⊥AB ,垂足为H ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,则OA=OB=OC=OD=OE=OF=4,∵弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:==∴AB=∴四边形ABCD的面积=AB×GH=故答案为:.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形.三、解答题25.(1)50;(2)8.26,8;(3)400【解析】【分析】(1)根据总数等于各组数量之和列式计算;(2)根据样本平均数和中位数的定义列式计算;(3)利用样本估计总体的思想解决问题.【详解】解:(1)本次调查一共抽取了4+10+15+11+10=50名;(2)调查获取的样本数据的平均数为6471081591110108.2650分;4+10+15=29<26,所以中位数为8+8=82分;(3)根据题意得2000名居民中得分为10分的约有102000=40050名,∴社区工作人员需准备400份一等奖奖品.【点睛】本题考查条形统计图,读懂图形,从图形中得到必要的信息是解答此题的关键,条形统计图的特点是能清楚的反映出各个项目的数据.26.(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【解析】【分析】 (1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴==23=6S rl πππ⨯⨯母侧即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n 度,则2π×2=3180n π⨯ 解得:n=240°, 如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm ,宽为4.5cm ,故选:B .【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.27.(1)24233y x x =--+,13x <- 或21>x ;(2)P 35,22⎛⎫- ⎪⎝⎭;(3)1234(5,0),(1,0),(27,0),(27,0)--Q Q Q Q【解析】【分析】(1)将点A (﹣3,0),B (1,0)带入y =ax 2+bx +2得到二元一次方程组,解得即可得出函数解析式;又从图像可以看出x 满足什么值时 y ﹤0;(2)设出P 点坐标224233m m m ⎛⎫--+ ⎪⎝⎭,,利用割补法将△ACP 面积转化为PAC PAO PCO ACO S S SS =+-,带入各个三角形面积算法可得出PAC S 与m 之间的函数关系,分析即可得出面积的最大值;(3)分两种情况讨论,一种是CM 平行于x 轴,另一种是CM 不平行于x 轴,画出点Q 大概位置,利用平行四边形性质即可得出关于点Q 坐标的方程,解出即可得到Q 点坐标.【详解】解:(1)将A (﹣3,0),B (1,0)两点带入y =ax 2+bx +2可得:093202a b a b =-+⎧⎨=++⎩ 解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴二次函数解析式为24233y x x =--+. 由图像可知,当x 3<-或x 1>时y ﹤0; 综上:二次函数解析式为24233y x x =--+,当x 3<-或x 1>时y ﹤0; (2)设点P 坐标为224233m m m ⎛⎫--+ ⎪⎝⎭,,如图连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N.PM=224233m m --+,PN=m -,AO=3. 当x 0=时,24y 002233=-⨯-⨯+=,所以OC=2 111222PAC PAO PCO ACO SS S S AO PM CO PN AO CO =+-=+- ()221241132232323322m m m m m ⎛⎫=⨯--++⨯--⨯⨯=-- ⎪⎝⎭, ∵a 10=-<∴函数23PAC S m m =--有最大值,当()33m 212-=-=-⨯-时,PAC S 有最大值,此时35P ,22⎛⎫- ⎪⎝⎭; 所以存在点35P ,22⎛⎫-⎪⎝⎭,使△ACP 面积最大. (3)存在,1234(5,0),(1,0),(27,0),(27,0)--+-Q Q Q Q假设存在点Q 使以 A 、C 、M 、Q 为顶点的四边形是平行四边形①若CM 平行于x 轴,如下图,有符合要求的两个点12Q Q 、,此时1Q A =2.Q A CM =∵CM ∥x 轴,∴点M 、点C (0,2)关于对称轴x 1=-对称,∴M (﹣2,2),∴CM=2.由1Q A =22Q A CM ==,得到12(5,0),(1,0)--Q Q ;②若CM 不平行于x 轴,如下图,过点M 作MG ⊥x 轴于点G ,易证△MGQ ≌△COA ,得QG=OA=3,MG=OC=2,即2M y =-.设M (x ,﹣2),则有242=233--+-x x ,解得:x 17=- 又QG=3,∴327Q G x x =+=∴34(27,0),(27,0)Q Q综上所述,存在点P 使以 A 、C 、M 、Q 为顶点的四边形是平行四边形,Q 点坐标为:1234(5,0),(1,0),(27,0),(27,0)--+-Q Q Q Q .【点睛】本题考查二次函数与几何综合题目,涉及到用待定系数法求二次函数解析式,通过函数图像得出关于二次函数不等式的解集,平面直角坐标系中三角形面积的计算通常利用割补法,并且将所要求得点的坐标设出来,得出相关方程;在解答(3)的时候注意先画出大概图像再利用平行四边形性质进行计算和分析.28.(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x ≤56【解析】【分析】(1)直接利用待定系数法求出一次函数解析式即可;(2)利用w=销量乘以每件利润进而得出关系式求出答案;(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.【详解】解:(1)y 与x 之间的函数关系式为:y kx b =+把(35,350),(55,150)代入得:由题意得:3503515055k b k b =+⎧⎨=+⎩解得:10700k b =-⎧⎨=⎩∴y 与x 之间的函数关系式为:10700y x =-+.(2)设销售利润为W 元则W=(x ﹣30)•y =(x ﹣30)(﹣10x +700),W =﹣10x 2+1000x ﹣21000W =﹣10(x ﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.(3)令W =3640∴﹣10(x ﹣50)2+4000=3640∴x 1=44,x 2=56如图所示,由图象得:当44≤x ≤56时,每天利润不低于3640元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.29.(1)13-,13;(2)52530,,21111t=;(3)511(,)24【解析】【分析】(1)直接利用待定系数法求二次函数解析式得出即可;(2)分三种情况:①当BM=BN时,即5-t=t,②当BM=NM=5-t时,过点M作ME⊥OB,因为AO⊥BO,所以ME∥AO,可得:BM BEBA BO=即可解答;③当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=12BM=12(5-t),易证△BFE∽△BOA,所以BE BFBA BO=即可解答;(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=32,设出点P坐标,易证△BGO∽△BPD,所以BO GOBD PD=,即可解答.【详解】解:解:(1)∵抛物线过点B (-3 ,0) 和C (4 ,0),∴9340 16440a ba b-+⎧⎨++⎩==,解得:1313ab⎧=-⎪⎪⎨⎪=⎪⎩;(2)∵B (-3 ,0),y=ax2+bx+4,∴A(0,4),0A=4,OB=3,在Rt△ABO中,由勾股定理得:AB=5,t秒时,AM=t,BN=t,BM=AB-AM=5-t,①如图:当BM=BN时,即5-t=t,解得:t=5 2 ;,②如图,当BM=NM=5-t时,过点M作ME⊥OB,因为BN=t,由三线合一得:BE=12BN=12t,又因为AO⊥BO,所以ME∥AO,所以BM BEBA BO=,即15-253tt=,解得:t=3011;③如图:当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=12BM=12(5-t),易证△BFE∽△BOA,所以BE BFBA BO=,即5t253t-=,解得:t=2511.(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=32,设P (m,-13m2+13m+4),因为GO∥PD,∴△BGO∽△BPD,∴BO GOBD PD=,即2332113+433m m m=-++,解得:m1=52,m2=-3(点P在第一象限,所以不符合题意,舍去),m1=52时,-13m2+13m+4=114故点P的坐标为511(,)24【点睛】本题考查用待定系数法求二次函数解析式,还考查了等腰三角形的判定与性质、相似三角形的性质和判定.30.(1)1237,37x x =-=-;(2)122,33x x == 【解析】【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)2620x x ++= 2697x x ++=2(3)7x +=37x +=1237,37x x =-=-.(2)2(3)3(3)x x x -=-2(3)3(3)0x x x ---=(23x)(x 3)0--=,2-3x=0或x-3=0∴122,33x x == 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知方程的解法.31.(1)见解析;(2)19180,sin 22MON MPN S αα∠=︒-=△;(3)433OP =,P 点坐标为4646⎝⎭或2626⎝⎭【解析】【分析】(1)由角平分线求出∠MOP=∠NOP=12∠AOB=30°,再证出∠OMP=∠OPN,证明△MOP∽△PON,即可得出结论;(2)由∠MPN是∠AOB的“相关角”,判断出△MOP∽△PON,得出∠OMP=∠OPN,即可得出∠MPN=180°﹣12α;过点M作MH⊥OB于H,由三角形的面积公式得出:S△MON=12ON•MH,即可得出结论;(3)设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,BC=3CA不可能;当点A在x轴的正半轴上时;先求出14CAAB=,由平行线得出△ACH∽△ABO,得出比例式:14CH AH ACOB OA AB===,得出OB,OA,求出OA•OB,根据∠APB是∠AOB的“相关角”,得出OP,即可得出点P 的坐标;②当点B在y轴的负半轴上时;同①的方法即可得出结论.【详解】(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=12∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴OM OP OP ON=,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴OM OP OP ON=,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=12α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣12α,即∠MPN=180°﹣12α;。

2021-2022学年江苏省无锡市九年级上学期数学期末试题及答案

2021-2022学年江苏省无锡市九年级上学期数学期末试题及答案

2021-2022学年江苏省无锡市九年级上学期数学期末试题及答案参考公式:一组数据、、…、的平均数为,则方差1x 2x n x x . ()()()2222121n S x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦ 一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑)1. 下列方程是一元二次方程的是( )A. B. C. D. 22x y +=320x x -=17x y +=227x x -=【答案】D【解析】【分析】直接利用一元二次方程的定义分析得出答案.【详解】解:A. ,是二元一次方程,故本选项不符合题意.22x y +=B. ,是一元三次方程,故本选项不符合题意.320x x -=C. ,是分式方程,故本选项不符合题意. 17x y+=D. ,该一元二次方程,故本选项符合题意.227x x -=故选D .【点睛】此题主要考查了一元二次方程的定义,正确把握定义含有一个未知数,并且含未知数的项的次数为2,系数不为0的整式方程是解题关键.2. 已知⊙O 的半径为4,,则点A 在( )5OA =A. ⊙O 内B. ⊙O 上C. ⊙O 外D. 无法确定【答案】C【解析】【分析】根据⊙O 的半径r=4,且点A 到圆心O 的距离d=5知d>r ,据此可得答案.【详解】解:∵⊙O 的半径r=4,且点A 到圆心O 的距离d=5,∴d>r,∴点A 在⊙O 外,故选:C .【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O 的半径为r ,点P 到圆心的距离OP=d ,则有:①点P 在圆外⇔d >r ;②点P 在圆上⇔d=r ;③点P 在圆内⇔d <r .3. 若a 是从“、0、1、2”这四个数中任取的一个数,则关于x 的方程1-()2130a x x -+-=为一元二次方程的概率是( )A. 1B.C.D. 341213【答案】B【解析】【分析】根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a 是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有1-3种,然后利用概率公式计算即可.【详解】解:当a=1时于x 的方程不是一元二次方程,其它三个数都()2130a x x -+-=是一元二次方程,a 是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的1-情况有3种,关于x 的方程为一元二次方程的概率是, ()2130a x x -+-=34故选择B .【点睛】本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.4. 一组样本数据为1、2、3、3、6,下列说法错误的是( )A. 平均数是3B. 中位数是3C. 方差是3D. 众数是3 【答案】C【解析】【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【详解】A 、平均数为,故此选项不符合题意; 1233+6=35+++B 、样本数据为1、2、3、3、6,则中位数为3,故此选项不符合题意;C 、方差为,故此选项符合题意;222221[(13)(23)(33)(33)(63)] 2.85⨯-+-+-+-+-=D 、众数为3,故此选项不符合题意.故选:C .【点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.5. 一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x ,根据题意所列方程正确的是( )A. B. C. D. 26048.6x =()260148.6x -=()260148.6x +=()601248.6x -=【答案】B【解析】【分析】根据等量关系:原价×(1-x )2=现价列方程即可.【详解】解:根据题意,得:,()260148.6x -=故答案为:B .【点睛】本题考查一元二次方程的应用,找准等量关系列出方程是解答的关键.6. 在圆内接四边形ABCD 中,∠A、∠B、∠C 的度数之比为2:4:7,则∠B 的度数为( )A. 140°B. 100°C. 80°D. 40° 【答案】C【解析】【分析】,,,进而求解的值.180A C ∠+∠=︒::2:4:7A B C ∠∠∠=40A ∠=︒B Ð【详解】解:由题意知180A C ∠+∠=︒∵::2:4:7A B C ∠∠∠=∴():1802:7A A ∠-∠=∴40A ∠=︒∵:2:4A B ∠∠=∴80B ∠=︒故选C .【点睛】本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.7. 如图,在平面直角坐标系中,,,.则△ABC 的外心坐标为()0,3A -()2,1B -()2,3C ( )A.B. C. D.()0,0()1,1-()2,1--()2,1-【答案】D【解析】【分析】由BC 两点的坐标可以得到直线BC∥y 轴,则直线BC 的垂直平分线为直线y=1,再由外心的定义可知△ABC 外心的纵坐标为1,则设△ABC 的外心为P (a ,-1),利用两点距离公式和外心的性质得到,由此求解即可.()()()22222222131621148PA a a PB a a a =++=+==-++=-+【详解】解:∵B 点坐标为(2,-1),C 点坐标为(2, 3),∴直线BC∥y 轴,∴直线BC 的垂直平分线为直线y=1,∵外心是三角形三条边的垂直平分线的交点,∴△ABC 外心的纵坐标为1,设△ABC 的外心为P (a ,1),∴,()()()22222222131621148PA a a PB a a a =++=+==-++=-+∴,221648a a a +=-+解得,2a =-∴△ABC 外心的坐标为(-2, 1),故选D .【点睛】本题主要考查了坐标与图形,外心的性质与定义,两点距离公式,解题的关键在于能够熟知外心是三角形三边垂直平分线的交点.8. 如图,AB 是的直径,CD 是的弦,且,,,则图中O O CD AB ∥12AB =6CD =阴影部分的面积为( )A.B. C. D.18π12π6π3π【答案】C【解析】 【分析】如图,连接OC ,OD ,可知是等边三角形,,,COD △60n COD =∠=︒6r =,计算求解即可. 2==360COD n r S S π阴影扇形【详解】解:如图连接OC ,OD∵ 12OC OD AB CD ===∴是等边三角形COD △∴60COD ∠=︒由题意知,=ACD COD S S △△ 22606==6360360COD n r S S πππ⨯⨯==阴影扇形故选C .【点睛】本题考查了扇形的面积,等边三角形等知识.解题的关键在于用扇形表示阴影面积.9. 定义一种新运算:,,则方程的解是2a b a b ⊕=+2a b a b =※()()1232x x +=⊕-※( )A. ,B. ,C. ,D. ,112x =22x =-11x =-212x =112x =-22x =11x = 212x =-【答案】A【解析】【分析】根据新定义列出关于x 的方程,解方程即可.【详解】解:由题意得,方程,化为, ()()1232x x +=⊕-※22(1)62x x +=+-整理得,,22320x x +-=,2,3,2a b c ===-∴, 354x -±==解得:,, 112x =22x =-故选A . 【点睛】本题考查了公式法解一元二次方程,正确理解新运算、掌握公式法解一元二次方程的一般步骤是解题的关键.10. 如图,在Rt△ABC 中,,,点D 、E 分别是AB 、AC 的中90BAC ∠=︒6AB AC ==点.将△ADE 绕点A 顺时针旋转60°,射线BD 与射线CE 交于点P ,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP 存在最大值为存在最小值为;④3+3-点P .其中,正确的( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】B【解析】 【分析】根据,,点D 、E 分别是AB 、AC 的中点.得出90BAC ∠=︒6AB AC ==∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS ),可判断16=32⨯①△AEC≌△ADB 正确;作以点A 为圆心,AE 为半径的圆,当CP 为⊙A 的切线时,CP 最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP 为⊙A 的切线,证明四边形DAEP 为正方形,得出PE=AE=3,在Rt△AEC 中,CE=,可判断②CP 存在最大值为;===3+△AEC≌△ADB,得出BD=CE=Rt△BPC 中,BP 最小=可判断③BP 存在最小值为不3==3正确;取BC 中点为O ,连结AO ,OP ,AB=AC=6,∠BAC=90°,BP=CO=AO=,当AE⊥CP 时,CP 与以点A 为圆心,AE 为半径1122BC ==⨯=的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出3162AE AC ==∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A 为圆心,AE 为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P 3162AD AB ==在以点O 为圆心,OA 长为半径的圆上运动轨迹为,L =L PA P A '或 PA PA '1203180π⨯==可判断④点P正确即可.【详解】解:∵,,点D 、E 分别是AB 、AC 的中点. 90BAC ∠=︒6AB AC ==∴∠DAE=90°,AD=AE=, 16=32⨯∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB 和△EAC 中,,AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩∴△DAB≌△EAC(SAS ),故①△AEC≌△ADB 正确;作以点A 为圆心,AE 为半径的圆,当CP 为⊙A 的切线时,CP 最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP 为⊙A 的切线,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四边形DAEP 为矩形,∵AD=AE,∴四边形DAEP 为正方形,∴PE=AE=3,在Rt△AEC 中,,===∴CP 最大=PE+EC=3+故②CP 存在最大值为3+∵△AEC≌△ADB,∴BD=CE=在Rt△BPC 中,BP 最小, 3==-BP 最短=BD-PD=,故③BP 存在最小值为不正确;3取BC 中点为O ,连结AO ,OP ,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=, 1122BC ==⨯=当AE⊥CP 时,CP 与以点A 为圆心,AE 为半径的圆相切,此时sin∠ACE=, 3162AE AC ==∴∠ACE=30°, ∴∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A 为圆心,AE 为半径的圆相切,此时sin∠ABD=, 3162AD AB ==∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴点P 在以点O 为圆心,OA 长为半径的圆上运动轨迹为,PA P A '或∴L = L . PA P A '==故④点P 正确;正确的是①②④.故选B .【点睛】本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.二、填空题(本大题共8小题,每空3分,共30分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11. 请写出一个一元二次方程,使得它的一个根为0,另一个根不为0:________.【答案】(答案不唯一)20x x -=【解析】【分析】一元二次方程可表示为 的形式,任取的值代入求解即()00x x a a +=≠,0a ≠可.【详解】解:由题意知,一元二次方程可表示为,的形式()0x x a +=0a ≠当时,一元二次方程为1a =-20x x -=故答案为:(答案不唯一).20x x -=【点睛】本题考查了一元二次方程.解题的关键在于正确的写出方程的因式分解的形式.12. 用配方法将方程化成的形式:________. 240x x +=()2x m n +=【答案】()224x +=【解析】【分析】配方法表示方程即可.【详解】解: 240x x +=2444x x ++=()224x +=故答案为:.()224x +=【点睛】本题考查了一元二次方程的配方法.解题的关键在于识别方程的形式并正确的表示.13. 转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数为3的倍数的概率是__________.【答案】 13【解析】【分析】直接利用概率公式计算可得答案.【详解】在这6个数字中,为3的倍数的有3和6,共2个,∴任意转动转盘一次,当转盘停止转动,指针落在扇形中的数为3的倍数的概率是=, 2613故答案为:. 13【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.14. 如图,在RtΔABC 中,∠C=90°,AC=5 cm ,BC=12 cm ,以BC 边所在的直线为轴,将ΔABC 旋转一周得到的圆锥侧面积是____.【答案】 265cm π【解析】【详解】解:根据题意得: ∵∠C=90°,AC=5 cm ,BC=12 cm , ∴母线长l=13,半径r 为5, ∴圆锥的侧面积是S=. 21251365cm 2ππ⨯⨯⨯=故答案为:265cm π15. 某电视台要招聘1名记者,某应聘者参加了3项素质测试,成绩如下: 测试项目 采访写作 计算机操作 创意设计 测试成绩(分)828580如果将采访写作、计算机操作和创意设计的成绩按5:2:3计算,则该应聘者的素质测试平均成绩是________分. 【答案】82 【解析】【分析】根据加权平均数公式采访写作的成绩×权重+计算机操作的成绩×权重+创意设计的成绩×权重计算即可.【详解】解:该应聘者的素质测试平均成绩是. 52382858041172482101010⨯+⨯+⨯=++=故答案为82.【点睛】本题考查加权平均数,掌握加权平均数公式是解题关键.16. 一个直角三角形的斜边长,两条直角边长的和是6cm ,则这个直角三角形外接圆的半径为______cm ,直角三角形的面积是________. 2cm【答案】 ①. ②. 4【解析】【分析】设一直角边长为x ,另一直角边长为(6-x )根据勾股定理,()(222+6x x -=解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求1224x x ==,,利用三角形面积公式求即可. 124=42⨯⨯2cm 【详解】解:设一直角边长为x ,另一直角边长为(6-x ), ∵三角形是直角三角形,∴根据勾股定理,()(222+6x x -=整理得:, 2680x x -+=解得,1224x x ==,这个直角三角形的斜边长为外接圆的直径,cm , 三角形面积为. 124=42⨯⨯2cm;.4【点睛】本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.17. 古代数学家曾经研究过一元二次方程的几何解法.以方程为例,三国时期2320x x +=的数学家赵爽在其所著的《勾股圆方图注》中记载的方法是:构造如图所示的大正方形ABCD ,它由四个全等的矩形加中间小正方形组成,根据面积关系可求得AB 的长,从而解得x .根据此法,图中正方形ABCD 的面积为________,方程可化为________.2320x x +=【答案】 ①. 89 ②. ()22389x +=【解析】【分析】先求正方形四边边长,用完全平方公式展开两条边长之积,再利用已知条件得出所求正方形面积.第二问则把第一问的最前面和最后面联系起来即可得解.【详解】①正方形边长为x+x+3=2x+3 故面积为(2x+3)²=4x²+12x+9=4(x²+3x )+9 因为x²+3x=20所以4(x²+3x )+9=80+9=89 故答案为89;②由①结合最前面和最后面可得:(2x+3)²=89 故答案为(2x+3)²=89.【点睛】本题考查完全平方公式的应用、结论的迁移,掌握这些是本题关键.18. 将点绕x 轴上的点G 顺时针旋转90°后得到点,当点恰好落在以坐标()3,3A -'A 'A 原点O 为圆心,2为半径的圆上时,点G 的坐标为________.【答案】或##或 ()3-+()3-()3-()3-【解析】【分析】设点G 的坐标为,过点A 作轴交于点M ,过点作轴交于(,0)a AM x ⊥A 'A N x '⊥点N ,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G A 'A '的坐标.【详解】设点G 的坐标为,过点A 作轴交于点M ,过点作轴交于(,0)a AM x ⊥A 'A N x '⊥点N , 如图所示:∵,()3,3A -∴,,3AM =3GM a =+∵点A 绕点G 顺时针旋转90°后得到点, A '∴,, AG A G '=90AGA '∠=︒∴, 90AGM NGA '∠+∠=︒∵轴,轴,AM x ⊥A N x '⊥∴, 90AMG GNA '∠=∠=︒∴, 90AGM MAG ∠+∠=︒∴, MAG NGA '∠=∠在与中,AMG GNA ' , AMG GNA MAG NGA AG GA '∠=∠⎧⎪'∠=∠⎨⎪'=⎩∴,()AMG GNA AAS '≅ ∴,, 3GN AM ==3A M GM a '==+∴, 3ON a =+∴,(3,3)A a a '++在中,由勾股定理得:, Rt ONA ' 222(3)(3)2a a +++=解得:, 3a =-3a =-∴或. ()3M -+()3M -故答案为:,.()3-+()3--【点睛】本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.三、解答题(本大题共10小题,共90分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19. 解方程: (1); ()2140x --=(2).230x x +-=【答案】(1), 13x =21x =-(2), 1x=2x =【解析】【分析】(1)利用直接开平方法求解即可; (2)利用公式法求解即可. 【小问1详解】 解:∵(x-1)2=4, ∴x-1=2或x-1=-2, 解得x 1=3,x 2=-1;【小问2详解】 解:,230x x +-=,113a b c ===-,,,2=4=1+12=13b ac ∆-x =,, 1x =2x =【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20. 已知:关于x 的一元二次方程.()()22420x m x m -++-=(1)求证:方程总有两个实数根;(2)若方程有两个相等的实数根,求m 的值及方程的根. 【答案】(1)见解析 (2), 6m =124x x ==【解析】【分析】(1)进行判别式的值得到,利用平方非负数的性质得,然后根()26m ∆=-0∆≥据判别式的意义可判断方程总有两个实数根;(2)根据方程有两个相等的实数根得,先求出的值,再代入一元二次()260m ∆=-=m 方程中求解即可. 【小问1详解】由题意得:,()()2Δ24142m m ⎡⎤=-+-⨯⨯-⎣⎦,21236m m =-+,()260m =-≥∴方程总有两个实数根; 【小问2详解】∵方程有两个相等的实数根, ∴, ()260m ∆=-=∴,6m =此时方程为, 28160x x -+=∴,()240x -=∴.124x x ==【点睛】本题考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式之间的关系是解题的关键.21. 小明每天骑自行车.上学,都要通过安装有红、绿灯的4个十字路口.假设每个路口红灯和绿灯亮的时间相同.(1)小明从家到学校,求通过前2个十字路口时都是绿灯的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)(2)小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为 .(请直接写出答案) 【答案】(1),见解析 14(2)1116【解析】 【小问1详解】 列表如下第一个十字路口\第二个 红灯 绿灯 红灯 红红 红绿 绿灯绿红绿绿∵共有4种等可能情形,满足条件的有1种. ∴通过前2个十字路口时都是绿灯的概率. 14【小问2详解】画树状图如图,表示红灯,表示绿灯,A B∵共有16种等可能情形,满足条件的有11种.小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为∴1116故答案为:1116【点睛】本题考查了列表法或画树状图法求概率,掌握列表法或画树状图法是解题的关键.22. 如图,正三角形ABC 内接于,的半径为r ,求这个正三角形的周长和面积.O O【答案】周长为. 2【解析】【分析】连接OB ,OA ,延长AO 交BC 于D ,根据等边三角形性质得出AD⊥BC,BD=CD=BC ,12∠OBD=30°,求出OD ,根据勾股定理求出BD ,即可求出BC ,BC 的三倍即为周长,根据三角形的面积公式即可求出面积.【详解】解:连接OB ,OA ,延长AO 交BC 于D ,如图所示:∵正△ABC 外接圆是⊙O,∴AD⊥BC,BD=CD=BC ,∠OBD=∠ABC=×60°=30°, 121212∴OD=OB=r ,1212由勾股定理得:, =即三角形边长为,AD=AO+OD=r+r=,1232r则△ABC 的周长;△ABC 的面积=BC×AD=.121232r 2∴正三角形ABC 周长为;正三角形ABC . 2【点睛】本题考查了等边三角形、等腰三角形的性质、勾股定理、三角形的外接圆、三角形的面积等知识点;关键是能正确作辅助线后求出BD 的长.23. 第24届冬季奥林匹克运动会将于2022年2月在中国北京和张家口举行.为迎接本次冬奥会,某校组织初一年级学生开展“迎冬奥”知识竞赛活动(满分为50分).从竞赛成绩中随机抽取了20名男生和20名女生的成绩(单位:分)进行整理、描述和分析(成绩用x 表示,共分成四个等级:A :,B :,C :,D :4750x <≤4447x <≤4144x <≤),下面是这40名学生 41x ≤成绩的信息:20名男生的成绩:50,46,50,50,46,49,39,46,49,46,46,43,49,47,40,48,44,43,45,44.20名女生中成绩为B 等级的数据是:45,46,46,47,47,46,46. 所抽取学生的竞赛成绩统计表 性别 平均数 中位数 众数 男 46 46 46 女46.5b48所抽取的20名女生的竞赛成绩扇形统计图根据以上信息,解答下列问题: (1) , .=a b =(2)该校初一年级共有400名男生参与此次竞赛,估计其中等级为A 的男生约有多少人? 【答案】(1)10,47 (2)140人【解析】【分析】(1)先求出B 组占女生的百分比,然后用1-A 的百分比-B 组的百分比-D 组的百分比=C 的百分比,将B 在数据从大到小排序,取出最高的两个数的平均数为女生的中位数即可;(2)将20名男生成绩从高到低排序,找出A 组:有7人,求出所占男生百分4750x <≤比×400即可.【小问1详解】解:∵20名女生中成绩为B 等级的数据是:45,46,46,47,47,46,46. ∴7÷20×100%=35%,∴a%=1-0,45-0.35-0.10=0.10=10%,A 组有:20×45%=9人,B 组有7人,9+7=16>11,把B 组数据从大到小排序为: 47,47,46,46, 46,46,45. 第10个数据为47,第11个数据为47, ∴中位数b=, 47+47=472故答案为10;47; 【小问2详解】解:将20名男生的成绩从高到低排序:50,50,50,49,49,49,48,47,46, 46,46,46,46,45,44,44,43, 43,40,39. 其中A :,有7人, 4750x <≤占男生7÷20×100%=35%,该校初一年级共有400名男生参与此次竞赛,估计其中等级为A 的男生约有400×35%=140人,答:该校初一年级男生竞赛成绩等级为A 的约有140人.【点睛】本题考查统计表与扇形统计图获取信息与处理,中位数,扇形统计图的部分数据,用样本的百分比含量估计总体中的数量,掌握统计表与扇形统计图获取信息与处理,中位数,扇形统计图的部分数据,用样本的百分比含量估计总体中的数量是解题关键.24. 如图,AB 是的直径,AN 、AC 是的弦,P 为AB 延长线上一点,AN 、PC 的延长线O O 相交于点M ,且,.AM PM ⊥PCB PAC ∠=∠(1)试判断直线PC 与的位置关系,并说明理由; O (2)若,,求MN 的长. 10AB =30P ∠=︒【答案】(1)直线PC 与⊙O 相切,证明见解析 (2) 52MN =【解析】【分析】(1)如图,连接OC ,,,PAC ACO PCB ∠=∠=∠90ACB ∠=︒,,是半径,90OCP OCB PCB OCB ACO ACB ∠=∠+∠=∠+∠=∠=︒OC PC ⊥OC 进而可说明直线PC 与⊙O 相切.(2)如图,连接ON ,,,为等边三角形;可知60COP MAP ∠=︒=∠OA ON =AON 的值,,求得的值,求解即可. AN APM OPC ∽AM APOC OP=AM MN AM AN =-【小问1详解】解:直线PC 与⊙O 相切. 如图,连接OC ,则OA OC =∴ PAC ACO ∠=∠∵ PCB PAC ∠=∠∴PCB ACO ∠=∠∴ OCP OCB PCB OCB ACO ACB ∠=∠+∠=∠+∠=∠∵AB 为⊙O 的直径 ∴90ACB ∠=︒∴90OCP ∠=︒即OC PC ⊥∴直线PC 与⊙O 相切.【小问2详解】解:如图,连接ON152OA OC AB ===∵,,,30P ∠=︒90OCP ∠=︒90AMP ∠=︒∴,,60COP MAP ∠=︒=∠210OP OC ==15AP =∵,P P ∠=∠90AMP OCP ∠=∠=︒∴APM OPC ∽∴ AM AP OC OP=∴ 152AM =∵,OA ON =60MAP ∠=︒∴为等边三角形AON ∴5AN OA ON ===∴. 52MN AM AN =-=【点睛】本题考查了切线的判定,等边三角形的判定与性质,的直角三角形,三角形相30︒似等知识点.解题的关键在于灵活综合运用知识.25. 如图,已知锐角△ABC 中,.AC BC =(1)请在图中用无刻度的直尺和圆规作△ABC 的内切圆.(不写作法,保留作图痕迹) O(2)在(1)的条件下,若,,则△ABC 内切圆的半径为 .3AC =4AB =【答案】(1)作图见解析(2 【解析】【分析】(1)内切圆的圆心是角平分线的交点;作的角平分线,作的角平分线A ∠AN C ∠交于点,两条角平分线的交点即为内切圆的圆心,为内切圆半径,画CM AB D O OD 圆即可.(2)过圆心向作垂线,交点为,由角平分线的性质可知,O AC G,在中,设内90OD OG CGO =∠=︒,Rt ACD △CD ===切圆的半径为,则,在中,解出的值即r OC r =-Rt OCG △222OC CG OG =+r 可.【小问1详解】解:如图:以为圆心,大于长为半径画弧,交点为,连接交于点;A B 、12AB M CM AB D 以为圆心画弧,交于点,以为圆心,大于为半径画弧,交A AC AB 、E F 、E F 、12EF 点为,连接,与的交点即为的内切圆的圆心,即为半径,画N AN AN CM ABC O OD 圆.【小问2详解】解:如图,过圆心向作垂线,交点为;O AC G由角平分线的性质可知:90OD OG CGO =∠=︒,∵=AC BC ∴为等腰三角形ACB △∴ 1902CD AB AD AB ADC ⊥=∠=︒,,∴在中Rt ACD △CD ===设内切圆的半径为,则 r OC r =在中∵Rt OCG △222OC CG OG =+∴222(32))r r =+--解得: r =. 【点睛】本题考查了角平分线的画法,角平分线的性质,勾股定理,等腰三角形等知识.解题的关键在于熟练掌握角平分线的作法.26. 某读书兴趣小组计划去书店购买一批定价为50元/本的书籍,书店表示有两种优惠方案方案一:若购买数量不超过10本,每本按定价出售;若超过10本,每增加1本,所有书籍的售价可比定价降2元,但售价不低于35元/本.方案二:前5本按定价出售,超过5本以上的部分可以打折.(1)该兴趣小组按照方案一的优惠方式支付了600元,请你求出购买书籍的数量;(2)如果该兴趣小组用方案二的优惠方式购买(1)中的数量,请问书店折扣至少低于几折才能使得实付金额少于600元?【答案】(1)该兴趣小组按照方案一的优惠方式购买书籍15本(2)书店折扣至少低于7折才能使得实付金额少于600元【解析】【分析】(1)设读书兴趣小组购买书籍x 本,列出等量关系式,()50210600x x ⎡⎤⎦=⎣--求解即可;(2)设书店折扣至少低于折才能使得实付金额少于600元,列出不等式为y ,解出即可. 250105060010y +⨯⨯<y 【小问1详解】设读书兴趣小组购买书籍x 本,根据题意,当购买数量不超过10本时每本按50元出售,∵,600500>∴兴趣小组购买书籍数量超过10本,∴,()50210600x x ⎡⎤⎦=⎣--解得,,120x =215x =∵,()5021035x --≥∴, 352x ≤∴,15x =答:该兴趣小组按照方案一的优惠方式购买书籍15本;【小问2详解】设书店折扣为y 折才能使得实付金额少于600元,由题意得,, 250105060010y +⨯⨯<∴,7y <答:书店折扣至少低于7折才能使得实付金额少于600元.【点睛】本题考查解一元二次方程以及解一元一次不等式,根据题意找出关系式是解题的关键.27. 如图,在平面直角坐标系中,已知,点B 在x 轴正半轴上,且,()0,3A 30ABO ∠=︒C 为线段OB 上一点,作射线AC 交△AOB 的外接圆于点D ,连接OD ,. COD OAD ∠=∠(1)求的度数;BAD ∠(2)在射线AD 上是否存在点P ,使得直线BP 与△AOB 的外接圆相切?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)30BAD ∠=︒(2)存在,()3P -【解析】【分析】(1)利用圆周角定理得出,再根据,得出DOB DAB ∠=∠COD OAD ∠=∠,最后利用直角三角形的性质得出结果;DAB OAD ∠=∠(2)先得出△BCP 为等边三角形,过点P 作PH⊥OB 交OB 于点H ,再利用解直角三角形得出PH ,BH 即可得解.【小问1详解】∵,DOB DAB ∠=∠COD OAD ∠=∠∴,DAB OAD ∠=∠∵,,90AOB ∠=︒30ABO ∠=︒∴.60OAB ∠=︒∴.30BAD ∠=︒【小问2详解】∵∠AOB=90°,∴AB 为△AOB 的外接圆的直径,假设在射线AD 上存在点,使得BP 与△AOB 的外接圆相切,(),P x y ∴,AB BP ⊥∴∠ABP=90°,∵,30ABO ∠=︒∴∠PBC=60°,∵∠BAD=30°,∠ABO=30°,∴∠BCP=60°,∵∠PBC=∠°BCP=60°,∴△BCP 为等边三角形,过点P 作PH⊥OB 交OB 于点H ,∵,()0,3A ∴OA=3,在Rt△AOC 中,∠OAC=30°⊥,AC=, cos30OA =︒∵∠BAD=∠ABO=30°,中,PH⊥BC,∴PH 平分BC ,∴CH=BH=12,在Rt△⊥BHP 中,,∠PBH=60°, ∴PH=BH·tan60°=3,,-3),∴存在点-3)使得直线BP 与△AOB 的外接圆相切.【点睛】本题考查了圆周角定理,等边三角形的判定与性质及解直角三角形等知识,正确作出辅助线是解题的关键.28. 如图,在Rt△ABC 中,,cm .点D 从A 出发沿AC 以1cm/s 90ACB ∠=︒10AC BC ==的速度向点C 移动;同时,点F 从B 出发沿BC 以2cm/s 的速度向点C 移动,移动过程中始终保持(点E 在AB 上).当其中一点到达终点时,另一点也同时停止移动.设移DE CB ∥动时间为t (s )(其中).0t ≠(1)当t 为何值时,四边形DEFC 的面积为18?2cm (2)是否存在某个时刻t ,使得,若存在,求出t 的值,若不存在,请说明理DF BE =由.(3)点E 是否可能在以DF 为直径的圆上?若能,求出此时t 的值,若不能,请说明理由.【答案】(1)4t =(2)不存在,说明见解析(3)能, 103t =【解析】【分析】(1)由题意知,四边形为梯形,则,DEFC 1()2DEFC S DE CF CD =⨯+⨯四边形,求t 的值,由得出结果即可; 1(102)(10)182DEFC S t t t =⨯+-⨯-=四边形05t <<(2)假设存在某个时刻t ,则有,解得t 的值,若()()()22210102210t t t -+-=-,则存在;否则不存在;05t <<(3)假设点E 在以DF 为直径的圆上,则四边形DEFC 为矩形,,故有DE CF =,求t 的值,若,则存在;否则不存在.102t t =-05t <<【小问1详解】解:∵,90AC BC C =∠=︒∴是等腰直角三角形,ABC 45A B ∠=∠=︒∵DE CB ∥∴,90EDC C ∠=∠=︒45DEA B ∠=∠=︒∴是等腰直角三角形,四边形为直角梯形ADE DEFC ∴DE AD =∵10210DE AD t CF BC BF t CD AC AD t ===-=-=-=-,,∴ ()()()111021022DEFC S DE CF CD t t t =⨯+⨯=⨯+-⨯-四边形2110502t t =-+∵ 211050182DEFC S t t =-+=四边形∴220640t t -+=解得或.4t =16t =∵且100t ->1020t ->∴05t <<∴.4t =【小问2详解】解:假设存在某个时刻t ,使得.DF BE =∴()()()22210102210t t t -+-=-化简得23200t t -=解得或 0=t 203t =∵05t <<∴不存在某个时刻t ,使得.DF BE =【小问3详解】解:假设点E 在以DF 为直径的圆上,则四边形DEFC 为矩形∴,即DE CF =102t t =-解得 103t =∵ 10053<<∴当时,点E 在以DF 为直径的圆上. 103t =【点睛】本题考查了解一元二次方程,勾股定理,直径所对的圆周角为90°,矩形的性质,等腰三角形等知识点.解题的关键在于正确的表示线段的长度.。

江苏省无锡市九年级上学期期末数学试卷 (解析版)

江苏省无锡市九年级上学期期末数学试卷 (解析版)

江苏省无锡市九年级上学期期末数学试卷 (解析版)一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( ) A .213y y << B .123y y << C .213y y << D .213y y << 3.二次函数y =3(x -2)2-1的图像顶点坐标是( ) A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1) 4.抛物线223y x x =++与y 轴的交点为( ) A .(0,2) B .(2,0)C .(0,3)D .(3,0)5.若将二次函数2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+6.如图,⊙O 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE =OB ,已知∠DOB =72°,则∠E 等于( )A .18°B .24°C .30°D .26°7.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,08.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A .58π B .58πC .54πD .54π 9.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .410.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( ) A .在⊙O 的内部 B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部11.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 12.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .1 13.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( ) A .6B .7C .8D .914.关于二次函数y =x 2+2x +3的图象有以下说法:其中正确的个数是( ) ①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0). A .1B .2C .3D .415.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A .点B .点C .点D .点二、填空题16.一元二次方程290x 的解是__.17.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.18.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.19.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.20.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.21.二次函数y=ax2+bx+c(a≠0)的图像如图所示,当y<3时,x的取值范围是____.22.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.23.如图,AB、CD、EF所在的圆的半径分别为r1、r2、r3,则r1、r2、r3的大小关系是____.(用“<”连接)24.在△ABC中,∠C=90°,若AC=6,BC=8,则△ABC外接圆半径为________;25.如图,直线y=12x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数y=kx的图象上,CD平行于y轴,S△OCD=52,则k的值为________.26.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .27.如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=_____.28.已知二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),则y1_____y2.(填“>”“<”或“=”)29.如图,AE、BE是△ABC的两个内角的平分线,过点A作AD⊥AE.交BE的延长线于点D.若AD=AB,BE:ED=1:2,则cos∠ABC=_____.30.如图,一次函数y=x与反比例函数y=kx(k>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题31.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).32.某商场以每件42元的价格购进一种服装,由试销知,每天的销量t(件)与每件的销售价x(元)之间的函数关系为t=204-3x.(1)试写出每天销售这种服装的毛利润y(元)与每件售价x(元)之间的函数关系式(毛利润=销售价-进货价);(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?33.国庆期间,某风景区推出两种旅游观光活动付费方式:若人数不超过20人,人均缴费500元;若人数超过20人,则每增加一位旅客,人均收费降低10元,但是人均收费不低于350元.现在某单位在国庆期间组织一批贡献突出的职工到该景区旅游观光,支付了12000元观光费,请问:该单位一共组织了多少位职工参加旅游观光活动? 34.已知,如图,在平面直角坐标系中,直线122y x =-- 与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =++经过A 、B 两点,与x 轴的另一个交点为C . (1)直接写出点A 和点B 的坐标; (2)求抛物线的函数解析式; (3)D 为直线AB 下方抛物线上一动点;①连接DO 交AB 于点E ,若DE :OE=3:4,求点D 的坐标;②是否存在点D ,使得∠DBA 的度数恰好是∠BAC 度数2倍,如果存在,求点D 的坐标,如果不存在,说明理由.35.已知二次函数y =ax 2+bx ﹣16的图象经过点(﹣2,﹣40)和点(6,8). (1)求这个二次函数图象与x 轴的交点坐标; (2)当y >0时,直接写出自变量x 的取值范围.四、压轴题36.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ. (1)如图1,当∠APQ=45°,AP=1,2时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.37.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD内接于O,对角线AC BD=,且AC BD⊥.(1)求证:AB CD=;(2)若O的半径为8,弧BD的度数为120︒,求四边形ABCD的面积;(3)如图2,作OM BC⊥于M,请猜测OM与AD的数量关系,并证明你的结论.38.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.39.如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标. 40.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据折叠得出∠DFE =∠A =60°,AD =DF ,AE =EF ,设BD =x ,AD =DF =5﹣x ,求出∠DFB=∠FEC ,证△DBF ∽△FCE ,进而利用相似三角形的性质解答即可. 【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =AC =5, ∵沿DE 折叠A 落在BC 边上的点F 上, ∴△ADE ≌△FDE ,∴∠DFE =∠A =60°,AD =DF ,AE =EF , 设BD =x ,AD =DF =5﹣x ,CE =y ,AE =5﹣y , ∵BF =2,BC =5, ∴CF =3,∵∠C =60°,∠DFE =60°,∴∠EFC +∠FEC =120°,∠DFB +∠EFC =120°, ∴∠DFB =∠FEC , ∵∠C =∠B , ∴△DBF ∽△FCE , ∴BD BF DFFC CE EF==, 即2535x x y y-==-, 解得:x =218, 即BD =218, 故选:C . 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.A解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.3.D解析:D 【解析】 【分析】由二次函数的顶点式,即可得出顶点坐标. 【详解】解:∵二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ), ∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1). 故选:D . 【点睛】此题考查了二次函数的性质,二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ).4.C解析:C 【解析】 【分析】令x=0,则y=3,抛物线与y 轴的交点为(0,3). 【详解】解:令x=0,则y=3,∴抛物线与y 轴的交点为(0,3), 故选:C . 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.5.C解析:C 【解析】 【分析】根据抛物线的平移规律:上加下减,左加右减解答即可. 【详解】 解:将2yx 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x =+-. 故选:C. 【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.6.B解析:B 【解析】 【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于∠E的方程,解方程即可求得答案.【详解】解:如图,连接CO,∵CE=OB=CO=OD,∴∠E=∠1,∠2=∠D∴∠D=∠2=∠E+∠1=2∠E.∴∠3=∠E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:B.【点睛】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键.7.C解析:C【解析】外心在BC的垂直平分线上,则外心纵坐标为-1.故选C.8.B解析:B【解析】【分析】连接AC,根据网格的特点求出r=AC的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC,则22251=+扇形的圆心角度数为∠BAD=45°,∴扇形AEF的面积=2455360π⨯⨯=58π故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.9.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.10.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r 的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r时,点在圆内.11.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴42x ±= ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.12.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A .【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.13.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.14.B解析:B【解析】【分析】直接利用二次函数的性质分析判断即可.【详解】①y =x 2+2x +3,a =1>0,函数的图象的开口向上,故①错误;②y =x 2+2x +3的对称轴是直线x =221-⨯=﹣1, 即函数的对称轴是过点(﹣1,3)且平行于y 轴的直线,故②正确;③y =x 2+2x +3,△=22﹣4×1×3=﹣8<0,即函数的图象与x 轴没有交点,故③正确;④y =x 2+2x +3,当x =0时,y =3,即函数的图象与y 轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B .【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.15.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC 的长度,即可解题.【详解】解:如下图,连接AC,∵圆A 的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D 在圆A 内,B 在圆上,C 在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.二、填空题16.x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】x-=∵290∴2x=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键. 17.50【解析】【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴ ∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 18.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.19.y =-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y =-5(x +2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x 2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.20.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.21.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛解析:-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.22.、、【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=解析:83、103、54【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴AB=2234+=5设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴BE BDBC AB=,即:5153x x-+=,解得x=54,②△BDE∽△BCA,如图2,BE=1+x∴BD BEBC AB=,即:5135x x-+=,解得:x=11 4,BE=154>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴AD AEAB AC=,即654x x-=,解得:x=103,④△BDE∽△BCA,如图4,AE=6-x∴AD AEAC AB=,即:645x x-=,解得:x=83,综上:AD的长为83、103、54.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.23.r3 <r2 <r1【解析】【分析】利用尺规作图分别做出、、所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出、、所在的圆心及半径∴r3 <r2 <r1故答案为:r解析:r3<r2<r1【解析】【分析】利用尺规作图分别做出AB、CD、EF所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出AB、CD、EF所在的圆心及半径∴r3<r2<r1故答案为:r3<r2<r1【点睛】本题考查利用圆弧确定圆心及半径,掌握尺规作图的基本方法,准确确定圆心及半径是本题的解题关键.24.5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的解析:5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的中点,∵∠C=90°,AC=6,BC=8,∴22226810AB AC BC,∴△ABC外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.25.【解析】【分析】【详解】试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=12x﹣2上,C的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D的坐标是(2,32),∵D在双曲线y=kx上,∴代入得:k=2×32=3.故答案为3.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.26.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.27.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.28.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.29.【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可解析:2【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可求得结论.【详解】取DE 的中点F ,连接AF ,∴EF =DF ,∵BE :ED =1:2,∴BE =EF =DF ,∴BF =DE ,∵AB =AD ,∴∠ABD =∠D ,∵AD ⊥AE ,EF =DF ,∴AF =EF ,在△BAF 和△DAE 中AB AD ABF D BF DE =⎧⎪∠=∠⎨⎪=⎩∴△BAF ≌△DAE (SAS ),∴AE =AF ,∴△AEF 是等边三角形,∴∠AED =60°,∴∠D =30°,∵∠ABC =2∠ABD ,∠ABD =∠D ,∴∠ABC =60°,∴cos ∠ABC =cos60°=32, 3 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.30.或【解析】【分析】过A 作AD 垂直于x 轴,设A 点坐标为(m ,n ),则根据A 在y=x 上得m=n ,由AC 长的最大值为,可知AC 过圆心B 交⊙B 于C ,进而可知AB=5,在Rt△ADB 中,AD=m ,BD=解析:9yx=或16yx=【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为7,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为7,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数y=kx(k>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:9yx=或16yx=,故答案为9yx=或16yx=【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.三、解答题31.该段运河的河宽为303m.【解析】【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,3BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==,得到3340160x x ++=, 解得:303x =,即303CH m =,则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.32.(1)y= -3x 2+330x-8568;(2)每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【解析】【分析】(1)根据毛利润=销售价−进货价可得y 关于x 的函数解析式;(2)将(1)中函数关系式配方可得最值情况.【详解】(1)根据题意,y=(x-42)(204-3x)= -3x 2+330x-8568;(2)y=-3x 2+330x-8568= -3(x-55)2+507因为-3<0,所以x=55时,y 有最大值为507.答:每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【点睛】本题主要考查二次函数的应用,理解题意根据相等关系列出函数关系式,并熟练掌握二次函数的性质是解题的关键.33.30【解析】【分析】设该单位一共组织了x 位职工参加旅游观光活动,求出当人数为20时的总费用及人均收费350元时的人数,即可得出20<x <35,再利用总费用=人数×人均收费,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】解:设该单位一共组织了x 位职工参加旅游观光活动,∵500×20=10000(元),10000<12000,(500﹣350)=15(人),12000÷350=3427(人),3427不为整数, ∴20<x <20+15,即20<x <35.依题意,得:x[500﹣10(x ﹣20)]=12000,整理,得:x 2﹣70x+1200=0,解得:x 1=30,x 2=40(不合题意,舍去).答:该单位一共组织了30位职工参加旅游观光活动.【点睛】本题考查了一元二次方程的应用,正确理解题意,找准题中等量关系列出方程是解题的关键.34.(1)A(-4,0)、B (0,-2);(2)213y x-222x =+;(3)①(-1,3)或(-3,-2);②(-2,-3).【解析】【分析】(1)在122y x =--中由0y =求出对应的x 的值,由x=0求出对应的y 的值即可求得点A 、B 的坐标;(2)把(1)中所求点A 、B 的坐标代入212y x bx c =++中列出方程组,解方程组即可求得b 、c 的值,从而可得二次函数的解析式; (3)①如图,过点D 作x 轴的垂线交AB 于点F ,连接OD 交AB 于点E ,由此易得△DFE ∽OBE ,这样设点D 的坐标为213(m,2)22m m +-,点F 的坐标为1(m,2)2m --,结合相似三角形的性质和DE :OE=3:4,即可列出关于m 的方程,解方程求得m 的值即可得到点D 的坐标;②在y 轴的正半轴上截取OH=OB ,可得△ABH 是等腰三角形,由此可得∠HAB=2∠BAC ,若此时∠DAB =2∠BAC=∠HAB ,则BD ∥AH ,再求出AH 的解析式可得BD 的解析式,由BD 的解析式和抛物线的解析式联立构成方程组,解方程组即可求得点D 的坐标.【详解】解:(1)在122y x =--中,由0y =可得:1202x --=,解得:4x =-; 由0x =可得:2y =-, ∴点A 的坐标为(-4,0),点B 的坐标为(0,-2);(2)把点A 的坐标为(-4,0),点B 的坐标为(0,-2)代入212y x bx c =++得: 8402b c c -+=⎧⎨=-⎩ ,解得:322b c ⎧=⎪⎨⎪=-⎩ , ∴抛物线的解析式为:213222y x x =+-; (3)①过点D 作x 轴的垂线交AB 于点F ,设点D 213(m,2)22m m +-,F 1(m,2)2m --, 连接DO 交AB 于点E ,△DFE ∽OBE ,因为DE :OE=3:4,所以FD :BO=3:4, 即:FD=34BO=32 , 所以21133m 222222FD m m ⎛⎫⎛⎫=---+-= ⎪ ⎪⎝⎭⎝⎭, 解之得: m 1=-1,m 2=-3 ,∴D 的坐标为(-1,3)或(-3,-2);②在y 轴的正半轴上截取OH=OB ,可得△ABH 是等腰三角形,∴∠BAH=2∠BAC ,若∠DBA=2∠BAC ,则∠DBA=∠BAH ,∴AH//DB ,由点A 的坐标(-4,0)和点H 的坐标(0,2)求得直线AH 的解析式为:1y 22x =+, ∴直线DB 的解析式是:1y 22x =-, 将:2113y 2,y 2,222x x x =-=+-联立可得方程组:21y 2213y 222x x x ⎧=-⎪⎪⎨⎪=+-⎪⎩, 解得:23x y =-⎧⎨=-⎩, ∴点D 的坐标(-2,-3).。

2021-2022学年江苏省无锡市九年级(上)期末数学试题及答案解析

2021-2022学年江苏省无锡市九年级(上)期末数学试题及答案解析

2021-2022学年江苏省无锡市九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列方程是一元二次方程的是( )A. 2x+y=2B. 2x3−x=0C. x+1y=7D. 2x−x2=72.已知⊙O的半径为4,OA=5,则点A在( )A. ⊙O内B. ⊙O上C. ⊙O外D. 无法确定3.若a是从“−1、0、1、2”这四个数中任取的一个数,则关于x的方程(a−1)x2+x−3=0为一元二次方程的概率是( )A. 1B. 34C. 12D. 134.一组样本数据为1、2、3、3、6,下列说法错误的是( )A. 平均数是3B. 中位数是3C. 方差是3D. 众数是35.一种药品经过两次降价,药价从每盒60元下调至48.6元,若平均每次降价的百分率为x,则可列方程为( )A. 60(1+x)=48.6B. 60(1−x)=48.6C. 60(1+x)2=48.6D. 60(1−x)2=48.66.在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为( )A. 140°B. 100°C. 80°D. 40°7.如图,在平面直角坐标系中,A(0,−3),B(2,−1),C(2,3).则△ABC的外心坐标为( )A. (0,0)B. (−1,1)C. (−2,−1)D. (−2,1)8.如图,AB是⊙O的直径,CD是⊙O的弦,且CD//AB,AB=12,CD=6,则图中阴影部分的面积为( )A. 18πB. 12πC. 6πD. 3π9.定义一种新运算:a⊕b=2a+b,a※b=a2b,则方程(x+1)※2=(3⊕x)−2的解是( )A. x1=1,x2=−2 B. x1=−1,x2=122C. x1=−1,x2=2 D. x1=1,x2=−12210.如图,在Rt△ABC中,∠BAC=90°,AB=AC=6,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为3+3√3;③BP存在最小值为3√2−3;④点P运动的路径长为√2π.其中,正确的是( )A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(本大题共8小题,共24.0分)11.请写出一个一元二次方程,使得它的一个根为0,另一个根不为0:______.12.用配方法将方程x2+4x=0化成(x+m)2=n的形式:______.13.如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,事件“指针所落扇形中的数为3的倍数”发生的概率为______.14.如图,在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,以BC边所在的直线为轴,将△ABC旋转一周得到的圆锥侧面积是______ .15.某电视台要招聘1名记者,某应聘者参加了3项素质测试,成绩如下:测试项目采访写作计算机操作创意设计测试成绩(分)828580如果将采访写作、计算机操作和创意设计的成绩按5:2:3计算,则该应聘者的素质测试平均成绩是______分.16.一个直角三角形的斜边长2√5cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是______cm2.17.古代数学家曾经研究过一元二次方程的几何解法.以方程x2+3x=20为例,三国时期的数学家赵爽在其所著的《勾股圆方图注》中记载的方法是:构造如图所示的大正方形ABCD,它由四个全等的矩形加中间小正方形组成,根据面积关系可求得AB的长,从而解得x.根据此法,图中正方形ABCD的面积为______,方程x2+3x=20可化为______.18.将点A(−3,3)绕x轴上的点G顺时针旋转90°后得到点A′,当点A′恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为______.三、解答题(本大题共10小题,共90.0分。

江苏省无锡市九年级上学期期末数学试卷 (解析版)

江苏省无锡市九年级上学期期末数学试卷 (解析版)

江苏省无锡市九年级上学期期末数学试卷 (解析版)一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .243.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º4.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.5.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,ABAD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC = B .2ECAC= C .12DE BC = D .2ACAE= 6.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤7.已知OA ,OB 是圆O 的半径,点C ,D 在圆O 上,且//OA BC ,若26ADC ∠=︒,则B 的度数为( )A .30B .42︒C .46︒D .52︒ 8.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .49.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .1210.在六张卡片上分别写有13,π,1.5,5,02六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .5611.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3) B .(1,3)- C .(1,3)- D .(1,3)-- 12.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( ) A .4 B .4.5 C .5 D .6 13.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( )A .6B .7C .8D .914.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(163,45) C .(203,45) D .(163,43) 15.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( ) A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣1二、填空题16.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.17.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.18.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______. 19.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.20.如图,在Rt △ABC 中,BC AC ⊥,CD 是AB 边上的高,已知AB =25,BC =15,则BD =__________.21.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 22.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.23.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB =10米,则该圆锥的侧面积是_____平方米(结果保留π).24.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP ,以 CP 为 边,在 PC 的右侧作等边△CPQ ,连接 AQ 交 BD 延长线于 E ,当△CPQ 面积最小时,QE=____________.25.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.26.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.27.如图,AB 是⊙O 的直径,弦BC=2cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A 点出发沿着A ⇒B ⇒A 方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为_____s 时,△BEF 是直角三角形.28.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.29.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.30.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.三、解答题31.下表是某地连续5天的天气情况(单位:C ︒): 日期 1月1日 1月2日 1月3日 1月4日 1月5日 最高气温 5 7 6 8 4 最低气温-2-213(1)1月1日当天的日温差为______C ︒(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大.32.某网店销售一种商品,其成本为每件30元.根据市场调查,当每件商品的售价为x 元(30x >)时,每周的销售量y (件)满足关系式:10600y x =-+.(1)若每周的利润W 为2000元,且让消费者得到最大的实惠,则售价应定为每件多少元?(2)当3552x ≤≤时,求每周获得利润W 的取值范围.33.为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x (元)和游客居住房间数y (间)的信息,乐乐绘制出y 与x 的函数图象如图所示: (1)求y 与x 之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?34.如图①,BC是⊙O的直径,点A在⊙O上,AD⊥BC垂足为D,弧AE=弧AB,BE分别交AD、AC于点F、G.(1)判断△FAG的形状,并说明理由;(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.35.如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=AB•AC.(1)求证:直线AB是⊙O的切线;(2)若AB3AB对应的函数表达式.四、压轴题36.如图,在Rt△ABC中,∠A=90°,0是BC边上一点,以O为圆心的半圆与AB边相切于点D,与BC边交于点E、F,连接OD,已知BD=3,tan∠BOD=34,CF=83.(1)求⊙O的半径OD;(2)求证:AC是⊙O的切线;(3)求图中两阴影部分面积的和.37.如图,B 是O 的半径OA 上的一点(不与端点重合),过点B 作OA 的垂线交O 于点C ,D ,连接OD ,E 是O 上一点,CE CA =,过点C 作O 的切线l ,连接OE 并延长交直线l 于点F.(1)①依题意补全图形. ②求证:∠OFC=∠ODC . (2)连接FB ,若B 是OA 的中点,O 的半径是4,求FB 的长.38.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.39.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形. (1)已知A (﹣2,3),B (5,0),C (t ,﹣2). ①当t =2时,点A ,B ,C 的最优覆盖矩形的面积为 ;②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2)已知点D(1,1).E(m,n)是函数y=4x(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.40.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB =∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE ≌△FDE ,∴∠DFE =∠A =60°,AD =DF ,AE =EF , 设BD =x ,AD =DF =5﹣x ,CE =y ,AE =5﹣y , ∵BF =2,BC =5, ∴CF =3,∵∠C =60°,∠DFE =60°,∴∠EFC +∠FEC =120°,∠DFB +∠EFC =120°, ∴∠DFB =∠FEC , ∵∠C =∠B , ∴△DBF ∽△FCE , ∴BD BF DFFC CE EF==, 即2535x x y y-==-, 解得:x =218, 即BD =218, 故选:C . 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.D解析:D 【解析】 【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.B解析:B【解析】 【分析】根据垂径定理可得AB AC =,根据圆周角定理可得∠AOB=2∠ADC ,进而可得答案. 【详解】解:∵OA 是⊙O 的半径,弦BC ⊥OA , ∴AB AC =, ∴∠ADC=12∠AOB=29°. 故选B. 【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.D解析:D 【解析】 【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案. 【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意. 故选:D. 【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.5.D解析:D 【解析】 【分析】 只要证明AC ABAE AD=,即可解决问题. 【详解】 解:A.12AE EC = ,可得AE :AC=1:1,与已知2AB AD=不成比例,故不能判定B. 2EC AC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2AB AD =,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;12DE BC = D. 2AC AB AE AD==,可得DE//BC , 故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.A解析:A【解析】【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a <0,∵对称轴为直线1x =∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x = ∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.7.D解析:D【解析】【分析】连接OC ,根据圆周角定理求出∠AOC ,再根据平行得到∠OCB ,利用圆内等腰三角形即可求解.【详解】连接CO ,∵26ADC ∠=︒∴∠AOC=252ADC ∠=︒∵//OA BC∴∠OCB=∠AOC=52︒∵OC=BO ,∴B =∠OCB=52︒故选D.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.8.B解析:B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.C解析:C【解析】【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=8,∴△OBC是等边三角形,∴OB=BC=8.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.10.B解析:B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π共2个, ∴卡片上的数为无理数的概率是21=63.故选B.【点睛】本题考查了无理数的定义及概率的计算. 11.A解析:A【解析】【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3).故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ). 12.C解析:C【解析】【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.13.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.14.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F ⊥x 轴于点F ,过A 作AE ⊥x 轴于点E ,∵A 的坐标为(2,5),∴AE=5,OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt △ABE 中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F 22⋅⋅=,即453O'F 22⋅⋅=, ∴O′F=45. 在Rt △O′FB 中,由勾股定理可求BF=22458433⎛⎫-= ⎪ ⎪⎝⎭,∴OF=820433+=. ∴O′的坐标为(2045,33). 故选C .【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.15.C解析:C【解析】【分析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.二、填空题16.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB2222513433 OB OA⎛⎫=+=+=⎪⎝⎭,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.17.1,,【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图解析:1,83,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。

2022-2023学年江苏无锡市数学九年级第一学期期末经典试题含解析

2022-2023学年江苏无锡市数学九年级第一学期期末经典试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.若将一个正方形的各边长扩大为原来的4倍,则这个正方形的面积扩大为原来的( )A .16倍B .8倍C .4倍D .2倍2.过矩形ABCD 的对角线AC 的中点O 作EF ⊥AC ,交BC 边于点E ,交AD 边于点F ,分别连接AE 、CF ,若AB,∠DCF 30°,则EF 的长为( ).A .2B .3C .32D .3 3.若函数2m y x +=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A .m >﹣2B .m <﹣2C .m >2D .m <24.如图所示,河堤横断面迎水坡AB 的坡比是1:3,坡高BC =20,则坡面AB 的长度( )A .60B .2C .3D .105.抛物线y =x 2﹣4x +1与y 轴交点的坐标是( )A .(0,1)B .(1,O )C .(0,﹣3)D .(0,2) 6.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( )A .()2241y x =--B .()2241y x =+-C .()2241y x =-+D .()2241y x =++ 7.下列银行标志图片中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.二次函数()20y ax bx c a =++≠图象的一部分如图所示,顶点坐标为()1,m -,与x 轴的一个交点的坐标为(-3,0),给出以下结论:①0abc >;②420a b c -+>;③若15,2B y ⎛⎫- ⎪⎝⎭、21,2C y ⎛⎫- ⎪⎝⎭为函数图象上的两点,则12y y <;④当30x -<<时方程2ax bx c t ++=有实数根,则t 的取值范围是0t m <≤.其中正确的结论的个数为( )A .1个B .2个C .3个D .4个9.如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为( )A .(3,3)B .(4,3)C .(3,1)D .(4,1)10.用10m 长的铝材制成一个矩形窗框,使它的面积为62m .若设它的一条边长为xm ,则根据题意可列出关于x 的方程为( )A .(5)6x x -=B .(5)6x x +=C .(10)6x x -=D .(102)6x x -=二、填空题(每小题3分,共24分)11.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =3x的图象经过A 、B 两点,则菱形ABCD 的面积是_____;12.一天早上,王霞从家出发步行上学,出发6分钟后王霞想起数学作业没有带,王霞立即打电话叫爸爸骑自行车把作业送来(接打电话和爸爸出门的时间忽略不计),同时王霞把速度降低到前面的一半.爸爸骑自行车追上王霞后立即掉头以原速赶往位于家的另一边的单位上班,王霞拿到作业后立即改为慢跑上学,慢跑的速度是最开始步行速度的2倍,最后王霞比爸爸早10分钟到达目的地.如图反映了王霞与爸爸之间的距离y (米)与王霞出发后时间x (分钟)之间的关系,则王霞的家距离学校有__________米.13.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .14.如图所示,半圆O 的直径AB=4,以点B 为圆心,23为半径作弧,交半圆O 于点C ,交直径AB 于点D ,则图中阴影部分的面积是_____________.15.如图,在Rt ABC ∆中,90C ∠=︒,8AC =,点D 在边BC 上,6CD =,10BD =.点P 是线段AD 上一动点,当半径为4的P 与ABC ∆的一边相切时,AP 的长为____________.16.分解因式:3a2b+6ab2=____.17.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.18.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.三、解答题(共66分)19.(10分)计算(1)2sin30°-tan60°+tan45°;(2)14tan245°+sin230°-3cos230°20.(6分)如图在直角坐标系中△ABC的顶点A、B、C三点坐标为A(7,1),B(8,2),C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A'B'C'(要求与△ABC在P点同一侧);(2)直接写出A'点的坐标;(3)直接写出△A'B'C'的周长.21.(6分)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.22.(8分)如图,在正方形ABCD 中,E 为边AD 的中点,点F 在边CD 上,且90BEF ∠=︒,延长EF 交BC 的延长线于点G .(1)求证:△ABE ∽△EGB .(2)若6AB =,求CG 的长.23.(8分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?24.(8分)在平行四边形ABCD 中,AC 为对角线,AE CD ⊥,点,G F 分别为,AB BC 边上的点,连接,,FG AF AF 平分GFC ∠.(1)如图,若,FG AB ⊥且36,5,5AG AE sinB ===,求平行四边形ABCD 的面积.(2)如图,若,AGF ACB CAE ∠-∠=∠过F 作FH FG ⊥交AC 于,H 求证: 2AC AH +=25.(10分)如图,已知点A ,B 的坐标分别为(4,0),(3,2).(1)画出△AOB 关于原点O 对称的图形△COD ;(2)将△AOB 绕点O 按逆时针方向旋转90°得到△EOF ,画出△EOF ;(3)点D 的坐标是 ,点F 的坐标是 ,此图中线段BF 和DF 的关系是 .26.(10分)如图,已知ABC ∆中,以AB 为直径的⊙O 交AC 于D ,交BC 于E ,BE CE =,70C ∠=︒求DOE ∠的度数.参考答案一、选择题(每小题3分,共30分)1、A【分析】根据正方形的面积公式:s=a 2,和积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答.【详解】解:根据正方形面积的计算方法和积的变化规律,如果一个正方形的边长扩大为原来的4倍,那么正方形的面积是原来正方形面积的4×4=16倍.故选A.【点睛】此题考查相似图形问题,解答此题主要根据正方形的面积的计算方法和积的变化规律解决问题.2、A【解析】试题分析:由题意可证△AOF≌△COE,EO=FO,AF=CF=CE=AE,四边形AECF是菱形,若∠DCF=30°,则∠FCE=60°,△EFC是等边三角形,∵CD=AB=,∴DF=tan30°×CD=×=1,∴CF=2DF=2×1=2,∴EF=CF=2,故选A.考点:1.矩形及菱形性质;2.解直角三角形.3、B【分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.4、D【分析】在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.【详解】Rt△ABC中,BC=20,tan A=1:3;∴AC=BC÷tan A=60,∴AB222060=+=10.故选:D.【点睛】本题考查了学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.5、A【分析】抛物线与y轴相交时,横坐标为0,将横坐标代入抛物线解析式可求交点纵坐标.【详解】解:当x=0时,y=x2-4x+1=1,∴抛物线与y轴的交点坐标为(0,1),故选A.【点睛】本题考查了抛物线与坐标轴交点坐标的求法.令x=0,可到抛物线与y 轴交点的纵坐标,令y=0,可得到抛物线与x 轴交点的横坐标.6、B【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7、B【解析】由题意根据轴对称图形与中心对称图形的概念进行依次判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故本选项错误;B 、是轴对称图形,也是中心对称图形,故本选项正确;C 、是轴对称图形,不是中心对称图形,故本选项错误;D 、不是轴对称图形,也不是中心对称图形,故本选项错误.故选:B .【点睛】本题考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、D【分析】由二次函数的图象可知0,0a c <>,再根据对称轴为x=-1,得出b=2a<0,进而判断①,当x=-2时可判断②正确,然后根据抛物线的对称性以及增减性可判断③,再根据方程的根与抛物线与x 交点的关系可判断④.【详解】解:∵抛物线开口向下,交y 轴正半轴∴0,0a c <>∵抛物线对称轴为x=-1,∴b=2a<0∴①0abc >正确;当x=-2 时, 42y a b c =-+位于y 轴的正半轴故②420a b c -+>正确; 点21,2C y ⎛⎫- ⎪⎝⎭的对称点为23,2y ⎛⎫- ⎪⎝⎭ ∵当31x -<<-时,抛物线为增函数,∴12y y <③正确;若当30x -<<时方程2ax bx c t ++=有实数根,则需2y ax bx c t =++-与x 轴有交点则二次函数2y ax bx c =++向下平移的距离即为t 的取值范围,则t 的取值范围是0t m <≤,④正确.故选:D .【点睛】本题考查的知识点是二次函数图象及其性质,熟悉二次函数的图象上点的坐标特征以及求顶点坐标的公式是解此题额关键.9、A【分析】利用位似图形的性质和两图形的位似比,并结合点A 的坐标即可得出C 点坐标.【详解】解:∵线段AB 的两个端点坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD , ∴端点C 的横坐标和纵坐标都变为A 点的一半,∴端点C 的坐标为:(3,3).故选A .【点睛】本题主要考查位似变换、坐标与图形性质,解题的关键是结合位似比和点A 的坐标.10、A【分析】一边长为xm ,则另外一边长为(5﹣x )m ,根据它的面积为1m 2,即可列出方程式.【详解】一边长为xm ,则另外一边长为(5﹣x )m ,由题意得:x (5﹣x )=1.故选A .【点睛】本题考查了由实际问题抽象出一元二次方程,难度适中,解答本题的关键读懂题意列出方程式.二、填空题(每小题3分,共24分)11、42【分析】作AH ⊥BC 交CB 的延长线于H ,根据反比例函数解析式求出A 的坐标、点B 的坐标,求出AH 、BH ,根据勾股定理求出AB ,根据菱形的面积公式计算即可.【详解】作AH ⊥BC 交CB 的延长线于H ,∵反比例函数y =3x的图象经过A 、B 两点,A 、B 两点的横坐标分别为1和3, ∴A 、B 两点的纵坐标分别为3和1,即点A 的坐标为(1,3),点B 的坐标为(3,1),∴AH =3﹣1=2,BH =3﹣1=2,由勾股定理得,AB 2222+ =2∵四边形ABCD 是菱形,∴BC =AB =2,∴菱形ABCD 的面积=BC×AH =2, 故答案为2【点睛】本题考查的是反比例函数的系数k 的几何意义、菱形的性质,根据反比例函数解析式求出A 的坐标、点B 的坐标是解题的关键.12、1750【分析】设王霞出发时步行速度为a 米/分钟,爸爸骑车速度为b 米/分钟,根据爸爸追上王霞的时间可以算出两者速度关系,然后利用学校和单位之间距离4750建立方程求出a ,即可算出家到学校的距离.【详解】设王霞出发时步行速度为a 米/分钟,爸爸骑车速度为b 米/分钟,由图像可知9分钟时爸爸追上王霞,则630.53+⨯=a a b ,整理得=2.5b a由图像可知24分钟时,爸爸到达单位,∵最后王霞比爸爸早10分钟到达目的地∴王霞在第14分钟到达学校,即拿到作业后用时14-9=5分钟到达学校爸爸骑车用时24-9=15分钟到达单位,单位与学校相距4750米,∴52154750⨯+=a b将=2.5b a 代入可得1015 2.54750+⨯=a a ,解得=100a∴王霞的家与学校的距离为630.55217.51750+⨯+⨯==a a a a 米故答案为:1750.【点睛】本题考查函数图像信息问题,解题的关键是读懂图像中数据的含义,求出王霞的速度.13、133【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL 的面积减去梯形BENK 的面积,再利用相似三角形的性质求出BK 、EN 的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH 为正方形,∴NE GH ∴△AEN ~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4 ∴NE:4=5:9 ∴NE=209同理可求BK=89梯形BENK 的面积:12081432993⎛⎫⨯+⨯= ⎪⎝⎭ ∴阴影部分的面积:14133333⨯-=故答案为:133. 【点睛】 本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键. 14、33π-【解析】解:连接OC ,CB ,过O 作OE ⊥BC 于E ,∴BE =12BC =1232⨯=3.∵OB =12AB =2,∴OE =1,∴∠B =30°,∴∠COA =60°,=()DOC OBC AOC AOC DBCS S S S S S ∆-=--阴影扇形扇形扇形 =2260230(23)1(231)3603602ππ⨯⨯--⨯⨯ =2(3)3ππ-- =33π-.故答案为33π-.15、5或203或5【分析】根据勾股定理得到AB 、AD 的值,再分3种情况根据相似三角形性质来求AP 的值.【详解】解:∵在Rt ABC ∆中,90C ∠=︒,8AC =,6CD =,∴226810+=在Rt △ACB 中,90C ∠=︒,8AC =,6CD =,10BD =∴CB=6+10=16∵AB ²=AC ²+BC ² 2281685+=①当⊙P 与BC 相切时,设切点为E,连结PE, 则PE=4,∠AEP=90°∵AD=BD=10∴∠EAP=∠CBA, ∠C=∠AEP=90°∴△APE ∽△ACB48AP PE AB AC PE AP AB AC ∴=∴=⋅=⨯=②当⊙P 与AC 相切时,设切点为F ,连结PF,则PF=4,∠AFP=90°∵∠C=∠AFP=90°∠CAD=∠FAP∴△CAD ∽△FAP61044102063DC AD FP APAPAP ∴=∴=⨯∴== ③当⊙P 与BC 相切时,设切点为G ,连结PG ,则PG=4,∠AGP=90°∵∠C=∠PGD=90°∠ADC=∠PDG∴△CAD ∽△GPD81045AC AD PG PDPDPD ∴=∴=∴=故答案为:203或5 【点睛】本题考查了利用相似三角形的性质对应边成比例来证明三角形边的长.注意分清对应边,不要错位.16、3ab (a+2b )【分析】观察可得此题的公因式为:3ab ,提取公因式即可求得答案.【详解】解:3a 2b+6ab 2=3ab (a+2b )故答案为:3ab (a+2b )17、24π【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr 2h=22×6•π=24π,故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.18、y =﹣(x +1)2﹣2【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。

九年级上册无锡数学期末试卷测试卷(解析版)

九年级上册无锡数学期末试卷测试卷(解析版)

九年级上册无锡数学期末试卷测试卷(解析版)一、选择题1.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.2.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度 3.下列是一元二次方程的是( ) A .2x +1=0B .x 2+2x +3=0C .y 2+x =1D .1x=1 4.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14C .13D .125.一元二次方程x 2=9的根是( ) A .3B .±3C .9D .±96.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C .2D .227.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=42且∠ACB 最大时,b 的值为( ) A .226+B .226-+C .242+D .2428.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤9.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变10.下表是二次函数y =ax 2+bx +c 的部分x ,y 的对应值: x… ﹣1﹣120 121322523 …y … 2 m﹣1﹣74 ﹣2 ﹣74﹣1 142 …可以推断m 的值为( ) A .﹣2B .0C .14D .211.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是A .(6,0)B .(6,3)C .(6,5)D .(4,2) 12.一组数据10,9,10,12,9的平均数是( )A .11B .12C .9D .10二、填空题13.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .14.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.15.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).16.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.17.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.18.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.19.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______.20.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.21.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.22.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.23.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________.24.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.三、解答题25.如图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,D 为AC 的中点,过点D 作DE ∥AC ,交BC 的延长线于点E .(1)判断DE 与⊙O 的位置关系,并说明理由; (2)若CE =163,AB =6,求⊙O 的半径.26.已知函数y =ax 2+bx +c (a ≠0,a 、b 、c 为常数)的图像经过点A (-1,0)、B (0,2).(1)b = (用含有a 的代数式表示),c = ;(2)点O 是坐标原点,点C 是该函数图像的顶点,若△AOC 的面积为1,则a = ; (3)若x >1时,y <5.结合图像,直接写出a 的取值范围.27.如图,在矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取一点O,以点O 为圆心,OF 为半径作⊙O 与AD 相切于点P .AB=6,BC=33(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.28.如图是输水管的切面,阴影部分是有水部分,其中水面AB宽10cm,水最深3cm,求输水管的半径.29.定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为;(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.30.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.31.如图,四边形 ABCD 为矩形.(1)如图1,E为CD上一定点,在AD上找一点F,使得矩形沿着EF折叠后,点D落在 BC边上(尺规作图,保留作图痕迹);(2)如图2,在AD和CD边上分别找点M,N,使得矩形沿着MN折叠后BC的对应边B' C'恰好经过点D,且满足B' C' ⊥BD(尺规作图,保留作图痕迹);(3)在(2)的条件下,若AB=2,BC=4,则CN= .32.如图,AB是⊙O的弦,OP OA⊥交AB于点P,过点B的直线交OP的延长线于点C,且BC是⊙O的切线.(1)判断CBP∆的形状,并说明理由;(2)若6,2OA OP==,求CB的长;(3)设AOP∆的面积是1,S BCP∆的面积是2S,且1225SS=.若⊙O的半径为6,45BP=tan APO∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.2.C解析:C【解析】【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.3.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B、方程x2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C、方程y2+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程1x=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.4.B解析:B【解析】试题解析:可能出现的结果的结果有1种, 则所求概率1.4P = 故选B.点睛:求概率可以用列表法或者画树状图的方法.5.B解析:B 【解析】 【分析】两边直接开平方得:3x =±,进而可得答案. 【详解】 解:29x =,两边直接开平方得:3x =±, 则13x =,23x =-. 故选:B . 【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成2(0)x a a =的形式,利用数的开方直接求解.6.C解析:C 【解析】 【分析】如图,连接BD ,根据圆周角定理可得BD 为⊙O 的直径,利用勾股定理求出BD 的长,进而可得⊙O 的半径的长. 【详解】 如图,连接BD ,∵四边形ABCD 是正方形,边长为2, ∴BC=CD=2,∠BCD=90°,∴,∵正方形ABCD 是⊙O 的内接四边形, ∴BD 是⊙O 的直径,∴⊙O 的半径是12⨯,故选:C. 【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD 是直径是解题关键.7.B解析:B 【解析】 【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可. 【详解】解:∵AB=42A(0,2)、B(a ,a +2) 22(22)42a a ++-= 解得a =4或a =-4(因为a >0,舍去) ∴B(4,6),设直线AB 的解析式为y=kx+2, 将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+, 将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B. 【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.8.D解析:D 【解析】 【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围. 【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+= ∴41642tx ±-=∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.9.D解析:D【解析】【分析】作PB ⊥OA 于B ,如图,根据垂径定理得到OB =AB ,则S △POB =S △PAB ,再根据反比例函数k 的几何意义得到S △POB =12|k |,所以S =2k ,为定值. 【详解】作PB ⊥OA 于B ,如图,则OB =AB ,∴S △POB =S △PAB . ∵S △POB =12|k |,∴S =2k ,∴S 的值为定值. 故选D .【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y =k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |. 10.C解析:C【解析】【分析】首先根据表中的x 、y 的值确定抛物线的对称轴,然后根据对称性确定m 的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74), 所以对称轴为x =13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.11.B解析:B【解析】试题分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意.故选B.12.D解析:D【解析】【分析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是1(10910129)10 5++++=故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.二、填空题13.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.14.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.15.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC=AB .故答案为:.【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分解析:12 【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC AB .故答案为:12. 【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则AC BC =正确理解黄金分割的定义是解题的关键.16.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x 求解.【详解】解:∵关于x 的方程a (x+m )2+b =0的解是x1=2,x2=﹣1,(a ,m , 解析:x 3=0,x 4=﹣3.【解析】【分析】把后面一个方程中的x +2看作整体,相当于前面一个方程中的x 求解.【详解】解:∵关于x 的方程a (x +m )2+b =0的解是x 1=2,x 2=﹣1,(a ,m ,b 均为常数,a ≠0),∴方程a (x +m +2)2+b =0变形为a [(x +2)+m ]2+b =0,即此方程中x +2=2或x +2=﹣1, 解得x =0或x =﹣3.故答案为:x 3=0,x 4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.17.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB ===PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,BC =,∴AB ===∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴OC ===∴2CP OC OP =-=故答案为72-.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.18.2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可. 【详解】解:二次函数的对称轴为直线x=m ,且开口向下,解析:2或3【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下,①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4,解得74m =-, 724->-, ∴不符合题意,②-2≤m≤1时,x=m 取得最大值,m 2+1=4, 解得3m =所以3m =-,③m>1时,x=1取得最大值,-(1-m)2+m2+1=4,解得m=2,综上所述,m=2或时,二次函数有最大值.故答案为:2或【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键.19.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.20.【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,∴∠ADC=90°,∴,∵AE是直径,∴∠ABE=90°,解析:5【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴AB =故答案为:5 【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.21.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 22.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m =﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m (m +1)=0,∴m =0或m =﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.23.0【解析】把x =1代入方程得,,解得.此方程为一元二次方程,,即,故答案为0.解析:0【解析】把x =1代入方程得,2110k k -+-=,即20k k -=,解得120,1k k ==.此方程为一元二次方程,10k ∴-≠,即1k ≠,0.k ∴=故答案为0.24.【解析】【分析】x (x ﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y =﹣(x ﹣2019)(x ﹣2022),然 解析:【解析】【分析】x (x ﹣3)=0得A 1(3,0),再根据旋转的性质得OA 1=A 1A 2=A 2A 3=…=A 673A 674=3,所以抛物线C 764的解析式为y =﹣(x ﹣2019)(x ﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y =0时,x (x ﹣3)=0,解得x 1=0,x 2=3,则A 1(3,0),∵将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……∴OA 1=A 1A 2=A 2A 3=…=A 673A 674=3,∴抛物线C 764的解析式为y =﹣(x ﹣2019)(x ﹣2022),把P (2020,m )代入得m =﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题25.(1)DE与⊙O相切;理由见解析;(2)4.【解析】【分析】(1)连接OD,由D为AC的中点,得到AD CD=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为AC的中点∴AD CD=∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵AD CD=,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴ABCD=ADCE∴6CD=163AD∴AD=DC=42, CE=163,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=42,∴AC=22AD DC+=8∴⊙O的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.26.(1)a+2;2;(2)-2或642±3)8215a≤--【解析】【分析】(1)将点B 的坐标代入解析式,求得c 的值;将点A 代入解析式,从而求得b ;;(2)由题意可得AO=1,设C 点坐标为(x,y ),然后利用三角形的面积求出点C 的纵坐标,然后代入顶点坐标公式求得a 的值;(3)结合图像,若x >1时,y <5,则顶点纵坐标大于等于5,根据顶点纵坐标公式列不等式求解即可.【详解】解:(1)将B (0,2)代入解析式得:c=2将A (-1,0)代入解析式得: a ×(-1)2+b ×(-1)+c=0∴a-b+2=0∴b=a+2故答案为:a+2;2(2)由题意可知:AO=1设C 点坐标为(x,y ) 则1112y ⨯⨯= 解得:2y =± 当y=2时,2424ac b a-= 由(1)可知,b=a+2;c=2 ∴242(2)24a a a⨯-+= 解得:a=-2当y=-2时,2424ac b a-=- 由(1)可知,b=a+2;c=2 ∴242(2)24a a a⨯-+=-解得:6a =±∴a 的值为-2或6±(3)若x >1时,y <5,又因为图像过点A (-1,0)、B (0,2)∴图像开口向下,即a <0则该图像顶点纵坐标大于等于5 ∴2454ac b a-≥ 即242(2)54a a a⨯-+≥解得:8a ≤--或8a ≥-+∴a 的取值范围为8a ≤--【点睛】本题考查二次函数的性质,掌握顶点坐标公式及数形结合思想解题是本题的解题关键.27.(1)见解析;(2)见解析;(3【解析】【分析】(1)易求DF长度即可判断;(2)通过30°角所对的直角边等于斜边一半证得AE=2EF,EF=2CE即可得;(3)先证明△OFG为等边三角形,△OPG为等边三角形,即可确定扇形圆心角∠POG和∠GOF的大小均为60°,所以两扇形面积相等,通过割补法得出最后阴影面积只与矩形OPDH和△OGF有关,根据面积公式求出两图形面积即可.【详解】(1)∵AF=AB=6,AD=BC=∴DF=3,∴CF=DF=3,∴F是CD的中点(2)∵AF=6, DF=3,∴∠DAF=30°,∴∠EAF=30◦ ,∴AE=2EF;∴∠EFC=30◦ ,EF=2CE,∴AE=4CE(3)如图,连接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边三角形,同理△OPG为等边三角形,∴∠POG=∠FOG=60°3 ,∴S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-32S△OFG=313 2323222,【点睛】本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.28.173cm【解析】【分析】设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,由垂径定理可求出BD 的长,再根据最深地方的高度是3cm得出OD的长,根据勾股定理即可求出OB的长.【详解】解:设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,则AD=BD=12AB=12×10=5cm,∵最深地方的高度是3cm,∴OD=r﹣3,在Rt△OBD中,OB2=BD2+OD2,即2r=52+(r﹣3)2,解得r=173(cm),∴输水管的半径为173cm.【点睛】本题考查了垂径定理,构造圆中的直角三角形,灵活利用垂径定理是解题的关键.29.(1)32)36;(3)3662.【解析】【分析】(1)由AC ⊥BC ,AC ⊥AD ,得出∠ACB=∠CAD=90°,利用含30°直角三角形三边的特殊关系以及勾股定理,就可以解决问题;(2)将△BAD 绕点B 顺时针旋转到△BCE ,则△BCE ≌△BAD ,连接DE ,作BH ⊥DE 于H ,作CG ⊥DE 于G ,作CF ⊥BH 于F .这样可以求∠DCE=90°,则可以得到DE 的长,进而把四边形ABCD 的面积转化为△BCD 和△BCE 的面积之和,△BDE 和△CDE 的面积容易算出来,则四边形ABCD 面积可求;(3)取BC 的中点E ,连接AE ,作CF ⊥AD 于F ,DG ⊥BC 于G ,则BE=CE=12BC ,证出△ABE 是等边三角形,得出∠BAE=∠AEB=60°,AE=BE=CE ,得出∠EAC=∠ECA= =30°,证出∠BAC=∠BAE+∠EAC=90°,得出,设AB=x ,则,由直角三角形的性质得出CF=3,从而CG=a ,AF=y ,证明△ACF ∽△CDG ,得出=AF AC CG CD ,求出,由勾股定理得出y 2x)2-32=3x 2-9,b 2=62-a 2=102-(2x+a)2,(2x+a)2+b 2=132,整理得出a=216x x -,进而得y=)216=66x -,得出[)2166x -]2=3x 2-9,解得x 2,得出y 22,解得,得出角形面积即可得出答案.【详解】解:(1)∵AC ⊥BC ,AC ⊥AD ,∴∠ACB =∠CAD =90°,∵对角互余四边形ABCD 中,∠B =60°,∴∠D =30°,在Rt △ABC 中,∠ACB =90°,∠B =60°,BC =1,∴∠BAC =30°,∴AB =2BC =2,AC在Rt △ACD 中,∠CAD =90°,∠D =30°,∴AD=3,CD =2AC =,∵S△ABC =12•AC•BC =12=2,S △ACD ═12•AC•AD =12×3 ∴S四边形ABCD =S △ABC +S △ACD =,故答案为:(2)将△BAD 绕点B 顺时针旋转到△BCE ,如图②所示:则△BCE ≌△BAD ,连接DE ,作BH ⊥DE 于H ,作CG ⊥DE 于G ,作CF ⊥BH 于F .∴∠CFH =∠FHG =∠HGC =90°,∴四边形CFHG 是矩形,∴FH =CG ,CF =HG ,∵△BCE ≌△BAD ,∴BE =BD =13,∠CBE =∠ABD ,∠CEB =∠ADB ,CE =AD =8,∵∠ABC+∠ADC =90°,∴∠DBC+∠CBE+∠BDC+∠CEB =90°,∴∠CDE+∠CED =90°,∴∠DCE =90°,在△BDE 中,根据勾股定理可得:DE =22CD CE +=2268+=10,∵BD =BE ,BH ⊥DE ,∴EH =DH =5,∴BH =22BE EH -=22135-=12,∴S △BED =12•BH•DE =12×12×10=60, S △CED =12•CD•CE =12×6×8=24, ∵△BCE ≌△BAD ,∴S 四边形ABCD =S △BCD +S △BCE =S △BED ﹣S △CED =60﹣24=36;(3)取BC 的中点E ,连接AE ,作CF ⊥AD 于F ,DG ⊥BC 于G ,如图③所示:则BE =CE =12BC , ∵BC =2AB ,∴AB =BE ,∵∠ABC =60°,∴△ABE 是等边三角形,∴∠BAE =∠AEB =60°,AE =BE =CE ,∴∠EAC =∠ECA =12∠AEB =30°, ∴∠BAC =∠BAE+∠EAC =90°, ∴AC,设AB =x ,则AC ,∵∠ADC =30°,∴CF =12CD =3,DF = 设CG =a ,AF =y , 在四边形ABCD 中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC =360°,∴∠DAC+∠BCD =180°,∵∠BCD+∠DCG =180°,∴∠DAC =∠DCG ,∵∠AFC =∠CGD =90°,∴△ACF ∽△CDG ,∴AF CG =AC CD ,即y a ,∴y =6,在Rt △ACF 中,Rt △CDG 和Rt △BDG 中,由勾股定理得:y 2=2﹣32=3x 2﹣9,b 2=62﹣a 2=102﹣(2x+a)2,(2x+a)2+b 2=132,整理得:x 2+ax ﹣16=0,∴a =216x x-,∴y =6×216x x -=)2166x -,∴[)2166x -]2=3x 2﹣9, 整理得:x 4﹣68x 2+364=0,解得:x 2=34﹣,或x 2=∴x2=34﹣∴y2=3(34﹣﹣9=93﹣=93﹣2,∴y∴AF∴AD =AF+DF ,∴△ACD的面积=12AD×CF=12×66×3=3662.【点睛】此题是四边形综合题,主要考查了新定义的理解和应用,相似三角形的判定和性质,勾股定理,等边三角形的判定与性质,旋转的性质,全等三角形的性质,含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.30.(1)作图见试题解析;(2)作图见试题解析.【解析】试题分析:(1)过点C作直径CD,由于AC=BC,弧AC=弧BC,根据垂径定理的推理得CD 垂直平分AB,所以CD将△ABC分成面积相等的两部分;(2)连结PO并延长交BC于E,过点A、E作弦AD,由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE将△ABC 分成面积相等的两部分.试题解析:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求.考点:1.作图—复杂作图;2.三角形的外接圆与外心;3.切线的性质;4.作图题.31.(1)图见解析(2)图见解析(351【解析】【分析】(1)以点E为圆心,以DE长为半径画弧,交BC于点D′,连接DD′,作DD′的垂直平分线交AD于点F即可;(2)先作射线BD,然后过点D作BD的垂线与BC的延长线交于点H,作∠BHD的角平分线交CD于点N,交AD于点M,在HD上截取HC′=HC,然后在射线C′D上截取C′B′=BC,此时的M、N即为满足条件的点;(3)在(2)的条件下,根据AB=2,BC=4,即可求出CN的长.【详解】(1)如图,点F为所求;(2)如图,折痕MN、矩形A’B’C’D’为所求;(3)在(2)的条件下,∵AB=2,BC=4,∴BD=5∵BD⊥B′C′,∴BD⊥A′D′,得矩形DGD′C′.∴DG=C′D′=2,∴BG=5设CN的长为x,CD′=y.则C′N=x,D′N=2−x,BD′=4−y,∴(4−y)2=y2+(5)2,解得y5.(2−x)2=x25)2解得x =512-. 故答案为:51-. 【点睛】 本题考查了作图−复杂作图、矩形的性质、翻折变换,解决本题的关键是掌握矩形的性质.32.(1)CBP ∆是等腰三角形,理由见解析;(2)BC 的长为8;(3)3tan 2APO ∠=. 【解析】【分析】(1)首先连接OB ,根据等腰三角形的性质由OA =OB 得A OBA ∠=∠,由点C 在过点B 的切线上,且OP OA ⊥,根据等角的余角相等,易证得∠PBC =∠CPB ,即可证得△CBP 是等腰三角形;(2)设BC =x ,则PC =x ,在Rt △OBC 中,根据勾股定理得到2226(2)x x +=+,然后解方程即可;(3)作CD ⊥BP 于D ,由等腰三角形三线合一的性质得1252PD BD PB ===,由1225S S =,通过证得~AOP CDP ∆∆,得出2245AOP PCD S OA S CD ∆∆== 即可求得CD ,然后解直角三角形即可求得.【详解】(1)CBP ∆是等腰三角形,理由:连接OB ,OA OB =A OBA ∴∠=∠⊙O 与BC 相切与点B ,OB BC ∴⊥,即90OBC ∠=,90OBA PBC ∠+∠=OP OA ⊥90APO A ∴∠+∠=,APO CPB ∠=∠90CPB A ∴∠+∠=CPB PBC ∴∠=∠CB CP ∴=CBP∴∆是等腰三角形(2)设BC x=,则PC x=,在Rt OBC∆中,6OB OA==,2OC CP OP x=+=+,222OB BC OC+=,2226(2)x x∴+=+,解得8x=,即BC的长为8;(3)解:作CD BP⊥于D,PC CB=1252PD BD PB∴===90PDC AOP∠=∠=,AOP CPD∠=∠,~AOP CDP∴∆∆,1225SS=,2245AOPPCDS OAS CD∆∆∴==,6OA=,35CD∴=3tan tan2APO CPB∴∠=∠=.【点睛】本题考查了切线的性质、勾股定理、等腰三角形的判定与性质以及三角形相似的判定和性质.此题难度适中,注意掌握辅助线的作法及数形结合思想的应用.。

无锡市九年级上学期期末数学试卷 (解析版)

无锡市九年级上学期期末数学试卷 (解析版)

无锡市九年级上学期期末数学试卷 (解析版)一、选择题1.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2) 2.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( ) A .x 2+1=0 B .x 2+2x +1=0 C .x 2+2x +3=0 D .x 2+2x -3=0 3.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-34.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙 B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定5.若将二次函数2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+6.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒ 7.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=08.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤9.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A .5π B .58πC .54πD .5π 10.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交B .相切C .相离D .无法判断 11.抛物线2(1)2y x =-+的顶点坐标是( ) A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)12.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .3B .234C 1433D 223313.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒14.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°15.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似二、填空题16.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.17.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.18.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.19.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21⎡⎤=⎣⎦,…,则123420192020⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(其中“+”“-”依次相间)的值为______.20.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.21.二次函数y=x 2−4x+5的图象的顶点坐标为 .22.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 23.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.24.方程22x x =的根是________.25.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 26.抛物线()2322y x =+-的顶点坐标是______.27.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S 甲2=6.5分2,乙同学成绩的方差S 乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).28.若点 M (-1, y 1 ),N (1, y 2 ),P (72, y 3 )都在抛物线 y =-mx 2 +4mx+m 2 +1(m >0)上,则y 1、y 2、y 3 大小关系为_____(用“>”连接).29.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC =_____.30.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.三、解答题31.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺......在网格中找到一点 D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD 中,80,140ABC ADC ︒︒∠=∠=,对角线BD 平分∠ABC .求证: BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG =30.连接EG ,若△EFG 的面积为43,求FH 的长.32.在平面直角坐标系中,点O (0,0),点A (﹣3,0).已知抛物线y =﹣x 2+2mx+3(m 为常数),顶点为P .(1)当抛物线经过点A 时,顶点P 的坐标为 ;(2)在(1)的条件下,此抛物线与x 轴的另一个交点为点B ,与y 轴交于点C .点Q 为直线AC 上方抛物线上一动点.①如图1,连接QA 、QC ,求△QAC 的面积最大值; ②如图2,若∠CBQ =45°,请求出此时点Q 坐标.33.定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD 中,∠B =60°,且AC ⊥BC ,AC ⊥AD ,若BC =1,则四边形ABCD 的面积为 ;(2)如图②,在对角互余四边形ABCD 中,AB =BC ,BD =13,∠ABC+∠ADC =90°,AD =8,CD =6,求四边形ABCD 的面积;(3)如图③,在△ABC 中,BC =2AB ,∠ABC =60°,以AC 为边在△ABC 异侧作△ACD ,且∠ADC =30°,若BD =10,CD =6,求△ACD 的面积.34.在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点及点O 都在格点上(每个小方格的顶点叫做格点).(1)以点O 为位似中心,在网格区域内画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 位似(A ′、B ′、C ′分别为A 、B 、C 的对应点),且位似比为2:1; (2)△A ′B ′C ′的面积为 个平方单位;(3)若网格中有一格点D ′(异于点C ′),且△A ′B ′D ′的面积等于△A ′B ′C ′的面积,请在图中标出所有符合条件的点D ′.(如果这样的点D ′不止一个,请用D 1′、D 2′、…、D n ′标出)35.解方程:2670x x --=四、压轴题36.阅读理解:如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.解决问题:(1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与⊙A 的“最美三角形”的是 .(填序号)①ABM ;②AOP ;③ACQ(2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B为圆心,3为半径画⊙B,若直线y=3x+3与⊙B的“最美三角形”的面积小于3,请直接写出圆心B的横坐标Bx的取值范围.37.问题发现:(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E 不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC =90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.38.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。

2025届江苏省无锡市东林中学数学九上期末统考试题含解析

2025届江苏省无锡市东林中学数学九上期末统考试题含解析

2025届江苏省无锡市东林中学数学九上期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题3分,共30分)1.如图,立体图形的俯视图是( )A .B .C .D .2.如图,⊙O 是直角△ABC 的内切圆,点D ,E ,F 为切点,点P 是EPD 上任意一点(不与点E ,D 重合),则∠EPD =( )A .30°B .45°C .60°D .75° 3.在双曲线1y k x -=的每一分支上,y 都随x 的增大而增大,则k 的值可以是( ) A .2 B .3 C .0 D .14.下列二次函数的开口方向一定向上的是( )A .y=-3x 2-1B .y=-13x 2+1 C .y=12x 2+3 D .y=-x 2-5 5.方程2230x x --=变为()2x a b +=的形式,正确的是( )A .()214x +=B .()214x -= C .()213x += D .()213x -=6.若x =2是关于x 的一元二次方程32x 2﹣2a =0的一个根,则a 的值为( ) A .3 B .2 C .4 D .57.如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为D ,AF 平分∠CAB,交CD 于点E ,交CB 于点F ,若AC=3,AB=5,则CE 的长为( )A .32B .43C .53D .858.将半径为5的圆形纸片,按如图方式折叠,若AB 和BC 都经过圆心O ,则图中阴影部分的面积是( )A .256πB .253πC .232πD .25π9.若|m|=5,|n|=7,m+n <0,则m ﹣n 的值是( )A .﹣12或﹣2B .﹣2或12C .12或2D .2或﹣1210.两个相似三角形对应高之比为1:2,那么它们的对应中线之比为( )A .1:2B .1:3C .1:4D .1:8二、填空题(每小题3分,共24分)11.太阳从西边升起是_____事件.(填“随机”或“必然”或“不可能”).12.如图,矩形ABCD 中,边长8AD =,两条对角线相交所成的锐角为60︒,M 是BC 边的中点,P 是对角线AC 上的一个动点,则PM PB +的最小值是_______.13.若整数a 使关于x 的二次函数()()21232y a x a x a =--+++的图象在x 轴的下方,且使关于x 的分式方程1912233ax x x++=++有负整数解,则所有满足条件的整数a 的和为__________.14.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.15.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=____.16.二次函数y=x2+4x+a图象上的最低点的横坐标为_____.17.已知关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个实数根,则m的取值范围是_____.18.如图所示的网格是正方形网格,△ABC和△CDE的顶点都是网格线交点,那么∠BAC+∠CDE=_________°.三、解答题(共66分)19.(10分)解方程:(1)用公式法解方程:3x2﹣x﹣4=1(2)用配方法解方程:x2﹣4x﹣5=1.20.(6分)如图,O是△ABC的外接圆,AB是O的直径,CD是△ABC的高.(1)求证:△ACD∽△CBD;(2)若AD =2,CD =4,求BD 的长.21.(6分)已知关于x 的方程()23220x k x k -+++= (1)求证:方程总有两个实数根(2)若方程有一个小于1的正根,求实数k 的取值范围22.(8分)如图,PA ,PB 分别与⊙O 相切于A ,B 点,C 为⊙O 上一点,∠P=66°,求∠C .23.(8分)先化简,再求值:22222233a b a b a a a b a b a b b+-⎛⎫⋅-÷ ⎪-+-⎝⎭,其中a =3,b =﹣1. 24.(8分)山西是我国酿酒最早的地区之一,山西酿酒业迄今为止已有4000余年的历史.在漫长的历史进程中,山西人民酿造出品种繁多、驰名中外的美酒佳酿,其中以汾酒、竹叶青酒最为有名.某烟酒超市卖有竹叶青酒,每瓶成本价是50元,经调查发现,当售价为100元时,每天可以售出50瓶,售价每降低1元,可多售出5瓶(售价不高于100元) (1)售价为多少时可以使每天的利润最大?最大利润是多少?(2)要使每天的利润不低于4000元,每瓶竹叶青酒的售价应该控制在什么范围内?25.(10分)如图,在Rt △ABC 中,∠ACB=90°,点D 是斜边AB 的中点,过点B 、点C 分别作BE ∥CD ,CE ∥BD . (1)求证:四边形BECD 是菱形;(2)若∠A=60°,AC=3,求菱形BECD 的面积.26.(10分)在平面直角坐标系中,已知抛物线y 1=x 2﹣4x+4的顶点为A ,直线y 2=kx ﹣2k (k≠0),(1)试说明直线是否经过抛物线顶点A ;(2)若直线y 2交抛物线于点B ,且△OAB 面积为1时,求B 点坐标;(1)过x 轴上的一点M (t ,0)(0≤t≤2),作x 轴的垂线,分别交y 1,y 2的图象于点P ,Q ,判断下列说法是否正确,并说明理由:①当k >0时,存在实数t (0≤t≤2)使得PQ =1.②当﹣2<k <﹣0.5时,不存在满足条件的t (0≤t≤2)使得PQ =1.参考答案一、选择题(每小题3分,共30分)1、C【解析】找到从上面看所得到的图形即可.【详解】A、是该几何体的主视图;B、不是该几何体的三视图;C、是该几何体的俯视图;D、是该几何体的左视图.故选C.【点睛】考查了三视图的知识,掌握所看的位置,注意所有的看到的棱都应表现在视图中.2、B【分析】连接OE,OD,由切线的性质易证四边形OECD是矩形,则可得到∠EOD的度数,由圆周角定理进而可求出∠EPD的度数.【详解】解:连接OE,OD,∵⊙O是直角△ABC的内切圆,点D,E,F为切点,∴OE⊥BC,OD⊥AC,∴∠C=∠OEC=∠ODC=90°,∴四边形OECD是矩形,∴∠EOD=90°,∴∠EPD=12∠EOD=45°,故选:B.【点睛】此题主要考查了圆周角定理以及切线的性质等知识,得出∠EOD=90°是解题关键.3、C【分析】根据反比例函数的性质:当k-1<0时,在每一个象限内,函数值y随着自变量x的增大而增大作答.【详解】∵在双曲线1ykx-=的每一条分支上,y都随x的增大而增大,∴k-1<0,∴k<1,故选:C.【点睛】本题考查了反比例函数的性质.对于反比例函数ykx=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.4、C【解析】根据二次函数图象的开口方向与二次项系数的关系逐一判断即可. 【详解】解: A. y=-3x2-1中,﹣3<0, 二次函数图象的开口向下,故A不符合题意;B. y=-13x2+1中, -13<0, 二次函数图象的开口向下,故B不符合题意;C. y=12x2+3中,12>0, 二次函数图象的开口向上,故C符合题意;D. y=-x2-5中, -1<0, 二次函数图象的开口向下,故D不符合题意;故选:C.【点睛】此题考查的是判断二次函数图像的开口方向,掌握二次函数图象的开口方向与二次项系数的关系是解决此题的关键.5、B【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x2﹣2x=3,配方得:x2﹣2x+1=1,即(x﹣1)2=1.故选B.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法的步骤是解答本题的关键.6、A【分析】把x=2代入已知方程,列出关于a的新方程,通过解新方程可以求得a的值.【详解】∵x=2是关于x的一元二次方程32x2﹣2a=0的一个根,∴22×32﹣2a=0,解得a=1.即a的值是1.故选:A.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.7、A【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【详解】过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴BF FGAB AC=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴453FC FG-=,∵FC=FG,∴453FC FC-=,解得:FC=32,即CE的长为32.故选A.【点睛】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.8、B【解析】如图(见解析),先利用翻折的性质、直角三角形的性质求出AOD∠的度数,再根据垂径定理、等腰三角形的性质得出AOB ∠度数,从而得出AOC ∠的度数,最后根据翻折的性质得出AOC S S =阴影扇形,利用扇形的面积公式即可得.【详解】如图,过点O 作⊥OD AB ,并延长OD 交圆O 与点E ,连接OA 、OB 、OCAD BD ∴=(垂径定理) 由翻折的性质得11,22AOC OD ED OE OA S S ====阴影扇形 30,9060OAD AOD OAD ∴∠=︒∠=︒-∠=︒2120AOB AOD ∴∠=∠=︒(等腰三角形的三线合一)同理可得120BOC ∠=︒360120AOC AOB BOC ∴∠=︒-∠-∠=︒21205253603AOCS ππ⋅∴==扇形 253S π∴=阴影 故选:B .【点睛】本题考查了垂径定理、翻折的性质、扇形的面积公式等知识点,利用翻折的性质得出AOD ∠的度数是解题关键. 9、C【分析】根据题意,利用绝对值的意义求出m 与n 的值,再代入所求式子计算即可.【详解】解:∵|m|=5,|n|=7,且m+n <0,∴m =5,n =﹣7;m =﹣5,n =﹣7,可得m ﹣n =12或2,则m ﹣n 的值是12或2.故选:C.【点睛】本题考查了绝对值的意义,掌握绝对值的意义求值是关键.10、A【分析】根据相似三角形对应高的比等于相似比,对应中线的比等于相似比解答.【详解】∵两个相似三角形对应高之比为1:2,∴它们的相似比是1:2,∴它们对应中线之比为1:2.故选A.【点睛】此题考查相似三角形的性质,解题关键在于掌握其性质.二、填空题(每小题3分,共24分)11、不可能【分析】根据随机事件的概念进行判断即可.【详解】太阳从西边升起是不可能的,∴太阳从西边升起是不可能事件,故答案为:不可能.【点睛】本题考查了随机事件的概念,掌握知识点是解题关键.12、43【分析】根据对称性,作点B关于AC的对称点B′,连接B′M与AC的交点即为所求作的点P,再求直角三角形中30︒的临边即可.【详解】如图,作点B关于AC的对称点B′,连接B′M,交AC于点P,∴PB′=PB,此时PB+PM最小,∵矩形ABCD中,两条对角线相交所成的锐角为60︒,∴△ABP是等边三角形,∴∠ABP=60︒,∴∠B′=∠B′BP=30︒,∵∠DBC=30︒,∴∠BMB ′=90︒,在Rt △BB ′M 中,BM =4,∠B ′=30°,∴BB’=2BM =8∴B ′M =∴PM +PB ′=PM +PB =B ′故答案为【点睛】本题主要考查了最短路线问题,解决本题的关键是作点B 关于AC 的对称点B ′.13、16-【分析】根据二次函数的图象在x 轴的下方得出10a -<,2404ac b a-<,解分式方程得121x a =-,注意3x ≠-,根据分式方程有负整数解求出a ,最后结合a 的取值范围进行求解.【详解】∵二次函数()()21232y a x a x a =--+++的图象在x 轴的下方, ∴10a -<,2244(1)(2)(23)044(1)ac b a a a a a --+-+=<-, 解得,178a <-, 1912233ax x x++=++, 解得,12(3)1x x a =≠--, ∵分式方程有负整数解,∴11,2,3,6,12a -=-----,即0,1,2,5,11a =----, ∵178a <-, ∴5,11a =--,∴所有满足条件的整数a 的和为51116--=-,故答案为:16-.【点睛】本题考查二次函数的图象,解分式方程,分式方程的整数解,二次函数的图象在x 轴下方,则开口向下且函数的最大值小于1,解分式方程时注意分母不为1.14、6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628=树高,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.15、64 15m【分析】利用相似三角形的相似比,列出方程组,通过解方程组求出灯泡与地面的距离即可.【详解】如图:根据题意得:BG=AF=AE=1.6m,AB=1m,∵BG∥AF∥CD,∴△EAF∽△ECD,△ABG∽△ACD,∴AE:EC=AF:CD,AB:AC=BG:CD,设BC=xm,CD=ym,则CE=(x+2.6)m,AC=(x+1)m,∴1.6 1.62.6x y=+,1 1.61x y=+解得:x=53, y=6415,∴CD=64 15m.∴灯泡与地面的距离为6415米,故答案为64 15m.16、﹣1.【解析】直接利用二次函数最值求法得出函数顶点式,进而得出答案.【详解】解:∵二次函数y=x1+4x+a=(x+1)1﹣4+a,∴二次函数图象上的最低点的横坐标为:﹣1.故答案为﹣1.【点睛】此题主要考查了二次函数的最值,正确得出二次函数顶点式是解题关键.17、34m ≥且2m ≠. 【详解】∵关于x 的一元二次方程(m ﹣1)1x 1+(1m+1)x+1=0有两个不相等的实数根,∴△=b 1﹣4ac >0,即(1m+1)1﹣4×(m ﹣1)1×1>0, 解这个不等式得,m >34, 又∵二次项系数是(m ﹣1)1≠0,∴m≠1故M 得取值范围是m >34且m≠1. 故答案为m >34且m≠1. 考点:根的判别式18、45【分析】先利用平行线的性质得出BAC CDE ACF DCF ACD ∠+∠=∠+∠=∠,然后通过勾股定理的逆定理得出ACD 为等腰直角三角形,从而可得出答案.【详解】如图,连接AD ,∵////AB CF DE∴,BAC ACF CDE DCF ∠=∠∠=∠∴BAC CDE ACF DCF ACD ∠+∠=∠+∠=∠∵2222222223110,3110,4220,CD AD AC =+==+==+=∴222CD AD AC +=∴90,45ADC ACD ∠=︒∠=︒∴45BAC CDE ∠+∠=︒故答案为45【点睛】本题主要考查平行线的性质及勾股定理的逆定理,掌握勾股定理的逆定理及平行线的性质是解题的关键.三、解答题(共66分)19、(1)x 1=43,x 2=-1;(2)x 1=5,x 2=-1.【分析】(1)根据一元二次方程的一般形式得出a 、b 、c 的值,利用公式法x=2b a-±即可得答案; (2)先把常数项移项,再把方程两边同时加上一次项系数一半的平方,即可得完全平方式,直接开平方即可得答案.【详解】(1)3x 2﹣x ﹣4=1∵a=3,b=-1,c=-4,∴17x 6±== ∴x 1=43,x 1=-1. (2)x 2﹣4x ﹣5=1x 2﹣4x+4=5+4(x ﹣2)2=9∴x -2=3或x -2=-3∴x 1=5,x 2=-1.【点睛】本题考查解一元二次方程,一元二次方程的常用解法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.20、(1)证明见解析;(2)8BD =.【分析】(1)由垂直的定义,得到90ADC CDB ∠=∠=︒,由同角的余角相等,得到CAD BCD ∠=∠,即可得到结论成立;(2)由(1)可知ACD CBD △∽△,得到AD CD CD BD =,即可求出BD. 【详解】(1)证明:∵AB 是O 的直径,∴90ACB ∠=︒.∵CD AB ⊥,∴90ADC CDB ∠=∠=︒.∵90CAD ACD ACD BCD ∠+∠=∠+∠=︒,∴CAD BCD ∠=∠.∵ADC CDB ∠=∠,CAD BCD ∠=∠,∴ACD CBD △∽△.(2)解:由(1)得,ACD CBD △∽△ ∴AD CD CD BD=, 即244BD =, ∴8BD =.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,同角的余角相等,解题的关键是熟练掌握相似三角形的判定和性质进行解题.21、(1)证明见解析;(2)10k -<<【分析】(1)证出根的判别式240b ac ∆=-≥即可完成;(2)将k 视为数,求出方程的两个根,即可求出k 的取值范围.【详解】(1)证明:1,(3),22a b k c k ==-+=+22224[(3)]41(22)21(1)0b ac k k k k k ∆=-=-+-⨯⨯+=-+=-≥∴方程总有两个实数根(2)()23220x k x k -+++= ∴3(1)2k k x +±-= ∴121,2x k x =+=∵方程有一个小于1的正根∴011k <+<∴10k -<<【点睛】本题考查一元二次方程根的判别式与方程的根之间的关系,熟练掌握相关知识点是解题关键.22、∠C=57°.【分析】此题根据圆周角与圆心角的关系求解即可.【详解】连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=12∠AOB=57°.【点睛】此题考查同圆中圆周角与圆心角的关系和切线相关知识,难度一般.23、22222233a ab ba b++-,43.【分析】根据分式混合运算法则化简出最简结果,把a、b的值代入求值即可.【详解】原式=22()()a ba b+-·2()3()a ba b-+﹣2()()a ba b a b a⋅+-=2()3()a ba b+-﹣()()aba b a b+-=22()3()()a ba b a b+-+﹣33()()aba b a b+-=22 24233()()a ab b aba b a b++--+=22 22 3()() a ab b a b a b+++-=22222233a ab ba b++-.当a=3,b=﹣1时,原式=18682712-+-=2015=43.【点睛】本题考查分式的混合运算——化简求值,熟练掌握分式的混合运算法则是解题关键.24、(1)每瓶竹叶青酒售价为80元时,利润最大,最大利润为4500元;(2)要使每天利润不低于4000元,每瓶竹叶青酒售价应控制在70元到90元之间.【分析】(1)设每瓶竹叶青酒售价为x 元,每天的销售利润为y 元,根据“当售价为100元时,每天可以售出50瓶,售价每降低1元,可多售出5瓶”即可列出二次函数,再整理成顶点式即可得出;(2)由题意得()258045004000y x =--+=,再根据二次函数的性质即可得出.【详解】解:(1)设每瓶竹叶青酒售价为x 元,每天的销售利润为y 元.则: ()()50505100y x x =-+-⎡⎤⎣⎦,整理得:()25804500y x =--+. 50-<,∴当80x =时,y 取得最大值4500.∴每瓶竹叶青酒售价为80元时,利润最大,最大利润为4500元.(2)每天的利润为4000元时,()258045004000y x =--+=.解得:170x =,290x =. 50-<,由二次函数图象的性质可知,4000y ≥时,7090x ≤≤.∴要使每天利润不低于4000元,每瓶竹叶青酒售价应控制在70元到90元之间.【点睛】本题考查了二次函数的应用,根据题意找到关系式是解题的关键.25、(1)见解析;(2)面积 【分析】(1)先证明四边形BECD 是平行四边形,再根据直角三角形中线的性质可得CD=BD ,再根据菱形的判定即可求解;(2)根据图形可得菱形BECD 的面积=直角三角形ACB 的面积,根据三角函数可求BC ,根据直角三角形面积公式求解即可.【详解】(1)证明:∵BE ∥CD ,CE ∥BD ,∴四边形BECD 是平行四边形,∵Rt △ABC 中点D 是AB 中点,∴CD=BD ,∴四边形BECD 是菱形;(2)解:∵Rt△ABC中,∠A=60°,AC=3,∴BC=3AC=3,∴直角三角形ACB的面积为3×3÷2=332,∴菱形BECD的面积是33 2.【点睛】本题考查了平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.26、(1)直线经过A点;(2)B(1,1)或B(1,1);(1)①正确,②正确.【解析】(1)将抛物线解析式整理成顶点式形式,然后写出顶点A的坐标, 将点A的坐标代入直线的解析式判断即可;(2)△OAB面积为1时,根据三角形的面积公式,求出点B的纵坐标,代入抛物线的解析式即可求出点B的横坐标,即可求解.(1)①点M(t,0),则点P(t,t2﹣4t+4),点Q(t,kt﹣2k),若k>0:当0≤t≤2时,P在Q点上方时,整理得t2﹣(4+k)t+(1+2k)=0,求出△=b2﹣4ac=(4+k)2﹣4(1+2k)=k2+12>0,此方程有解,则存在实数t(0≤t≤2)使得PQ=1.②分当P在Q点下方,当P在Q点上方时,两种情况进行分类讨论.【详解】(1)顶点A(2,0)当x=2时,由2k-2k=0,∴直线经过A点.(2)△OAB面积为1时,令解得:即点B的坐标为:B(1,1)或B(1,1),(1)∵点M(t,0),∴点P(t,t2﹣4t+4),点Q(t,kt﹣2k),①若k>0:当0≤t≤2时,P在Q点上方时,∵PQ=1∴t2﹣(4+k)t+(4+2k)=1整理得t2﹣(4+k)t+(1+2k)=0∵△=b2﹣4ac=(4+k)2﹣4(1+2k)=k2+12>0,此方程有解∴①正确.②若k<0:1)当P在Q点下方,∴t2﹣(4+k)t+(4+2k)=﹣1∴t2﹣(4+k)t+7+2k=0∵△=b2﹣4ac=(4+k)2﹣4(7+2k)=k2﹣12∴当存在PQ=1时,k2﹣12≥0∴k≤或k≥(舍去)∴当﹣2<k<﹣0.5时,不存在满足条件的t,2)当P在Q点上方时,∴t2﹣(4+k)t+(4+2k)=1∵△=k2+12>0,此方程有解又∵∴有一正一负两根∴正根>2∴在[0,2]上不存在满足条件的t,∴②正确-【点睛】属于二次函数综合题,考查二次函数图象上点的坐标特征,三角形的面积公式,一元二次方程根的判别式等,综合性比较强,难度较大.。

江苏省无锡市九年级(上)期末数学试卷

江苏省无锡市九年级(上)期末数学试卷

第 8 页,共 20 页
7.【答案】A
【解析】
解:因为 OA=4,P 是线段 OA 的中点,所以 OP=2,小于圆的半径, 因此点 P 在⊙O 内. 故选:A. 知道 OA 的长,点 P 是 OA 的中点,得到 OP 的长与半径的关系,求出点 P 与 圆的位置关系. 本题考查的是点与圆的位置关系,根据判断点与圆的位置关系,也就是比较 点与圆心的距离和半径的大小关系是解题关键.
8. 如图,l1∥l2∥l3,直线 a、b 与 l1∥l2∥l3 分别交于点 A、 B、C 和点 D、E、F 若 ABBC=34,DE=5,则 EF 的
长是( )
A. 83
B. 203
C. 6
D. 10
9. 如图,在矩形 ABCD 中,AB=16,AD>AB,以 A 为圆心裁出 一扇形 ABE(E 在 AD 上),将扇形 ABE 围成一个圆锥(AB
第 9 页,共 20 页
∴H(1.5,2),
∴OH=
=2.5,
∴OE 的最小值=OH-EH=2.5-1=1.5, 故选:B. 如图,连接 AC,取 AC 的中点 H,连接 EH,OH.利用三角形的中位线定理可 得 EH=1,推出点 E 的运动轨迹是以 H 为圆心半径为 1 的圆. 本题考查点与圆的位置关系,坐标与图形的性质,三角形的中位线定理等知 识,解题的关键是学会添加常用辅助线,正确寻找点 E 的运动轨迹,属于中考 选择题中的压轴题.
A. 12
B. 13
C. 14
D. 16
5. 已知 A 样本的数据如下:67,68,68,71,66,64,64,72,B 样本的数据恰好是
A 样本数据每个都加 6,则 A、B 两个样本的下列统计量对应相同的是( )

江苏省无锡市东林中学2022-2023学年数学九年级第一学期期末考试模拟试题含解析

江苏省无锡市东林中学2022-2023学年数学九年级第一学期期末考试模拟试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.已知反比例函数y =﹣6x,下列结论中不正确的是( ) A .图象必经过点(﹣3,2) B .图象位于第二、四象限C .若x <﹣2,则0<y <3D .在每一个象限内,y 随x 值的增大而减小 2.方程x 2-4=0的解是A .x =2B .x =-2C .x =±2D .x =±43.将二次函数y =5x 2的图象先向右平移2个单位,再向下平移3个单位,得到的函数图象的解析式为( ) A .y =5(x +2)2+3B .y =5(x ﹣2)2+3C .y =5(x +2)2﹣3D .y =5(x ﹣2)2﹣34.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,若旋转角为20°,则∠1为( )A .110°B .120°C .150°D .160°5.如图,在△ABC 中,D ,E 两点分别在边AB ,AC 上,DE ∥BC .若:3:4DE BC =,则:ADE ABC S S ∆∆为( )A .3:4B .4:3C .9:16D .16:96.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( )A .12B .9C .4D .37.如图所示的几何体的左视图是()A.B.C.D.8.在x2□2xy□y2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( )A.1B.34C.12D.149.如图,Rt△ABC中,∠C=90°,AC=3,BC=1.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S1.则S1﹣S2+S3+S1等于()A.1B.6C.8D.1210.在△ABC中,若tanA=1,sinB=22,你认为最确切的判断是()A.△ABC是等腰三角形B.△ABC是等腰直角三角形C.△ABC是直角三角形D.△ABC是等边三角形11.若|a+3|+|b﹣2|=0,则a b的值为()A.﹣6B.﹣9C.9D.612.关于x的一元二次方程(2x-1)2+n2+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判定二、填空题(每题4分,共24分)13.如图是水平放置的水管截面示意图,已知水管的半径为50cm,水面宽AB=80cm,则水深CD约为______cm.14.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=_____.15.如图,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C、D两点的⊙O分别交AC、BC于点E、F,AD=3,∠ADC=60°,则劣弧CD的长为_____.16.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是.17.如图,Rt ABC中,∠C=90°,AC=10,BC=1.动点P以每秒3个单位的速度从点A开始向点C移动,直线l 从与AC重合的位置开始,以相同的速度沿CB方向平行移动,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P移动到与点C重合时,点P和直线l同时停止运动.在移动过程中,将PEF 绕点E逆时针旋转,使得点P的对应点M落在直线l上,点F的对应点记为点N,连接BN,当BN∥PE时,t的值为_____.18.已知正方形ABCD的边长为1,P为射线AD上的动点(不与点A重合),点A关于直线BP的对称点为E,连是等腰三角形时,AP的值为__________.接PE,BE,CE,DE.当CDE三、解答题(共78分)19.(8分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =1100-x +150, 成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a≤40),当月销量为x (件)时,每月还需缴纳1100x2 元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费).(1)当x = 1000时,y = 元/件,w 内 = 元;(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大? 参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是24,24b ac b a a . 20.(8分)已知关于x 的一元二次方程230x mx +-=的一个根是1,求它的另一个根及m 的值.21.(8分)如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(1,0)A -,(4,)B m 两点,且抛物线经过点(5,0)C(1)求抛物线的解析式.(2)点P 是抛物线上的一个动点(不与点A 点B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E .当2PE ED =时,求P 点坐标;(3)如图所示,设抛物线与y 轴交于点F ,在抛物线的第一象限内,是否存在一点Q ,使得四边形OFQC 的面积最大?若存在,请求出点Q 的坐标;若不存在,说明理由.22.(10分).已知关于x 的方程2(1)40x k x --+=的两根为12,x x 满足:21212()4x x x x +=,求实数k 的值23.(10分)我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?” .其大意是:如图,一座正方形城池,A 为北门中点,从点A 往正北方向走30步到B 出有一树木,C 为西门中点,从点C 往正西方向走750步到D 处正好看到B 处的树木,求正方形城池的边长.24.(10分)在一个不透明的盒子里,装有四个分别标有数字2、3、4、6的乒乓球,它们的形状、大小、颜色、质地完全相同,耀华同学先从盒子里随机取出一个小球,记为数字x ,不放回,再由洁玲同学随机取出另一个小球,记为数字y ,(1)用树状图或列表法表示出坐标(x ,y)的所有可能出现的结果;(2)求取出的坐标(x ,y)对应的点落在反比例函数y =12x图象上的概率. 25.(12分)先化简,再求值:(1+2a 1-)÷2211a a a ++-,其中a =1. 26.如图,在平面直角坐标系xOy 中,函数y xb =+的图象与函数k y x=(0x >)的图象相交于点(1,6)A ,并与x 轴交于点B .点C 是线段AB 上一点,OBC ∆与OBA ∆的面积比为2:1.(1)k = ,b = ;(2)求点C 的坐标;(1)若将OBC ∆绕点O 顺时针旋转,得到''OB C ∆,其中B 的对应点是'B ,C 的对应点是'C ,当点'C 落在x 轴正半轴上,判断点'B是否落在函数kyx=(0x>)的图象上,并说明理由.参考答案一、选择题(每题4分,共48分)1、D【分析】根据反比例函数的性质对各选项进行逐一分析即可.【详解】A、∵(﹣3)×2=﹣6,∴图象必经过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴函数图象的两个分支分布在第二、四象限,故本选项正确;C、∵x=-2时,y=3且y随x的增大而而增大,∴x<﹣2时,0<y<3,故本选项正确;D、函数图象的两个分支分布在第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选D.【点睛】本题考查的是反比例函数的性质,在解答此类题目时要注意其增减性限制在每一象限内,不要一概而论.2、C【分析】方程变形为x1=4,再把方程两边直接开方得到x=±1.【详解】解:x1=4,∴x=±1.故选C.3、D【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将二次函数y=5x2的图象先向右平移2个单位所得函数的解析式为:y=5(x﹣2)2,由“上加下减”的原则可知,将二次函数y=5(x﹣2)2的图象先向下平移3个单位所得函数的解析式为:y=5(x ﹣2)2﹣3,故选D .【点睛】本题考查了二次函数的图象的平移变换,熟知函数图象几何变换的法则是解答此题的关键.4、A【解析】设C′D′与BC 交于点E,如图所示:∵旋转角为20°, ∴∠DAD′=20°,∴∠BAD′=90°−∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°−70°−90°−90°=11°,∴∠1=∠BED′=110°.故选A.5、C【分析】先证明相似,然后再根据相似的性质求解即可.【详解】∵DE ∥BC∴ ADE ABC ∆∆∵:3:4DE BC =∴:ADE ABC S S ∆∆=9:16故答案为:C.【点睛】本题考查了三角形相似的性质,即相似三角形的面积之比为相似比的平方.6、A【分析】摸到红球的频率稳定在25%,即3a=25%,即可即解得a 的值 【详解】解:∵摸到红球的频率稳定在25%,∴3a =25%,解得:a=1. 故本题选A.【点睛】本题考查用频率估计概率,熟记公式正确计算是本题的解题关键7、D【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看一个正方形被分成两部分,正方形中间有一条横向的虚线,如图:故选:D.【点睛】本题考查了几何体的三视图,从左边看得到的是左视图.8、C【解析】能够凑成完全平方公式,则2xy前可是“-”,也可以是“+”,但y2前面的符号一定是:“+”,此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率为:2142.故答案为C点睛:让填上“+”或“-”后成为完全平方公式的情况数除以总情况数即为所求的概率.此题考查完全平方公式与概率的综合应用,注意完全平方公式的形式.用到的知识点为:概率=所求情况数与总情况数之比.9、B【解析】本题先根据正方形的性质和等量代换得到判定全等三角形的条件, 再根据全等三角形的判定定理和面积相等的性质得到S1、S2、3S、4S与△ABC的关系, 即可表示出图中阴影部分的面积和.本题的着重点是等量代换和相互转化的思想.【详解】解:如图所示, 过点F作FG⊥AM交于点G, 连接PF.根据正方形的性质可得: AB=BE, BC=BD,∠ABC+∠CBE=∠CBE+∠EBD=90o,即∠ABC=∠EBD.在△ABC和△EBD中,AB=EB,∠ABC=∠EBD, BC=BD所以△ABC ≌△EBD(SAS),故S 4=ABC S ,同理可证,△KME ≌△TPF,△FGK ≌△ACT,因为∠QAG=∠AGF=∠AQF=90o , 所以四边形AQFG 是矩形, 则QF//AG , 又因为QP//AC, 所以点Q 、P, F 三点共线, 故S 3+S 1=AQF S, S 2=AGF S . 因为∠QAF+∠CAT=90o ,∠CAT+∠CBA=90o ,所以∠QAF=∠CBA, 在△AQF 和△ACB 中, 因为∠AQF=∠ACB,AQ=AC,∠QAF=∠CAB所以△AQF ≌△ACB(ASA), 同理可证△AQF ≌△BCA,故S 1﹣S 2+S 3+S 1=ABC S = 12⨯3 ⨯1 =6, 故本题正确答案为B.【点睛】本题主要考查正方形和全等三角形的判定与性质.10、B【分析】先根据特殊角的三角函数值求出∠A ,∠B 的值,再根据三角形内角和定理求出∠C 即可判断三角形的形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第7题图)(第8题图)OxyP1 1• 江苏省无锡市东林中学2013届九年级数学上学期期末考试试题一、选择题:(本大题有10小题,每题3分,共30分.)1. tan30º的值是 ………………………………………………………………………( )A .12B .32C .33 D . 32.下列等式一定成立的是………………………………………………………………( ) A .9-2=7 B .5×3=15 C .4=±2D .-(-4)2=43.已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是…( ) A.1 B. -1 C.0 D.无法确定4.抛物线y =ax 2-2x -a +1的对称轴是直线x =1,则a 的值是…………………( ) A. -2 B. 2 C. -1 D. 15. 在Rt △ABC 中,∠C =90º,下列关系式中错误的是……………………………( ) A .AC =AB •cos B B .AC =BC •tan B C .BC =AB •sin A D .BC =AC •tan A6.如果一组数据-1,0,3,5,x 的极差是8,那么x 的值可能有…………………( )A .1个B .2个C .3个D .4个7. 如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( ) A .35° B .45° C .55° D .75°8.如图,平面直角坐标系中,⊙O 半径长为1,点P (a ,0),⊙P 的半径长为2,把⊙P 向左平移,当⊙P 与⊙O 相切时,a 的值为…………………………………………( )A .3B .1C .1,3D .±1,±39.方程2x -x 2=2x的正根的个数有……………………………………………………( )A .0个B .1个C .2个D .3个10.如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD 、AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )二、填空题:(本大题有8小题,每题2分,共16分.) 11.使5-x 有意义的x 的取值范围是 .12.二次函数y =x 2-2的图像与x 轴的两个交点间的距离是 .13.若关于x 的方程x 2-23x +k =0有两个相等的实数根,则k 的值是 . 14.用半径为2cm 的半圆围成一个圆锥的侧面,这个圆锥的底面半径是 .15.在-1,0,13,2,π,0.101101110中任取一个数,取到无理数的概率是 .16.如图⊙O 中,直径AB ⊥弦CD 于E ,若AB =26,CD =24,则tan ∠OCE = .By x 44 Cy x 44 OAy x 44 OODyx44 OC D E FA (第10题图)17.如图坐标系中,点A 的坐标是(-2,4),AB ⊥y 轴于B ,抛物线y =-x 2-2x +c 经过点A ,将抛物线向下平移m 个单位,使平移后得到的抛物线顶点落在△AOB 的内部(不包括△AOB 的边界),则m 的取值范围是 .18.如图,在△ABC 中,AB =AC =5,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF = 1 2 ∠A ,sin ∠CBF = 55 ,则BF 的长为 .三、解答题:(本大题有10小题,共计84分.) 19.(8分)计算:(1)9-||2-5+(-1)2013(2)22cos45º-(3+22)220.(8分)解方程:(1)x 2-7x -78=0 (2)x 2-2x =2x +121.(8分)关于x 的一元二次方程x 2+3x +m -1=0的两个实数根分别为x 1、x 2. (1)求m 的取值范围;(2)若2(x 1+x 2)+x 1x 2+10=0.求m 的值.22.(8分)在一个不透明的口袋里装有白、红、黑三种颜色的小球,其中白球2 只,红球1只,黑球1只,它们除了颜色之外没有其它区别. 从袋中随机地摸出1只球,记录下颜色后放回搅匀,再摸出第二只球并记录颜色. 求两次都摸出白球的概率.23. (8分)我们已经学过用方差来描述一组数据的离散程度,其实我们还可以用“平均差”来描述一组数据的离散程度. 在一组数据x 1,x 2,…,x n中,各数据与它们的平均数-x 的差的绝对值的平均数,即T =1n(||x 1--x +||x 2--x +…+||x n --x ) 叫做这组数据的“平均差”,“平均差”也能描述一组数据的离散程度,“平均差”越大说明数据的离散程度越大.(第16题图)(第18题图)A EBOC DFOx yAB请你解决下列问题:(1)分别计算下面两个样本数据的“平均差”,并根据计算结果判断哪个样本波动较大.甲:12,13,11,10,14,乙:10,17,10,13,10(2)分别计算上面两个样本数据的方差,并根据计算结果判断哪个样本波动较大.(3)以上的两种方法判断的结果是否一致?24. (8分)周末小亮一家去游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米?(精确到1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41,3≈1.73)25.(8分)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=25,sin∠BCP=55,求点B到AC的距离;(3)在(2)的条件下,求△ACP的周长.26.(8分)大润发超市进了一批成本为8元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?27.(10分)在平面直角坐标系xOy 中,已知A (-2,0)、B (3,0)、C (5,6),过C 作x 轴的平行线交y轴于点D .(1)若直线y =kx +b (k ≠0)过B 、C 两点,求k 、b 的值;(2)如图,P 是线段BC 上的点,PA 交y 轴于点Q ,若P 的横坐标是4,求S 四边形PCDQ ; (3)设点E 在线段DC 上,AE 交y 轴于点F ,若∠CEB =∠AFB ,求cos∠BAE 的值.28.(10分)如图,△ABC 中,点A 在x 轴上,点C 在y 轴上,BC ∥x 轴,AB 平分∠CAO .抛物线y =ax2-5ax +4经过△ABC 的三个顶点.C B O xD P Q yA CB O x D y A 备用图•(1)求抛物线的解析式; (2)正方形EFGH 的顶点E 在线段AB 上,顶点F 在对称轴右侧的抛物线上,边GH 在x 轴上,求正方形EFGH的边长;(3)设直线AB 与y 轴的交点为D ,在x 轴上是否存在点P ,使∠DPB =45°?若存在,求出点P 的坐标;若不存在,请说明理由.初三数学参考答案及评分标准一、选择题:(本大题共10小题,每题3分,共30分)H∴PB =PHsin37º≈100×1.730.60≈288(米)…………………………………………(7分) 答:那时小亮与妈妈相距约288米. ……………………………………………(8分) 25.(1)在△ABC 中,∠A +∠ABC +∠ACB =180º,且∠ABC =∠ACB∴12∠A +∠ACB =90º………………………………………………………(1分) ∴∠BCP +∠ACB =90º,即直径AC ⊥CP ,CP 是⊙O 的切线…………(2分)(2)如图,连结AN ,再作BH ⊥AC 于H ………………………………………(3分) 则∠HBC =∠NAC =∠BCP ……………………(4分)(3)易证△AFB ∽△ABE ……………………(6分) 则AB 2=AF ·AE ,即AF ·AE =25……(7分)若设F (0,t ),则127≤t <6;另有AF AE =t6两式相乘得AF 2=25t 6另外AF 2=22+t 2…………………(8分)于是25t 6=4+t 2,即6t 2-25t +24=0解得t =83 或 32(舍去)…………(9分)于是cos ∠BAE =35…………………(10分)28.(1)∵C (0,4),且抛物线的对称轴是直线x =52,∴B (5,4)……………(1分)又AC =BC =5,∴AO =3,即A (-3,0) ,由9a +15a +4=0,得a =-16故抛物线的解析式是y =-16x 2+56x +4………………………………(2分)(2)不妨设正方形的边长为m (m >0),则F (-3+3m ,m ) ……………………(3分)代入抛物线求解,m =0或3………(4分)正方形EFGH 的边长为3…………(5分) (3)作BK ⊥x 轴于K ,再取M (-32,0)和N (9,0)只有当点P 落在M 、O 之间和K 、N 之间各一个位置C B OxyA D E FGH。

相关文档
最新文档