第4章 机械振动 机械波(2)

合集下载

大学物理——第4章-振动和波

大学物理——第4章-振动和波
A sin1 + A sin2 2 tan = 1 A cos1 + A cos2 1 2
合成初相 与计时起始时刻有关.
v A 2
ω
v A
2
O
x2
1
v A 1
x1
xx
分振动初相差2 1与计时起始时刻无关,但它对合成振幅 是相长还是相消合成起决定作用.
20
讨 论
2 A = A2 + A2 + 2A A2 cos(2 1) 1 1
F = kx
3
l0
k
m
A
F = kx = ma
k 令ω = m
2
A x = Acos(ωt +)
o
x
积分常数,根据初始条件确定
a = ω2 x
dx = ω2 x dt 2
2
dx υ = = Aω sin( ωt +) dt
dx 2 a = 2 = Aω cos(ωt +) dt
4
2
x = Acos(ωt +)
15
π
例 4-3 有两个完全相同的弹簧振子 A 和 B,并排的放在光滑 的水平面上,测得它们的周期都是 2s ,现将两个物体从平衡 位置向右拉开 5cm,然后先释放 A 振子,经过 0.5s 后,再释 放 B 振子,如图所示,如以 B 释放的瞬时作为时间的起点, (1)分别写出两个物体的振动方程; (2)它们的相位差是多少?分别画出它们的 x—t 图.
5cm
O
x
16
解: (1)振动方程←初始条件
x0 = 0.05m, υ0 = 0 , T = 2s
2π ω= = π rad/s T
2 υ0 2 A = x0 + 2 = 0.05m ω υ0 对B振子: tan B = = 0 B = 0 x0ω

高中物理竞赛教程(超详细) 第四讲 机械振动和机械波

高中物理竞赛教程(超详细) 第四讲 机械振动和机械波
如果在电梯中竖直悬挂一个弹簧振子,弹簧原长,振子的质量为m=1.0kg,电梯静止时弹簧伸长=0.10m,从t=0时,开始电梯以g/2的加速度加速下降,然后又以g/2加速减速下降直至停止试画出弹簧的伸长随时间t变化的图线。
由于弹簧振子是相对电梯做简谐运动,而电梯是一个有加速度的非惯性系,因此要考虑弹簧振子所受到的惯性力f。在匀速运动中,惯性力是一个恒力,不会改变振子的振动周期,振动周期
由此可见A、B两物体都做简谐运动,周期都是
此问题也可用另一种观点来解释:因为两物体质心处的弹簧是不动的,所以可以将弹簧看成两段。如果弹簧总长为,左边一段原长为,劲度系数为;右边一段原长为,劲度系数为,这样处理所得结果与上述结果是相同的,有兴趣的同学可以讨论,如果将弹簧压缩之后,不是同时释放两个物体,而是先释放一个,再释放另一个,这样两个物体将做什么运动?系统的质心做什么运动?
说明单摆在摆角小于5o时可近似地看作是一个简谐振动,振动的周期为
在一些异型单摆中,和g的含意以及值会发生变化。
(1)等效重力加速度
单摆的等效重力加速度等于摆球相对静止在平衡位置时,指向圆心的弹力与摆球质量的比值。
如在加速上升和加速下降的升降机中有一单摆,当摆球相对静止在平衡位置时,绳子中张力为,因此该单摆的等效重力加速度为=。周期为
当m作小角度摆动时,实际上是围绕AB的中点D运动,故等效摆长
正因为m绕D点摆动,当它静止在平衡位置时,指向D点的弹力为,等效重力加速度为,因此此异型摆的周期
(3)悬点不固定的单摆
如图5-2-11,一质量为M的车厢放在水平光滑地面上,车厢中悬有一个摆长为,摆球的质量为m的单摆。显然,当摆球来回摆动时,车厢也将作往复运动,悬点不固定。
§5.2 弹簧振子和单摆

大学物理教案-第4章 机械振动 机械波

大学物理教案-第4章 机械振动  机械波

动的时刻)。
反映 t=0 时刻的振动状态(x0、v0)。
x0 Acos0
v0 Asin0 x
m
A
0=0
o
A
X0 = A
o x
-A x
t T
0 = /2
m
A
o X0 = 0
m
-A
o
X0 = -A
o x
-A x
A
o x
-A
t T
0 = Tt
4、振幅和初位相由初始条件决定

x0 Acos0
v0 Asin 0
A A12 A22 2 A1A2 cos2 1 ,
tan A1 sin 1 A2 sin 2 。 A1 cos1 A2 cos2
3. 两种特殊情况
(1)若两分振动同相 2 1 2k ,则 A A1 A2 , 两分振动相互加强, 如 A1=
A2 ,则 A = 2A1
(2)若两分振动反相,2 1 2k 1 , 则 A | A1 A2 | ,两分振动相互减弱,
波动是振动的传播过程。 机械波----机械振动的传播 波动 电磁波----电磁场的传播 粒子波----与微观粒子对应的波动 虽然各种波的本质不同,但都具有一些相似的规律。
一、 弹簧振子的振动 m
o X0 = 0
§4.1
m
简谐振动的动力学特征
二、谐振动方程 f=-kx
a f k x
x
mm
令 k 2 则有 m
教学内容
备注
1
大学物理学
大学物理简明教程教案
第 4 章 机械振动 机械波
前言 1. 振动是一种重要的运动形式 2. 振动有各种不同的形式 机械振动:位移 x 随 t 变化;电磁振动;微观振动 广义振动:任一物理量(如位移、电流等)在某一数值附近反复变化。 3. 振动分类

机械振动_机械波课后习题

机械振动_机械波课后习题

习题5 •机械振动5.1选择题(1) 一物体作简谐振动,振动方程为x=Acos(,t ),则该物体在t=0时刻2的动能与t二T/8(T为振动周期)时刻的动能之比为:(A) 1: 4 ( B) 1:2 (C) 1:1 (D) 2:1(2) 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA2(B) kA2/2(C) kA2//4(D)0(3)谐振动过程中,动能和势能相等的位置的位移等于(A),4(C) 一3A2(B)冷(D) - 2A5.2填空题(1) 一质点在X轴上作简谐振动,振幅A = 4cm,周期T = 2s,其平衡位置取作坐标原点。

若t= 0时质点第一次通过x = —2cm处且向X轴负方向运动,则质点第二次通过x= —2cm处的时刻为___ So(2) —水平弹簧简谐振子的振动曲线如题 5.2(2图所示。

振子在位移为零,速度为—呱、加速度为零和弹性力为零的状态,对应于曲线上的______________ 点。

振子处在位移的绝对值为A、速度为零、加速度为--2A和弹性力为-KA的状态,则对应曲线上的_____________ 点。

题5.2(2)图(3) —质点沿x轴作简谐振动,振动范围的中心点为x轴的原点,已知周期为T,振幅为A。

(a) 若t=0时质点过x=0处且朝x轴正方向运动,则振动方程为x= __________________ 。

(b) 若t=0时质点过x=A/2处且朝x轴负方向运动,则振动方程为x= ________________ 。

5.3符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:⑴拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).题5.3图题5.3图(b)5.4弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?5.5单摆的周期受哪些因素影响?把某一单摆由赤道拿到北极去,它的周期是否变化?5.6简谐振动的速度和加速度在什么情况下是同号的?在什么情况下是异号的?加速度为正值时,振动质点的速率是否一定在增大?5.7质量为10 10:kg的小球与轻弹簧组成的系统,按x = 0.1cos(8t,空)(SI)的规律3作谐振动,求:(1) 振动的周期、振幅和初位相及速度与加速度的最大值;(2) 最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?⑶t2 =5S与t1 =1s两个时刻的位相差;5.8 一个沿x轴作简谐振动的弹簧振子,振幅为A,周期为T,其振动方程用余弦函数表示•如果t =0时质点的状态分别是:(1) x o = -A ;(2) 过平衡位置向正向运动;A(3) 过x二一处向负向运动;2A(4) 过x A处向正向运动.V2试求出相应的初位相,并写出振动方程.5.9 —质量为10 10^kg的物体作谐振动,振幅为24cm,周期为4.0s,当t =0时位移为24cm .求:(1) t =0.5s时,物体所在的位置及此时所受力的大小和方向;(2) 由起始位置运动到x = 12cm处所需的最短时间;(3) 在x =12cm处物体的总能量.5.10有一轻弹簧,下面悬挂质量为1.0g的物体时,伸长为4.9cm .用这个弹簧和一个质量为8.0g的小球构成弹簧振子,将小球由平衡位置向下拉开 1.0cm后,给予向上的初速度V。

机械振动和机械波知识点总结

机械振动和机械波知识点总结

机械振动和机械波一、知识结构二、重点知识回顾1机械振动一机械振动物体质点在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力;回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力;产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用;b、阻力足够小;二简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动;简谐振动是最简单,最基本的振动;研究简谐振动物体的位置,常常建立以中心位置平衡位置为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移;因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反;2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用;3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能重力势能和弹性势能都随时间做周期性变化;三描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量;1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒;2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数;振动的周期T跟频率f之间是倒数关系,即T=1/f;振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率;四单摆:摆角小于5°的单摆是典型的简谐振动;细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆;单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力;单摆的周期公式是T=;由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离;g是单摆所在处的重力加速度,在有加速度的系统中如悬挂在升降机中的单摆其g应为等效加速度;五振动图象;简谐振动的图象是振子振动的位移随时间变化的函数图象;所建坐标系中横轴表示时间,纵轴表示位移;图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律;要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况;六机械振动的应用——受迫振动和共振现象的分析1物体在周期性的外力策动力作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关;2在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣;2机械波中的应用问题1. 理解机械波的形成及其概念;1机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质;2机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同;3机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移;4描述机械波的物理量关系:注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定;例1单摆的运动规律为:当摆球向平衡位置运动时位移变___,回复力变____,加速度变 ,加速度a 与速度υ的方向 ,速度变 ,摆球的运动性质为_____________________,摆球的动能变_____,势能变___;当摆球远离平衡位置运动时位移变___,回复力变___,加速度变___,加速度a 与速度υ的方向____,速度变___,摆球的运动性质为_____________________,摆球的动能变____,势能变_____、例2 如图6-1所示,一个轻弹簧竖直固定在水平地面上,将一个小球轻放在弹簧上,M 点为轻弹簧竖直放置时弹簧顶端位置,在小球下落的过程中,小球以相同的动量通过A 、B 两点,历时1s,过B 点后再经过1s,小球再一次通过B 点,小球在2s 内通过的路程为6cm,N 点为小球下落的最低点,则小球在做简谐运动的过程中:1周期为 ;2振幅为 ;3小球由M 点下落到N 点的过程中,动能E K 、重力势能E P 、弹性势能图6-1E P ’的变化为 ;4小球在最低点N 点的加速度大小 重力加速度g 填>、=、<;分析:1小球以相同动量通过A 、B 两点,由空间上的对称性可知,平衡位置O 在AB 的中点;再由时间上的对称性可知,t AO =t BO =, t BN = t NB =,所以t ON =t OB +t BN =1s,因此小球做简谐运动的周期T =4t ON =4s;2小球从A 经B 到N 再返回B 所经过的路程,与小球从B 经A 到M 再返回A 所经过的路程相等;因此小球在一个周期内所通过的路程是12cm,振幅为3cm;3小球由M 点下落到N 点的过程中,重力做正功,重力势能减少;弹力做负功,弹性势能增加;小球在振幅处速度为零,在平衡位置处速率最大,所以动能先增大后减小;4M 点为小球的振幅位置,在该点小球只受重力的作用,加速度为g ,方向竖直向下,由空间对称性可知,在另一个振幅位置N 点小球的加速度大小为g ,方向竖直向上;解答:4s ;3cm ;E K 先增大后减小,E P 减少,E P ’ 增加;=;说明:分析解决本题的关键是正确认识和利用简谐运动的对称性,其对称中心是平衡位置O ,尤其小球在最低点N 点的加速度值,是通过另一个振动最大位移的位置M 来判断的;如果小球是在离弹簧最上端一定高度处释放的,而且在整个运动过程中,弹簧始终处于弹性形变中,那么小球与弹簧接触并运动的过程可以看成是一个不完整的简谐运动;因为小球被弹簧弹起后,在弹簧处于原长时与弹簧分离,这个简谐运动有下方振动最大位移的位置,但无上方振动最大位移的位置,那么小球在运动过程中的最大加速度将大于重力加速度;例3 已知某摆长为1m 的单摆在竖直平面内做简谐运动,则:1该单摆的周期为 ;2若将该单摆移到表面重力加速度为地球表面重力加速度1/4倍的星球表面,则其振动周期为 ;3若在悬点正下方摆长中点处钉一光滑小钉,则该小球摆动的周期为 ;分析:第一问我们可以利用单摆周期公式计算出周期;第二问是通过改变当地重力加速度来改变周期的;只要找出等效重力加速度,代入周期公式即可得解;第三问的情况较为复杂,此时小球的摆动已不再是一个完整的单摆简谐运动;但我们注意到,小球在摆动过程中,摆线在与光滑小钉接触前后,分别做摆长不同的两个简谐运动,所以我们只要求出这两个摆长不同的简谐运动的周期,便可确定出摆动的周期;解答:1依据gL T π2=,可得T =2s; 2等效重力加速度为4/'g g =,则依据'2'g L T π=,可得4'=T s; 3钉钉后的等效摆长为:半周期摆长为L 1=1m,另半周期摆长为L 2=; 则该小球的摆动周期为: 222''21+=+=g L g L T ππs 说明:单摆做简谐运动的周期公式是我们学习各种简谐运动中唯一给出定量关系的周期公式;应该特别注意改变周期的因素:摆长和重力加速度;例如:双线摆没有明确给出摆长,需要你去找出等效摆长;再例如:把单摆放入有加速度的系统中,等效重力加速度将发生怎样的变化;比如把单摆放入在轨道上运行的航天器中,因为摆球完全失重,等效重力加速度为0,单摆不摆动;把单摆放入混合场中,比如摆球带电,单摆放入匀强电场中,这时就需要通过分析回复力的来源从而找出等效重力加速度;这类问题将在电学中遇到;例4一弹簧振子做简谐运动,振动图象如图6—3所示;振子依次振动到图中a 、b 、c 、d 、e 、f 、g 、h 各点对应的时刻时,1在哪些时刻,弹簧振子具有:沿x 轴正方向的最大加速度;沿x 轴正方向的最大速度;2弹簧振子由c 点对应x 轴的位置运动到e 点对应x 轴的位置,和由e 点对应x 轴的位置运动到g 点对应x 轴的位置所用时间均为;弹簧振子振动的周期是多少3弹簧振子由e 点对应时刻振动到g 点对应时刻,它在x 轴上通过的路程是6cm,求弹簧振子振动的振幅;分析:1弹簧振子振动的加速度与位移大小成正比,与位移方向相反;振子具有沿x 轴正方向最大加速度,必定是振动到沿x 轴具有负向的最大位移处,即图中f 点对应的时刻;振子振动到平衡位置时,具有最大速度,在h 点时刻,振子速度最大,再稍过一点时间,振子的位移为正值,这就说明在h 点对应的时刻,振子有沿x 轴正方向的最大速度;2图象中c 点和e 点,对应振子沿x 轴从+7cm 处振动到-7cm 处;e 、f 、g 点对应振子沿x 轴,从-7cm 处振动到负向最大位移处再返回到-7cm 处;由对称关系可以得出,振子从c 点对应x 轴位置振动到g 点对应x 轴位置,振子振动半周期,时间为,弹簧振子振动周期为T =;3在e 点、g 点对应时间内,振子从x 轴上-7cm 处振动到负向最大位移处,又返回-7cm 处行程共6cm,说明在x 轴上负向最大位移处到-7cm 处相距3cm,弹簧振子的振幅A =10cm;解答:1f 点;h 点;2T =;3A =10cm;说明:本题主要考察结合振动图象如何判断在振动过程中描述振动的各物理量及其变化;讨论振子振动方向时,可以把振子实际振动情况和图象描述放在一起对比,即在x 轴左侧画一质点做与图象描述完全相同的运动形式;当某段图线随时间的推移上扬时,对应质点的振动方向向上;同理若下降,质点振动方向向下;振动图象时间轴各点的位置也是振子振动到对应时刻平衡位置的标志,在每个时刻振子的位移方向永远背离平衡位置,而回复力和加速度方向永远指向平衡位置,这均与振动速度方向无关;因为振子在一个全振动过程中所通过的路程等于4倍振幅,所以在t 时间内振子振动n 个周期,振子通过的路程就为4nA ;例6 一弹簧振子做简谐运动,周期为T ,以下说法正确的是A. 若t 时刻和t +Δt 时刻振子运动位移的大小相等、方向相同,则Δt 一定等于T 的整数倍B. 若t 时刻和t +Δt 时刻振子运动速度的大小相等、方向相反,则Δt 一定等于T /2的整数倍图6-3C. 若Δt =T /2,则在t 时刻和t +Δt 时刻振子运动的加速度大小一定相等D. 若Δt =T /2,则在t 时刻和t +Δt 时刻弹簧的长度一定相等分析:如图6-4所示为物体做简谐运动的图象;由图象可知,在t 1、t 2两个时刻,振子在平衡位置同侧的同一位置,即位移大小相等,方向相同,而T t t t <-=∆12,所以选项A 错误;在t 1时刻振子向远离平衡位置方向振动,即具有正向速度,在t 2时刻振子向平衡位置方向振动,即具有负向速度,但它们速度大小相等;而212T t t t <-=∆;所以选项B 错误; 因为T t t t =-=∆14,振子在这两个时刻的振动情况完全相同,所以具有相同的加速度,选项C 正确; 因为213T t t t =-=∆,振子在这两个时刻位于平衡位置的两侧,即若t 1时刻弹簧处于伸长状态,则t 3时刻弹簧处于压缩状态;所以选项D 错误;解答:选项C 正确;说明:做简谐运动的物体具有周期性,即物体振动周期的整数倍后,物体的运动状态与初状态完全相同;做简谐运动的物体具有对称性,即描述振动的物理量的大小除周期和频率外在关于平衡位置对称的两点上都相等,但矢量的方向不一定相同;做简谐运动的物体具有往复性,即当物体振动回到同一点时,描述振动的物理量的大小除周期和频率外相同,但矢量的方向不一定相同;例7在某介质中,质点O 在t =0时刻由平衡位置开始向上振动;经第一次向上振动到最大位移处;同时,产生的横波水平向右传播了50cm;在O 点右侧有一点P ,与O 点相距8m;求:1这列横波的波速;2波动传播到P 点,P 点刚开始振动时的速度方向;3从O 点开始振动到P 点第一次到达波峰位置所需时间分析:由题目所给条件可知:振源在内振动了1/4周期,波对应向右传播1/4个波长,从而可以确定波长和周期,进而求出波速;因为波匀速向前传播,所以波从O 点传播到P 点所用时间=OP 距离/波速;当波传播到P 点时,O 点的振动形式也传播到了P 点,因而P 点的起振方向与O 点起振方向相同,即为竖直向上,P 点由平衡位置第一次到达波峰还在需要T 41时间;解答:1由题意知:周期T =×4=s波长λ=×4=2m∴波速(5==T v λm/s 2P 点刚开始振动时的速度方向为竖直向上;3设所求时间为t ,则 7.141=+=T v OP t s 说明:题目本身并不难,但要求对机械波的形成和传播能有一个正确的理解,在多数有关机械波的高考题目中也是这样体现的;随着波的传播,振动形式和能量在传播,所以波动涉及到的每一个质点都要把振源的振动形式向外传播,即进行完全重复的振动,其刚开始的振动方向一定与振源的起振方向相同;例8如图6-10所示,甲为某一简谐横波在t =时刻的图象,乙为参与波动的某一质点的振动图象;1两图中的AA ’、OC 各表示什么物理量量值各是多少 2说明两图中OA ’B 段图线的意义 3该波的波速为多大4画出再经过0 .25s 后的波动图象和振动图象; 5甲图中P 点此刻的振动方向;分析:依据波动图象和振动图象的物理意义来分析判断;注意振动图象和波动图象的区别与联系;解答:1甲图中的AA ’表示振幅A 和x =1m 处的质点在t =时对平衡位置的位移,振幅A =,位移y=;甲图中OC 表示波长,大小=4m;乙图中AA ’即是质点振动的振幅,又是t =时质点偏离平衡位置的位移,振幅A =,位移y =;OC 表示质点振动的周期,大小T =;2甲图中的OA ’B 段图线表示O 到B 之间的各质点在t =时相对平衡位置的位移,OA 间各质点正向着平衡位置运动,AB 间各质点正在远离平衡位置运动;乙图中的OA ’B 段图线表示该质点在t =0~时间内振动位移随时间变化的情况,在0~内该质点正远离平衡位置运动,在~内该质点正向平衡位置运动;3由v =/t 可得波速 v =14m/s= 4m/s4再过,波动图象向右平移x =vt =4m=1m=/4;振动图象在原有的基础上向后延伸T /4,图象分别如图6-11丙、丁所示5已知波的传播方向或某质点的振动方向判定图象上该时刻各质点的振动方向或波的传播方向,常用方法如下:a .带动法:根据波动过程的特点,利用靠近波源的点带动它邻近的离波源稍远的点的特性,在被判定振动方向的点P 附近图象上靠近波源一方找一点P ’,若在P 点的上方,则P ’带动P 向上运动,如图所示;若P ’在P 点的下方,则P ’带动P 向下运动;b .微平移法:将波形沿波的传播方向做微小移动x </4,根据质点P 相对平衡位置位移的变化情况判断质点P 的运动方向;图6-10’m ’ 图6-10mc .口诀法:沿波的传播方向看,“上山低头,下山抬头”,其中“低头”表示质点向下运动,“抬头” 表示质点向上运动;故P 向上振动;说明:波动图象和振动图象的形状相似,都是正弦或余弦曲线,其物理意义有本质的区别,但它们之间又有联系,因为参与波动的质点都在各自的平衡位置附近振动,质点振动的周期也等于波动的周期;例9如图6-11所示,一列在x 轴上传播的横波t 0时刻的图线用实线表示,经Δt =时,其图线用虚线表示;已知此波的波长为2m,则以下说法正确的是:A. 若波向右传播,则最大周期为2sB. 若波向左传播,则最大周期为2sC. 若波向左传播,则最小波速是9m/s D. 若波速是19m/s,则波的传播方向向左分析:首先题目中没有给出波的传播方向,因而应分为两种情况讨论;例如波向右传播,图中实线所示横波经过传播的距离可以为, +λm, +2λm ……,其波形图均为图中虚线所示;因而不论求周期最小值还是求周期的最大值,都可以先写出通式再讨论求解;解答:如果波向右传播,传播的距离为+n λm n =1,2,3……,则传播速度为2.022.0n t s v +=∆=m/s,取n =0时对应最小的波速为1m/s,根据周期vT λ=,得最大的周期为2s;因此选项A 是正确的;如果波向左传播,传播的距离为n λ- m n =1,2,3……,则传播速度为2.02.02-n t s v =∆=m/s ,取n =1时对应最小的波速为9m/s,根据周期vT λ=,得最大的周期为92s;因此选项C 是正确的,B 是错误的;在向左传播的波速表达式中,当取n =2时,计算得波速为19 m/s,因此选项D 是正确的;说明:1. 在已知两个时刻波形图研究波的传播问题时,因为波的传播方向有两种可能,一般存在两组合理的解;又由于波的传播在时间和空间上的周期性,每组解又有多种可能性;为此,这类问题的解题思路一般为:先根据波的图象写出波的传播距离的通式,再根据波速公式列出波速或时间的通式,最后由题目给出的限制条件,选择出符合条件的解;2. 本题还可以直接考虑:例如对选项A :因为波长一定,若周期最大,则波速必最小,波在相同时间内传播距离必最短,即为;由此可知最小波速为1m/s,从而依据波速公式可求出最大周期为2s;其它各选项同理考虑;这样做的主要依据是波是匀速向前传播的,紧抓波速、传播距离、传播时间三者的关系,其实波速公式也是这三者关系的一个体现;图6-11例10绳中有列正弦横波,沿x 轴传播,图中6—12中a 、b 是绳上两点,它们在x 轴方向上的距离小于一个波长;a 、b 两点的振动图象如图6-13所示;试在图6-12上a 、b 之间画出t =时的波形图;分析:首先我们先由振动图象确定t =时a 、b 两质点在波形图上的位置以及振动方向,然后在一列已经画好的常规波形图上按题意截取所需波形既可;因为题中没给波的传播方向,所以要分两种情况讨论;解答:由振动图象可知:t =时,质点a 处于正向最大位移处波峰处,质点b 处于平衡位置且向下振动;先画出一列沿x 轴正方向传播的波形图,如图6-14所示;在图左侧波峰处标出a 点;b 点在a 的右测,到a 点距离小于1个波长的平衡位置,即可能是b 1、b 2两种情况;而振动方向向下的点只有b 2;题中所求沿x 轴正方向传播的波在a 、b 之间的波形图即为图6-14中ab 2段所示;画到原题图上时波形如图6-15甲实线所示;同理可以画出波沿x 轴负方向传播在a 、b 之间的波形图,如图6-15乙虚线所示;说明:1. 分析解决本题的关键是要搞清楚振动图象和波动图象的区别和联系;振动图象详细描述了质点位移随时间的变化,但要找该质点在波中的位置,就必须关心所画波形图对应哪个时刻,进而由振动图象找到在这个时刻该质点的位置及振动方向;如果已知质点的振动方向、机械波的传播方向和机械波的波形中的任意两个,就可以对第三个进行判断,这也是贯穿整个机械波这部分内容的基本思路和方法;值得注意的是:如果已知质点的振动方向、波的传播方向,再判断机械波的波形时,由于机械波传播的周期性,可能造成波形的多解;例如本题中没有“a 、b 在x 轴方向上的距离小于一个波长”这个条件,就会造成多解现象;本题还可以利用“同侧法”来画图;“同侧法” 是来判断质点的振动方向、机械波的传播方向和机械波的波形三者关系的方法;其结论是:质点的振动方向、机械波的传播方向必在质点所在波形图线的同一侧;例如图6-16甲 所示是一列沿x 轴正方向传播的简谐波图象,若其上M 点的振动图6-12图6-14图6-16甲图6-16乙方向向下,则该点的振动方向与波的传播方向在M 点所在图线的同侧;如图6—16乙图所示,若其上M 点的振动方向向上,则该点的振动方向与波的传播方向在M 点所在图线的两侧;依据“同侧法”的判定,质点M 的振动方向向下 ;对于本题中沿x 轴正方向传播的情况,因为质点b 振动方向向下,波沿x 轴正方向传播,为保证波传播方向、质点振动方向在该点图线的“同侧”,波形图只能是图6-17中实线所示;图线若为虚线所示,则波传播方向、质点振动方向在该点图线的“两侧”;同理对沿x 轴负方向传播的情况;有时我们还可以用图像平移法画图;例19从一条弦线的两端,各发生一如图6—24所示的脉冲横波,它们均沿弦线传播,速度相等,传播方向相反;已知这两个脉冲的宽度均为L ,当左边脉冲的前端到达弦中的a 点时,右边脉冲的前端正好到达与a 相距L/2的b 点;请画出此时弦线上的脉冲波形;分析右传播到a 点,而右边的脉冲前端向左传到b 两列脉冲波有半个波长是重叠的;在a 、b 之间,而右脉冲引起质点振动的位移方向向上,移大小相等,叠加结果相互抵消,形如图6—25所示;说明:此题是依据波的叠加原理而求解的;“叠加”的核心是位移的叠加,即在叠加区域内每一质点的振动位置由合位移决定;质点振动速度由合速度决定;例20如图6-26所示,S 1、S 2是振动情况完全相同的两个机械波波源,振幅为A ,a 、b 、c 三点分别位于S 1、S 2连线的中垂线上,且ab =bc ;某时刻a 是两列波的波峰相遇点,c 是两列波的波谷相遇点,则A 、 a 处质点的位移始终为2AB 、 c 处质点的位移始终为-2AC 、 b 处质点的振幅为2AD 、 c 处质点的振幅为2A分析:因为两个波源的频率相同,振动情况也相同,而a 、b 、c 三点分别到两个波源的距离之差均为0,依判断条件可知该三个点的振动都是加强的,即各点振动的振幅均为两波振幅之和2A ;解答:选项CD 是正确的;说明:对于稳定的干涉现象中的振动始终加强的点,应理解为两列波传到该点的振动位移及振动方向完全一致,使得该点的振动剧烈,表现为该质点振动的振幅始终最大,而不是位移最大;如本题中的a 点此时刻在波峰处,但过1/4周期该点会振动到平衡位置;b 点位于ac 中点,该时刻它位于平衡位置,但过1/4周期该点会振动到波峰位置;所以a 、b 、c 所在这条线为振动加强区域; 图6-25 S 1 2对于稳定的干涉现象中的振动始终减弱的点,应理解为两列波传到该点的振动位移及振动方向相反,使得该点的振动减弱,表现为该质点振动的振幅始终最小,而不是位移最小;例22关于多普勒效应的叙述,下列说法正确的是A. 产生多普勒效应的原因是波源频率发生了变化B. 产生多普勒效应的原因是观察者和波源之间发生了相对运动C. 甲乙两车相向行驶,两车均鸣笛,且发出的笛声频率相同,乙车中的某旅客听到的甲车笛声频率低于他听到的乙车笛声频率D. 波源静止时,不论观察者是静止的还是运动的,对波长“感觉”的结果是相等的例23根据多普勒效应,我们知道当波源与观察者相互接近时,观察者接收到的频率增大;如果二者远离,观察者接收到的频率减小;由实验知道遥远的星系所生成的光谱都呈现“红移”,即谱线都向红色部分移动了一段距离,由此现象可知A、宇宙在膨胀B、宇宙在收缩C、宇宙部分静止不动D、宇宙只发出红光光谱例24声纳水声测位移向水中发出的超声波,遇到障碍物如鱼群、潜艇、礁石等后被反射,测出发出超声波到接收到反射波的时间及方向,即可算出障碍物的方位,;雷达则向空中发射电磁波,遇到障碍物后被反射,同样根据发射电磁波到接收到反射波的时间及方向,即可算出障碍物的方位;超声波与电磁波相比较,下列说法正确的是A. 超声波和电磁波在传播时,都向外传递能量,但超声波不能传递信息B. 这两种波都可以在介质中传播,也可以在真空中传播C. 在真空中传播的速度与在其他介质中传播的速度相比较,这两种波在空气中传播时具有较大的传播速度D.这两列波传播时,在一个周期内向前传播一个拨长。

(完整版)机械振动和机械波知识点总结

(完整版)机械振动和机械波知识点总结

机械振动考点一简谐运动的描述与规律1. 机械振动:物体在平衡位置附近所做的往复运动,简称振动。

回复力是指振动物体所受的总是指向平衡位置的合外力。

回复力是产生振动的条件,它使物体总是在平衡位置附近振动。

它属于效果力,其效果是使物体再次回到平衡位置。

回复力可以是某一个力,也可以是几个力的合力或某个力的分力。

平衡位置是指物体所受回复力为零的位置!2. 简谐运动: 物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动。

简谐运动属于最简单、最基本的振动形式,其振动过程关于平衡位置对称,是一种周期性的往复运动。

例如弹簧振子、单摆。

注: (1)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量.②振幅A:振动物体离开平衡位置的最大距离,是标量,它表示振动的强弱.③周期T 和频率f:物体完成一次全振动所需的时间叫做周期,而频率则等于单位时间内完成全振动的次数.它们是表示振动快慢的物理量,二者互为倒数关系:T=1/f.(2) 简谐运动的表达式①动力学表达式:F =-kx,其中“-”表示回复力与位移的方向相反.②运动学表达式:x=Asin (ωt+φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢,(ωt+φ)代表简谐运动的相位,φ叫做初相.(可借助于做匀速圆周运动质点在水平方向的投影理解)(3) 简谐运动的运动规律回复力、加速度增大速度、动能减小①变化规律:位移增大时机械能守恒势能增大振幅、周期、频率保持不变注意:这里所说的周期、频率为固有周期与固有频率,由振动系统本身构造决定。

振幅是反映振动强弱的物理量,也是反映振动系统所具备能量多少的物理量。

②对称规律:I 、做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系,另外速度的大小、动能具有对称性,速度的方向可能相同或相反.II 、振动物体来回通过相同的两点间的时间相等,如t BC=t CB;振动物体经过关于平衡位置对称的等长的两线段的时间相等,如t BC=t B′C′,③运动的周期性特征:相隔T 或nT 的两个时刻振动物体处于同一位置且振动状态相同. 注意:做简谐运动的物体在一个周期内的路程大小一定为4A,半个周期内路程大小一定为2A ,四分之一个周期内路程大小不一定为 A 。

第4章-2机械波

第4章-2机械波

t 0 时刻的t 都变化时 ) 表达式描述 : 波的传播过程 用录像机连续记录波动过程 y
t2
x
t1
已知t 时的波形曲线为Ⅰ 波沿ox 方向传播, 例1. 已知 = 0时的波形曲线为Ⅰ,波沿 方向传播, 时的波形曲线为 后波形变为曲线Ⅱ 已知波的周期T 经t =1/2s 后波形变为曲线Ⅱ。已知波的周期 > 1s, , 试根据图中给出的条件求出波的表达式,并求A点的 试根据图中给出的条件求出波的表达式,并求 点的 振动方程。 振动方程。 y(cm) 1cm Ⅱ Ⅰ 解: A y(x, t) = 0
0.01 π )+ ] A点振动方程: yA = 0.01cos[π ( t − 点振动方程: 点振动方程 0.02 2
yA = 0.01cosπ t
4-6-2 波的能量
波动 振动的传播过程 振动具有能量
波动的过程是能量传播的过程
传播过程媒质中质元振动 具有动能 具有势能
质元间有弹性相互作用、 质元间有弹性相互作用、质元形变
出 电 这些波与我们的生活密切相关 磁 波 声、光、电波 各种波的物理本质不同: 各种波的物理本质不同: 如:机械波和电磁波 机械波: 需弹性媒质 机械波: 机械振动在弹性媒质中的传播 电磁波: 电磁波: 交变电磁场在空间的传播
天 线 发 射
可在真空中,且传播的更快、 可在真空中,且传播的更快、衰减的更少
2
∂ y ωA x = sin ωt − Q ∂x u u
x y = Acosω (t − ) u
1 ω A x 2 dEp = Y 2 sin ωt − dV 2 u u
2 2

Q u= Y ρ
→Y = u ρ
在各向同性的均匀介质中波线总与波面垂直: 在各向同性的均匀介质中波线总与波面垂直: 波前 波线 波面 波前 波面 波线

第4章-2机械波

第4章-2机械波

P = wuS
∵ u=
λ
T
∵ T=

ω
∴ u=
ωλ

P=
ωλ

wS
§4-7 声波,超声波和次声波
4-7-1 声波
声波:频率在 声波:频率在20 Hz ~ 2×104 Hz波段的机械 × 波段的机械 波. 次声波:频率低于 的声波. 次声波:频率低于20 Hz 的声波. 超声波:频率高于 × 的声波. 超声波:频率高于2×104 Hz 的声波.
比较动能
1 2 2 2 x dEk = ρω A sin ωt dV 2 u
结论: 在波动过程中, 结论: 在波动过程中,任一质元的动能和势能 相等,且同相位变化. 相等,且同相位变化.
质元的机械能: 质元的机械能:
x d E = d Ek + d Ep = ρA ω sin ωt dV u
t1
简谐波沿Ox 轴的负方向传播 简谐波沿
x y( x, t ) = Acos[ω(t + ) + 0 ] u
y(x, t) = Acos(ωt + 2πx
λ
+0 )
t x y( x, t ) = Acos2π + +0 T λ
若已知的振动点不在原点, 注:若已知的振动点不在原点,而是在 x0 点,则只 换为( 即可. 要将各波动表达式中的 x 换为(x- x0) 即可.
产生机械波的两个条件: 产生机械波的两个条件:
(1) 波源; ) 波源; (2) 能够传播机械振动的弹性介质. ) 能够传播机械振动的弹性介质.
两种类型的机械波: 两种类型的机械波:
横波:质点的振动方向和波动的传播方向垂直. 横波:质点的振动方向和波动的传播方向垂直. 波形特征: 波形特征: 存在波峰和波谷. 存在波峰和波谷.

高中物理选修34知识点机械振动与机械波解析

高中物理选修34知识点机械振动与机械波解析

机械振动与机械波简谐振动一、学习目标1.了解什么是机械振动、简谐运动2.正确明白得简谐运动图象的物理含义,明白简谐运动的图象是一条正弦或余弦曲线。

二、知识点说明1.弹簧振子(简谐振子):(1)平稳位置:小球偏离原先静止的位置;(2)弹簧振子:小球在平稳位置周围的往复运动,是一种机械运动,如此的系统叫做弹簧振子。

(3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。

2.弹簧振子的位移—时刻图像弹簧振子的s—t图像是一条正弦曲线,如下图。

3.简谐运动及其图像。

(1)简谐运动:若是质点的位移与时刻的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,如此的振动叫做简谐运动。

(2)应用:心电图仪、地震仪中绘制地震曲线装置等。

三、典型例题例1:简谐运动属于以下哪一种运动( )A.匀速运动 B.匀变速运动C.非匀变速运动 D.机械振动解析:以弹簧振子为例,振子是在平稳位置周围做往复运动,而且平稳位置处合力为零,加速度为零,速度最大.从平稳位置向最大位移处运动的进程中,由F=-kx可知,振子的受力是转变的,因此加速度也是转变的。

故A、B错,C正确。

简谐运动是最简单的、最大体的机械振动,D正确。

答案:CD简谐运动的描述一、学习目标1.明白简谐运动的振幅、周期和频率的含义。

2.明白振动物体的固有周期和固有频率,并正确明白得与振幅无关。

二、知识点说明1.描述简谐振动的物理量,如下图:(1)振幅:振动物体离开平稳位置的最大距离,。

(2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,以后又回到O,如此一个完整的振动进程称为一次全振动。

(3)周期:做简谐运动的物体完成一次全振动所需要的时刻,符号T表示,单位是秒(s)。

(4)频率:单位时刻内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。

(5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。

第4章习题解答

第4章习题解答

第四章 机械振动和机械波4.1什么是简谐振动?分别从运动学和动力学两方面作出解释。

并说明下列运动是不是简谐振动;(1)小球在地面上做完全弹性的上下跳动;(2)小球在半径很大的光滑凹球面底部做小幅度的摆动; (3)曲柄连杆机构使活塞做往复运动。

4.2 若弹簧振子中弹簧本身的质量不可忽略,其振动周期是增加还是减小? 这相当于增加了系统的惯性,振动周期将增加。

4.3 将单摆拉到与竖直方向成ϕ角后,放手任其摆动,则ϕ是否就是其初相位?为什么?单摆的角速度是否是谐振动的圆频率?4.4判断以下说法是否正确?说明理由。

“质点作简谐振动时,从平衡位置运动到最远点需要1/4周期,因此走过该段距离的一半需时1/8周期。

”4.5两个相同的弹簧挂着质量不同的物体,当它们以相同的振幅做简谐运动时,问振动的能量是否相同?4.6什么是波动?振动与波动有什么区别和联系? 4.7试判断下列几种关于波长的说法是否正确. (1)在波传播方向上相邻两个位移相同点的距离; (2)在波传播方向上相邻两个运动速度相同点的距离; (3)在波传播方向上相邻两个振动相位相同点的距离。

4.8当波从一种媒质透入另一种媒质时,下面那些量会改变,哪些量不会改变:波长、频率、波速、振幅。

4.9有人认为频率不同、振动方向不同、相位差不恒定的两列波不能叠加,所以它们不是相干波,这种看法对不对?说明理由。

4.10 波的能量与振幅的平方成正比,两个振幅相同的相干波在空间叠加时,干涉加强的点的合振幅为原来的两倍,能量为原来的四倍,这是否违背能量守恒定律?4.11 一质点作简谐振动)7.0100cos(6ππ+=t x cm 。

某时刻它在23=x cm 处,且向X 轴负向运动,它要重新回到该位置至少需要经历的时间为( ) A 、s 1001 B 、s 2003 C 、s 501 D 、 s 503答案:(B)4.12 一个单摆,如果摆球的质量增加为原来的四倍,摆球经过平衡位置时的速度减为原来的一半,则单摆( )A 、频率不变,振幅不变;B 、频率不变,振幅改变;C 、频率改变,振幅不变;D 、频率改变,振幅改变; B4.13 以频率ν作简谐振动的系统,其动能和势能随时间变化的频率为( ) A 、2/ν B 、ν C 、ν2 D 、ν4 答案:(C)4.14 劲度系数为m N /100的轻弹簧和质量为10g 的小球组成的弹簧振子,第一次将小球拉离平衡位置4cm ,由静止释放任其运动;第二次将小球拉离平衡位置2cm 并给以2cm/s 的初速度任其振动。

《主题二 第四节 机械振动和机械波》教学设计

《主题二 第四节 机械振动和机械波》教学设计

《机械振动和机械波》教学设计方案(第一课时)一、教学目标1. 理解机械震动和机械波的基本观点和原理。

2. 掌握简谐震动的基本特征和计算方法。

3. 了解波的传播规律,包括波的叠加、干涉、衍射等现象。

4. 培养学生的观察、分析和解决问题的能力。

二、教学重难点1. 教学重点:简谐震动和波的传播规律。

2. 教学难点:波的叠加、干涉、衍射等现象的实验操作和诠释。

三、教学准备1. 准备教学PPT和相关视频。

2. 准备实验器械,包括水波发生器、激光笔等。

3. 安置学生预习相关内容,并准备小组讨论的问题。

4. 安排实验时间,确保器械充足且安全。

四、教学过程:(一)引入1. 回顾初中物理中的震动和波动相关知识,用生动实例引出本节课的主题。

2. 提出本节课要探讨的问题:什么是机械震动?什么是机械波?它们是如何产生的?它们有哪些基本特征?(二)新课讲授1. 机械震动:通过实验展示弹簧振子的震动过程,引导学生观察、分析、总结机械震动的定义和特征。

再通过一些实例,让学生更好地理解机械震动在实际中的应用。

2. 机械波:通过水波的实验,引导学生观察、分析、总结机械波的定义和特征。

再通过一些实例,让学生更好地理解机械波的形成和传播过程。

(三)互动讨论1. 组织学生分组讨论:在实际生活中,有哪些现象是机械震动引起的?哪些现象是机械波形成的?并分享各自的观点和证据。

2. 鼓励学生提出疑问,针对学生提出的问题,教师进行解答。

(四)小结1. 总结机械震动和机械波的基本观点和特征。

2. 强调机械震动和机械波在实际生活中的应用。

3. 鼓励学生在平时生活中多观察、思考,发现更多的物理现象。

(五)作业安置1. 要求学生通过网络、书籍等途径,收集一些有关机械震动和机械波的实际应用案例,并分享给全班同砚。

2. 思考:在平时生活中,还有哪些现象可以用波动理论来诠释的?请举例说明。

(六)拓展阅读推荐学生阅读一些与本节课内容相关的科普文章或书籍,以进一步拓展学生的知识面。

第四章-机械振动

第四章-机械振动

x(m)
t
A
曲线2曲线1
-A
t
t
t2
t1
1
2
当:t t2 t1 0, 2 1 0
振动2比振动1超前
t(s)
§4.1 简谐振动
例1.如图的谐振动x-t 曲线,试求其谐振方程
解:由图知
x(m)
A 2m T 2s 2
可得: 2 T O
振动表达式为
1
2t (s)
x Acos( t )
dt 2 l
谐振方程为:
设 2 2T
ml
x Acos(t )
§4.2 简谐振动的实例分析
(5)U形管中液体无粘滞振荡
x x
l
为管内液体密度,
l为液体在管内的长度。
动力学方程为:
l
d2 dt
x
2
2gx
0
谐振方程为:
2 2g
l
x Acos(t )
§4.2 简谐振动的实例分析
(6)LC谐振电路
P sin m dv
dt
v l
P
sin 1 3 (小角度时)
6
g 0
l
令 2 g
l
2 0
结论: 小角度摆动时,单摆的运动是谐振动.
周期和角频率为:T 2 l
g
g
l
§4.2 简谐振动的实例分析
(2) 复摆(物理摆)
以物体为研究对象
设 角沿逆时针方向为正
mghsin JZ
10
即: Asin( ) 0 sin( ) 0
6
2
x
1
cos(
t 2 )(m)
10 6 3
§4.1 简谐振动

2023届高考物理一轮复习课件:机械振动 机械波

2023届高考物理一轮复习课件:机械振动 机械波
4
3
B.振动 A 的相位滞后振动 B 的相位 π
4
5
C.振动 A 的相位滞后振动 B 的相位 π
4
D.两个振动没有位移相等的时刻
+ )cm,x B=8sin(4π
x
t
4.周期T:①1T走4A。 1T后回到原位置
②T/2走2A。T/2后到达O点对称位置
x.v.a大小相等方向相反
③T/4不一定走A
A
A/2
示,下列说法正确的是(
C)
A.t=0.6 s时,振子在O点右侧6 cm处
B.振子在t=0.2 s和t=1.0 s时的速度相同
C.t=1.2 s时,振子的加速度方向水平向右
D.t=1.0 s到t=1.4 s的时间内,振子的加速度和速度都逐渐增大
考点2
[典例 2]
机械波
一振动片以频率 f 做简谐振动时,固定在振动片上的两根细
平衡位置:mg=kx0
F回=kx1-mg =kx1-kx0
mg
二、简谐运动
ɵ
1.动力学:
T
2.运动学:
3.振幅A:
x
4.周期T:
mg
5.种类:
①弹簧振子 T=2π
②单摆 ɵ<50 T=2π




注意:简谐运动T与振幅无关。受迫振动时=f驱的周期。
驱动力的周期等于简谐运动的固有周期时振幅
最大,即发生共振。
)
C
A.小球振动的固有频率是4 Hz
B.小球做受迫振动时周期一定是4 s
C.圆盘转动周期在4 s附近时,小球振幅显著增大
D.圆盘转动周期在4 s附近时,小球振幅显著减小
3.如图甲所示,弹簧振子以O点为平衡位置,在光滑水平面上的A

振动与波

振动与波

§4- 简谐波
三、波长、波的周期和频率、波速 波长、波的周期和频率、 1.波长 沿波的传播方向,两个相邻的、 1.波长 λ :沿波的传播方向,两个相邻的、相位差 的振动质点之间的距离。 为 2 π 的振动质点之间的距离。 反映波在空间的周期性 2.周期 波传过一个波长的距离所需要的时间。 2.周期 T:波传过一个波长的距离所需要的时间。 等于质点振动周期。 等于质点振动周期。
角波数 k =

质点的振动速度,加速度 质点的振动速度,
∂y x v= = −ωA sin[ω (t − ) + ϕ ] ∂2t u ∂ y x 2 a = 2 = −ω A cos[ω (t − ) + ϕ ] ∂t u
λ
§4-4 简谐波
4.波函数的物理意义 4.波函数的物理意义 x t x y = A cos[ω (t − ) + ϕ ] = A cos[2 π( − ) + ϕ ] u T λ 固定时, 波动表式表示该点的简谐运动方程, 当 x 固定时, 波动表式表示该点的简谐运动方程, 并给出该点与原点O 振动的相位差. 并给出该点与原点O 振动的相位差.
y /cm
M1
0.5 0.4 0.2 0 − 0.2
M1'
M2
M2 '
a
10 20
b
30 40 50 60 70
− 0.4 − 0.5
x /cm t=3T/4 =3T
§4-4 简谐波
振动动能 + 形变势能= 波的能量 形变势能= 六.波的能量 设波沿x 方向传播, 设波沿 方向传播,取线元 以绳索上传播的横波为例: 以绳索上传播的横波为例: 线元的动能 y 1 1 ∂y 2 2 Wk = ∆mv = ∆m( ) 2 2 ∂t T2 线元的势能(原长为势能零点) 线元的势能(原长为势能零点) ( 1 ∂y 2) O Wp = F ∆x 2 ∂x

大学物理 - 1-6章练习附答案

大学物理 - 1-6章练习附答案

第一章 质点运动学1、已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置。

解:∵ t tva 34d d +==分离变量,得 t t v d )34(d += 积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c 故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v2、质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m 。

质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值。

解: ∵ xv v t x x v t v a d d d d d d d d ===分离变量: 2d (26)d v v adx x x ==+ 两边积分得c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v第二章 质点动力学1、质量为M 的大木块具有半径为R 的四分之一弧形槽,如图所示。

质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度。

解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m 、M 为系统,则在m 脱离M 瞬间,水平方向有0=-MV mv联立以上两式,得2MgR v m M =+2、 哈雷彗星绕太阳运动的轨道是一个椭圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§11-1 机械波的形成和传播 一、机械波产生的条件
①有作机械振动的物体,即波源; ②有连续的介质. 如果波动中使介质各部分振动的回复力是弹 性力,则称为弹性波。 弹性力: 有正弹性力(压、张弹性力)和切 弹性力; 液体和气体弹性介质中只有正弹性力而没有 切弹性力。
-------------------------------------------------------------------------------
2.波动周期和频率 波的周期:一个完整波形通过介质中某固定点所需
的时间,用T表示。 波的频率:单位时间内通过介质中某固定点完整波 的数目,用 表示。
T
3.波长
2


1

同一波线上相邻的位相差为2 的两质点的距离。
T u
u

-------------------------------------------------------------------------------
1.波速 u 振动状态(即位相)在单位时间内传播的距离, 波速又称相速. 在固体媒质中横波波速为
u G

E
在固体媒质中纵波波速为 u //

G、 E为媒质的切变弹性模量和杨氏弹性模量 为介质的密度 在同一种固体媒质中,横波波速比纵波波速小些
-------------------------------------------------------------------------------
t x y A cos[2 ( ) 0 ] T 2 y A cos[(2 t x) 0 ]

y A cos[
k 2
2

( x ut ) 0 ]

波矢(波数)
-------------------------------------------------------------------------------
2. 如果给定t,即t=t0
x x y A cos[ ( t0 ) 0 ] A cos( t0 0 ) u u
x y A cos( / ) u
t0 0
/
y(x,t) → y(x) → t0 时刻空间各点位移分布
-------------------------------------------------------------------------------
例11-2:一平面简谐横波以u=400 m·s-1的波速在均匀介质中 沿x轴正向传播.位于坐标原点的质点的振动周期为0.01 s,振 幅为0.1 m,取原点处质点经过平衡位置且向正方向运动时作为 计时起点.(1)写出波函数;(2)写出距原点为2 m处的质点P的 振动方程;(3)画出t=0.005 s和0.0075 s时的波形图;
-------------------------------------------------------------------------------
三、波线和波面
波场: 波传播到的空间。
波线(波射线) : 代表波的传播方向的射线。 波面: 波场中同一时刻振动位相相同的点的轨迹。 波前(波阵面): 某时刻波源最初的振动状态 传到的波面。 各向同性均匀介质中,波线恒与波面垂直. 沿波线方向各质点的振动相位依次落后。 -------------------------------------------------------------------------------
(t,x)
y
(t +t,x +x)
0
u t
x
时间延续△t,整个波形向前推进
-------------------------------------------------------------------------------
△x=u· △t
例11-1:已知波函数为 ,其中x,y的 10 单位为m,t的单位为s,求:(1)振幅、波长、周期和波速;(2) 距原点为8 m和10 m两点处质点振动的相位差;(3)波线上某质 点在时间间隔0.2 s内的相位差.
故x1和x2两点处质点振动的相位差
25 x y 0.1cos (t ) 10 25

( x2 x1 ) 2 ------------------------------------------------------------------------------
y A cos(t 0 ) 3π 由题意知,原点处质点的振动初相位 0 = 2 3π 原点的振动方程为 y0 0.1cos(200 πt )m 2 x 3 π 故波函数为 y 0.1cos[200 π(t ) ]m 400 2
2
x2 x1 10 8 2m
2 5
负号表示x2处的振动相位落后于x1处的振动相位. (3)对于波线上任意一个给定点(x一定),在时间间隔Δt内的相位差
t2 t1 t
t 0.2 s


2
-------------------------------------------------------------------------------

t0时刻,同一波线上两点的振动位相差
O x1
2
x2

( x2 x1 )
x
若 则
x2-x1=k, k=1,2,… =2k,反映了波动的空间周期性 t=t0
y(0) A cos[t0 0 ] y
0

x
反映了波动的空间周期性
-------------------------------------------------------------------------------
x0

0
x0处质点的振动初相
y(x,t) → y(t) → x0 点的振动方程
x0点,两个时刻的振动位相差
-------------------------------------------------------------------------------
t 2 t1 2 t 2 t1 T
§11.2 平面简谐波的波动方程
在平面简谐波中,波线是一组垂直于波面的平行 射线,因此可选任一波线上任一点的振动方程来研 究平面波的传播规律.
一、平面简谐波的函数
1.一平面简谐波在理想介质中沿x轴正向传播 y 以某一波线为x轴 u 设原点振动方程:
y(0, t ) A cos( t 0 )
y 0.1cos

(25t x)
解:(1)用比较法,将题给的波函数改写成如下形式
x 与波函数的标准形式比较 : y A cos[ (t ) 0 ] u 25 A 0.1m, s 1, 0 =0 10 2 故 T =0.8 s, uT 20 m
波面 波线
波前
平面波
四、简谐波
球面波
波源以及介质中各质点的振动都是谐振动. 任何复杂的波都可以看成由若干个简谐波叠加.
-------------------------------------------------------------------------------
五、描述波动的几个物理量
0 x
p
x
O点振动状态传到p点需用时
x t u -------------------------------------------------------------------------------
t 时刻p处质点的振动状态重复 x t 时刻O处质点的振动状态 u p点的振动方程: x y( x , t ) A cos[ (t ) 0 ]
沿着波的传播方向向前看去,前面各质点的振 动位相都依次落后于波源的振动位相. 机械波向外传播的是波源(及各质点)的振动状 态和能量.
横波在介质中传播时,只有固体能承受切变, 因此横波只能在固体中传播. 纵波在介质中就形成稠密和稀疏的区域,故又 称为疏密波.纵波可引起介质产生容变.固体、液体、 气体都能承受容变,因此纵波能在所有物质中传播.
二、波函数的物理意义
x y( x , t ) A cos[ (t ) 0 ] u
1.如果给定x,即x=x0
x0 x0 y A cos[ ( t ) 0 ] A cos[ t 2 0 ] u
y A cos(t / )
/ 2
3.如x,t 均变化y=y(x,t)包含了不同时刻的波形 x ut y( x x, t t ) A cos[ ( t t ) 0 ] u x A cos[ ( t ) 0 ] u
y( x x, t t ) y( x, t )
二、横波和纵波
横波:振动方向与传播方向垂直的波.
(只能在固体中传播 )
特征:具有交替出现的波峰和波谷.
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
在弦中传播的横波波速为:
u T

T为弦中张力,为弦的线密度
在液体和气体只能传播纵波,其波速为:
u //
B

B为介质的容变弹性模量 为密度
理想气体纵波声速:
p RT u M mol
相关文档
最新文档