自动控制原理第四版答案

合集下载

自动控制原理胡寿松第四版课后

自动控制原理胡寿松第四版课后
其中 K 1 = = 12.65 × 1.1y 0 dy y= y
]
]
所以:
f1 f 2 2 f f s + ( 1 + 2 )s + 1 K1 K 2 K1 K2 X 0 ( s) f1 f 2 s + ( f1 K 2 + K1 f 2 ) s + K1 K 2 = = 2 f1 f 2 2 f f f X i ( s) f1 f 2 s + ( f1 K 2 + K1 f1 + K1 f 2 ) s + K1 K 2 s + ( 1 + 2 )s + 1 + 1 K1 K 2 K1 K2 K2
将(1) (2)代入(4)得:
ui − u0 d (u i − u 0 ) du d 2 u C1 + 2C1 = C 2 0 − C1C 2 R R dt dt dt 2 ui u0 du i du 0 du 0 d 2 ui d 2u0 即: − + 2C1 − 2C1 = C2 − C1C 2 R 2 + C1C 2 R 2 R R dt dt dt dt dt
5
胡寿松自动控制原理习题解答第二章
Edited by Foxit Reader Copyright(C) by Foxit Software Company,2005-2008 For Evaluation Only.
运动模态 e (1 + t ) 所以: x(t ) = 1 − e 2-6
−t
−t
df ( x) y = f ( x0 ) + ( x − x0 ) dx x0
即 Q − Q0 = K 1 ( P − P0 )

自动控制原理-第4版-夏德吟-课后答案

自动控制原理-第4版-夏德吟-课后答案

自动控制原理第4版夏德吟课后答案第一章简介1.1自动控制原理是现代控制理论和方法的基础,它是电气自动化、机械自动化、工业过程控制和自动化等专业的重要课程之一。

本书是夏德吟教授编写的自动控制原理课程的第4版,主要针对大学本科生进行授课。

1.2 主要内容本书共分为六个部分,分别是自动控制基础、一阶惯性系统、二阶惯性系统、校正器设计、稳定性分析和设计、多变量系统控制。

1.3 课后答案本书为了帮助学生更好地学习和理解自动控制原理,特别编写了课后习题,并提供了课后答案,供学生参考和自学使用。

下面是第4版自动控制原理的课后答案。

第二章自动控制基础2.1 控制系统基础知识1.什么是控制系统?控制系统是由输入、输出和反馈组成的一种系统,用于控制和调节系统的运行状态,使系统保持在期望的状态。

2.控制系统的基本要素有哪些?控制系统的基本要素有输入、输出、执行器和传感器。

3.什么是开环控制系统?开环控制系统是一种不考虑系统输出与期望输出之间差异的控制系统,只根据输入信号给予执行器驱动,没有反馈环节。

4.什么是闭环控制系统?闭环控制系统是一种根据系统输出与期望输出之间差异进行调节的控制系统,通过传感器获取系统输出,并与期望输出进行比较,然后调节执行器来达到期望输出。

2.2 控制系统的数学建模1.什么是传递函数?传递函数是用来描述线性时不变系统的输入输出关系的函数,通常用G(s)表示,其中s为复变量。

2.什么是系统的零点和极点?系统的零点是传递函数为0的点,系统的极点是传递函数为无穷大的点。

3.什么是单位阶跃响应?单位阶跃响应是指输入信号为单位阶跃函数时系统的输出响应。

4.什么是单位脉冲响应?单位脉冲响应是指输入信号为单位脉冲函数时系统的输出响应。

2.3 时域分析1.什么是系统的稳定性?系统的稳定性是指系统的输出在无穷大时间内是否趋于稳定,即系统的输出是否收敛。

2.什么是系统的阻尼比?系统的阻尼比是描述系统阻尼程度的参数,用ζ表示。

自动控制理论第4版全套参考答案

自动控制理论第4版全套参考答案

第一章习题参考答案1-1多速电风扇的转速控制为开环控制。

家用空调器的温度控制为闭环控制。

1-2 设定温度为参考输入,室内温度为输出。

1-3 室温闭环控制系统由温度控制器、电加热装置、温度传感器等组成,其中温度控制器可设定希望达到的室温,作为闭环控制系统的参考输入,温度传感器测得的室温为反馈信号。

温度控制器比较参考输入和反馈信号,根据两者的偏差产生控制信号,作用于电加热装置。

1-4 当实际液面高度下降而低于给定液面高度h r ,产生一个正的偏差信号,控制器的控制作用使调节阀增加开度,使液面高度逼近给定液面高度。

第二章 习题参考答案2-1 (1)()()1453223++++=s s s s s R s C ; (2)()()1223+++=s s s ss R s C ; (3)()()1223+++=-s s s e s R s C s2-2 (1)单位脉冲响应t t e e t g 32121)(--+=;单位阶跃响应t t e e t h 3612132)(----=; (2)单位脉冲响应t e t g t 27s i n 72)(2-=;单位阶跃响应)21.127sin(7221)(2+-=-t e t h t 。

2-3 (1)极点3,1--,零点2-;(2) 极点11j ±-.2-4)2)(1()32(3)()(+++=s s s s R s C . 2-5 (a)()()1121211212212122112+++⋅+=+++=CS R R R R CS R R R R R R CS R R R CS R R s U s U ; (b)()()1)(12221112212121++++=s C R C R C R s C C R R s U s U 2-6 (a)()()RCsRCs s U s U 112+=;(b)()()141112+⋅-=Cs RR R s U s U ; (c)()()⎪⎭⎫⎝⎛+-=141112Cs R R R s U s U . 2-7 设激磁磁通f f i K =φ恒定()()()⎥⎦⎤⎢⎣⎡++++=Θφφπφm e a a a a m a C C f R s J R f L Js L s C s U s 2602. 2-8()()()φφφπφm A m e a a a a m A C K s C C f R i s J R f L i Js iL C K s R s C +⎪⎭⎫⎝⎛++++=26023.2-9 ()2.0084.01019.23-=⨯--d d u i .2-10 (2-6) 2-11(2-7)2-12 前向传递函数)(s G 改变、反馈通道传递函数)(s H 改变可引起闭环传递函数)()(s R s C 改变。

(完整版)自动控制原理胡寿松第四版课后答案解析

(完整版)自动控制原理胡寿松第四版课后答案解析

1-3解:系统的工作原理为:当流出增加时,液位降低,浮球降落,控制器通过移动气动阀门的开度,流入量增加,液位开始上。

当流入量和流出量相等时达到平衡。

当流出量减小时,系统的变化过程则相反。

流出量希望液位图一1-4(1)非线性系统(2)非线性时变系统(3)线性定常系统(4)线性定常系统(5)线性时变系统(6)线性定常系统2 2-1 解:显然,弹簧力为 kx (t ) ,根据牛顿第二运动定律有:F (t ) − kx (t ) = m移项整理,得机械系统的微分方程为:d 2x (t ) dt 2m d x (t ) + kx (t )= F (t ) dt2对上述方程中各项求拉氏变换得:ms 2 X (s ) + kX (s ) =F (s )所以,机械系统的传递函数为:G (s ) = X (s ) =F (s )1ms 2+k2-2 解一:由图易得:i 1 (t )R 1 = u 1 (t ) − u 2 (t ) u c (t ) + i 1 (t )R 2 = u 2 (t ) du c (t )i 1 (t )= Cdt 由上述方程组可得无源网络的运动方程为:C ( R + R ) du 2 (t ) u (t ) = CRdu 1 (t ) u (t )1 2 dt+ 22 + 1 dt 对上述方程中各项求拉氏变换得:C (R 1 + R 2 )sU 2 (s ) + U 2 (s ) = CR 2 sU 1 (s ) + U 1 (s )所以,无源网络的传递函数为:G (s ) = U 2 (s ) =U 1 (s )1 + sCR 21 + sC (R 1 +R 2 ) 解二(运算阻抗法或复阻抗法):U (s ) 1 + R 2 1 + R Cs2 = Cs =2U (s ) R + 1 + R 1 + ( R + R )Cs 1 1 21Cs22-5 解:按照上述方程的顺序,从输出量开始绘制系统的结构图,其绘制结果如下图所示:依次消掉上述方程中的中间变量 X 1 , X 2 , X 3 , 可得系统传递函数为:C (s ) = R (s )G 1 (s )G 2 (s )G 3 (s )G 4(s )1 + G2 (s )G3 (s )G 6 (s ) + G 3 (s )G4 (s )G5 (s ) + G 1 (s )G 2 (s )G 3 (s )G 4(s )[G 7 (s ) − G 8 (s )]2-6 解:①将G1 (s) 与G1 (s) 组成的并联环节和G1 (s) 与G1 (s) 组成的并联环节简化,它们的等效传递函数和简化结构图为:G 12 (s) = G1(s) + G2(s)G 34 (s) = G3(s) −G4(s)②将G12 (s), G34 (s) 组成的反馈回路简化便求得系统的闭环传递函数为:2-7 解:C(s)=R(s)G12(s)1 + G12(s)G34(s)=G1(s) + G2(s)1 +[G1(s) + G2(s)][G3(s) −G4(s)]由上图可列方程组:[E(s)G1 (s) −C(s)H2(s)]G2(s) = C(s)R(s) −H1(s)C(s)G2(s)= E(s)联列上述两个方程,消掉E (s) ,得传递函数为:C(s)= R(s)G1(s)G2(s)1 + H1(s)G1(s) + H2(s)G2(s)联列上述两个方程,消掉C (s) ,得传递函数为:E(s)= R(s)1 + H2(s)G2(s)1 + H1(s)G1(s) + H2(s)G2(s)1 22 23 2-8 解:将①反馈回路简化,其等效传递函数和简化图为: 0.4G (s ) =2s + 1 =1 +0.4 * 0.5 2s + 15+ 3将②反馈回路简化,其等效传递函数和简化图为:1 G (s ) = s + 0.3s + 1 = 5s + 3 21 + 0.4 5s + 4.5s + 5.9s + 3.4(s + 0.3s + 1)(5s + 3)将③反馈回路简化便求得系统的闭环传递函数为:0.7 * (5s +3)Θo (s)= 5s 3 + 4.5s 2 + 5.9s + 3.4=3.5s + 2.1Θi (s) 1 +0.7 * Ks(5s +3)5s3+ (4.5 +3.5K )s 2+ (5.9 + 2.1K )s +3.42 5s3-3 解:该二阶系统的最大超调量:σp =e−ζπ/1−ζ2*100%当σp= 5% 时,可解上述方程得:ζ=0.69当σp= 5% 时,该二阶系统的过渡时间为:ts≈3ζwn所以,该二阶系统的无阻尼自振角频率w n 3-4 解:≈3ζts=30.69*2= 2.17由上图可得系统的传递函数:10 * (1 + Ks)C (s)= R(s)s(s + 2)1 +10 * (1 +Ks)s(s + 2)==10 * (Ks +1)s + 2 * (1 +5K )s +10所以w n =10 ,ζwn=1 +5K⑴若ζ= 0.5 时,K ≈0.116所以K ≈0.116时,ζ= 0.5⑵系统单位阶跃响应的超调量和过渡过程时间分别为:σ p = e−ζπ / 1−ζ2*100% = e−0.5*3.14 /1−0.52*100% ≈ 16.3%t s =3 ζw n= 3 0.5 *≈ 1.910⑶ 加入 (1 + Ks ) 相当于加入了一个比例微分环节,将使系统的阻尼比增大,可以有效地减小原系统的阶跃响应的超调量;同时由于微分的作用,使系统阶跃响应的速度(即变w 212p化率)提高了,从而缩短了过渡时间:总之,加入 (1 + Ks ) 后,系统响应性能得到改善。

自动控制原理第四版习题答案

自动控制原理第四版习题答案
02
鲁棒控制系统的设计目标是使系统在不确定性和干扰作用下 仍能保持其稳定性和性能。
03
鲁棒控制理论中常用的方法有鲁棒性分析、鲁棒控制器设计 等。
06
习题答案解析
第1章习题答案解析
1.1
简述自动控制系统的基本组成。答案:一个典型的自动控制系统由控制器、受控对象、执行器、传感 器等部分组成。
1.2
简述开环控制系统和闭环控制系统的区别。答案:开环控制系统是指系统中没有反馈环节的系统,输 出只受输入的控制,结构相对简单;而闭环控制系统则有反馈环节,输出对输入有影响,结构相对复 杂。
20世纪60年代末至70年代,主要研究多变量线 性时不变系统的最优控制问题,如线性二次型最 优控制、极点配置等。
智能控制理论
20世纪80年代至今,主要研究具有人工智能的 控制系统,如模糊逻辑控制、神经网络控制等。
02
控制系统稳定性分析
稳定性定义
01
内部稳定性
系统在平衡状态下受到扰动后,能 够回到平衡状态的性能。
步骤
时域分析法包括对系统进行数学建模、 系统稳定性分析、系统性能分析和系 统误差分析等步骤。
缺点
时域分析法需要对系统的数学模型进 行详细的分析,对于复杂系统的分析 可能会比较困难。
频域分析法
步骤
频域分析法包括对系统进行数学建模、系 统稳定性分析和系统性能分析等步骤。
定义
频域分析法是在频率域中对控制系 统进行分析的方法。它通过对系统 的频率响应进行分析,来描述系统
它通过分析系统的频率响 应,并根据频率响应的性 质来判断系统的稳定性。
如果频率响应曲线超出奈 奎斯特圆,则系统是不稳 定的。
根轨迹法
根轨迹法是一种图解方法,用 于分析线性时不变系统的稳定

高国燊《自动控制原理》(第4版)(名校考研真题 自动控制系统的时域分析)

高国燊《自动控制原理》(第4版)(名校考研真题 自动控制系统的时域分析)

7.已知控制系统如图 6-1 所示,该系统在单位斜坡函数输入作用下的稳态误差是( )。[重庆大学研]
A.0.2 B.0.4 C.0.02 D.0.04
【答案】A 【解析】由题意
图 6-1 ,
二、填空题 1.已知二阶系统的单位阶跃响应为 的自然频率是______,阻尼比是______。[南京邮电大学研] 【答案】2;0.6
G s
H s R s
1 4s 1

5.在斜坡函数的输入作用下,______型系统的稳态误差为零。[华南理工大学 2006 年 研]
【答案】Ⅱ型系统
三、问答题 1.二阶系统的性能指标有哪些?[厦门大学研] 答:上升时间,峰值时间,超调量,调节时间,振荡次数。
5 / 44
圣才电子书

答:设系统的开环传递函数为
,系统的误差系数有 3 种,即阶跃(位置)
误差系数
H(s),速度误差系数
,加速度误差系数
答:主导极点距离 s 平面的虚轴太近,说明主导极点的实部太小,由于极点的实部大 小直接影响系统的峰值时间,而且系统的峰值时间与极点实部的大小成反比,故峰值时间 太大,系统反应大为缓慢,阶跃响应表现不好,要想改善系统的性能,即增加系统的快速 性,可以采取超前校正或其他降低系统阻尼比的措施。
4.系统的误差系数有几种,分别是什么?[厦门大学研研]
S3
1
2
S2
3
10
S1
0
S0
1
0
第一列不全为正,由劳斯判据易得系统不稳定。
5.高阶系统的时域指标 % 随频域指标 M r 的增加( 研]
)。[华中科技大学 2009 年
A.保持不变
B.缓慢变化
C.增大

自动控制原理课后答案第四版_夏德钤(主要老师布置的作业) [兼容模式] [修复的]

自动控制原理课后答案第四版_夏德钤(主要老师布置的作业) [兼容模式] [修复的]

rs(t ) R1
rs( t ) 0
动态误差系数
C 0 lim e ( s ) 0
s0
C1 lim e ( s ) 0 .1
s0
∴给定稳态误差级数
essr (t ) C0 rs (t ) C1rs(t ) 0.1R1
作 业
3-6 系统的框图如图所示,试计算在单位斜坡输入下的稳态误 差的终值。如在输入端加入一比例微分环节,试证明当适当 选取α 值后,系统跟踪斜坡输入的稳态误差可以消除。
H2
R( s )
G2 X 4 G3
X 3 H1 X5
1 X6 1
C ( s)
G4
作 业
H2
R( s )
1 X 1 1 X 2 G1
H1
G2 X 4 G3
X 3 H1 X5
1 X6 1
C ( s)
G4
两条前向通道: P1 G1G2G3 三个回环: L1 G2 H1
P2 G4
解: 闭环传递函数
( s ) G( s ) K 1 G( s ) 0.1s 2 1.1s 1 K
特征方程: 0.1s 2 1.1s 1 K 0
这是一个二阶系统,只要特征方程各系数均大于0, 系统就稳定。
即要求: 1 K 0
K 1
作 业
3-16 根据下列单位反馈系统的开环传递函数,确定使系统 稳定的K值范围。
若输入信号如下,求系统的给定稳态误差级数。
(2) r (t ) R0 R1t
解: 误差传递函数
s(0.1s 1) 0.1s 2 s 1 e ( s) s(0.1s 1) 10 0.1s 2 s 10 1 G( s )

自动控制原理胡寿松第四版课后题答案

自动控制原理胡寿松第四版课后题答案
整理得:
C1C 2 R
d 2u0 du 0 u 0 d 2ui ui du C C C C R + ( + 2 ) + = + + 2C1 i 2 1 1 2 2 2 dt R R dt dt dt
2-5
设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式的模态。
试通过结构图等效变换求系统传递函数c14胡寿松自动控制原理习题解答第二章15胡寿松自动控制原理习题解答第二章16胡寿松自动控制原理习题解答第二章17胡寿松自动控制原理习题解答第二章18试简化图266中的系统结构图并求传递函数c18胡寿松自动控制原理习题解答第二章进一步化简得19胡寿松自动控制原理习题解答第二章再进一步化简得
2-7 设弹簧特性由下式描述:
F = 12.65 y 1.1
其中,是弹簧力;是变形位移。若弹簧在变形位移附近作微小变化,试推导的线性化方程。
解: 设正常工作点为 A,这时 F0 = 12.65 y 0 在该点附近用泰勒级数展开近似为:
1.1
df ( x) y = f ( x0 ) + ( x − x0 ) dx x0
整理上式得
&0 + f1 K 2 x & 0 + K1 f1 x & 0 + K1 f 2 x & 0 + K1 K 2 x0 f1 f 2 & x &i + f1 K 2 x &i + K1 f 2 x & i + K 1 K 2 xi = f1 f 2 & x
对上式去拉氏变换得
3
胡寿松自动控制原理习题解答第二章

自动控制原理胡寿松第四版课后题答案

自动控制原理胡寿松第四版课后题答案

ui − u0 = uC
iC = C
du C dt
i R1 =
uC R1
du d (u i − u 0 ) u i − u 0 u u 0 = (iC + i R1 ) R2 = C C + C R2 = C + R2 R1 dt R1 dt
整理得:
CR2
胡寿松自动控制原理习题解答第二章
2—1
设水位自动控制系统的原理方案如图 1—18 所示,其中 Q1 为水箱的进水流量,
Q2 为水箱的用水流量,
H 为水箱中实际水面高度。假定水箱横截面积为 F,希望水面高度 为 H 0 ,与 H 0 对应的水流量为 Q0 ,试列出
水箱的微分方程。

当 Q1 = Q2 = Q0 时, H = H 0 ;当 Q1 ≠ Q2 时,水面高度 H 将发生变化,其变化率与流量差 Q1 − Q2 成
正比,此时有
F
d (H − H 0 ) = (Q1 − Q0 ) − (Q2 − Q0 ) dt
于是得水箱的微分方程为
F
dH = Q1 − Q2 dt
2—2 设机械系统如图 2—57 所示,其中 xi 为输入位移, x0 为输出位移。试分别列写各系统的微分方程式
及传递函数。
图 2—57 机械系统 解 ①图 2—57(a):由牛顿第二运动定律,在不计重力时,可得
[f
1
= f1 f 2 s + ( f1 K 2 + K1 f 2 ) s + K1 K 2 X i ( s)
2
[
f 2 s 2 + ( f1 K 2 + K1 f1 + K1 f 2 ) s + K1 K 2 X 0 ( s)

自动控制原理胡寿松第四版课后

自动控制原理胡寿松第四版课后
Edited by Foxit Reader Copyright(C) by Foxit Software Company,2005-2008 胡寿松自动控制F原o理r E习v题al解ua答ti第on二O章nly.
2—1 设水位自动控制系统的原理方案如图 1—18 所示,其中 Q1 为水箱的进水流量, Q2 为水箱的用水流量,
1
+
1 C2
s
(T2
s
+
1)
R1C2 s + (T1s + 1)(T2 s + 1)
(b)以 K1 和 f1 之间取辅助点 A,并设 A 点位移为 x ,方向朝下;根据力的平衡原则,可列出如下原始方程:
K 2 (xi − x0 ) + f 2 (x&i − x&0 ) = f1 (x&0 − x&) (1)
[ ] f1 f 2 s 2 + ( f1K 2 + K1 f1 + K1 f 2 )s + K1K 2 X 0 (s) [ ] = f1 f 2 s 2 + ( f1K 2 + K1 f 2 )s + K1K 2 X i (s)
所以:
f1 f2 s2 + ( f1 + f2 )s +1
X 0 (s) =
K
=
1
K2
( f1 s + 1)( f 2 s + 1) + f1
K 1
K2
K2
所以图 2-58(a)的电网络与(b)的机械系统有相同的数学模型。 2—4 试分别列写图 2-59 中个无源网络的微分方程式。
解:(a) :列写电压平衡方程:

自动控制原理第四版习题答案

自动控制原理第四版习题答案
(b) R 2C C u ( t ) + ( RC + 2 RC )u ( t ) + u ( t ) 1 2 &&o 2 1 &o o
&& & = RC 1 C 2 u i ( t ) + 2 RC 1 u i ( t ) + u i ( t )
(2-5题~2-10题) 题 题 2-5(1) 运动模态: 0.5 t 运动模态: e (2) 运动模态: 0.5 t 运动模态: e
sin
3 2
t
x( t ) = t - 2 + 2e 0.5 t x ( t ) = 2 3 3 e 0.5 t sin 23 t
x ( t ) = 1 ( 1 + t )e t
(3) 运动模态: (1+t)e-t 运动模态: 2-6 2-7 2-8
Q =
F = 12 .11 y ed = E do (sin α o )( α α o )
0.0125 s + 1.25
(2) Φ ( s ) =
ξ = 0.6 ωn = 2 r = 1.0066 ω n = 1
t r = 1.45 s
0.1 5 50 ( s + 4 ) (3) Φ ( s ) = + s( 3 s + 1 ) s2 s 2 + 16 σ % = 9.478% t p = 1.96 s t s = 2.917 s
dc(t ) k (t ) = = δ(t ) + 2e 2t e t dt
k2 2 Qo
P
s 2 + 4s + 2 2-9 Φ (s) = (s + 1)(s + 2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运动模态 e−t / 2 sin
3 2
t
所以: x(t) =
2 3
e
−t
/
2
sin
3 2
t
(3) &x&(t) + 2x&(t) + x(t) = 1(t)。
解:对上式两边去拉氏变换得:
(s 2
+ 2s + 1) X (s) = 1 → X (s) = s
s(s 2
1 + 2s + 1)
=
1 s(s + 1)2
6
胡寿松自动控制原理习题解答第二章
在该点附近用泰勒级数展开近似为:
y
=
f
(
x0
)
+
df (x) dx
x0
(
x

x0
)
即 ed − Ed0 cosα 0 = K s (α − α 0 )
其中 K s
=
ded dα
α =α
= −Ed 0 sinα 0
2-9 若某系统在阶跃输入r(t)=1(t)时,零初始条件下的输出响应 c(t) = 1 − e−2t + e−t ,试求系统的传递函数和脉冲
K1 (xi − x) + f (x&i − x&0 ) = K 2 x0
移项整理得系统微分方程
f
dx0 dt
+ (K1
+ K2 )x0
=
f
dxi dt
+ K1xi
对上式进行拉氏变换,并注意到运动由静止开始,即
xi (0) = x0 (0) = 0
则系统传递函数为
X 0 (s) = fs + K1 X i (s) fs + (K1 + K 2 )
K 2 (xi − x0 ) + f 2 (x&i − x&0 ) = f1 (x&0 − x&) (1)
K1x = f1 (x&0 − x&) (2)
所以 K 2 (xi − x0 ) + f 2 (x&i − x&0 ) = K1x (3)
对(3)式两边取微分得
K 2 (x&i − x&0 ) + f 2 (&x&i − &x&0 ) = K1x&
K
=
1
K2
( f1 s + 1)( f 2 s + 1) + f1
K 1
K2
K2
所以图 2-58(a)的电网络与(b)的机械系统有相同的数学模型。 2—4 试分别列写图 2-59 中个无源网络的微分方程式。
解:(a) :列写电压平衡方程:
ui − u0 = uC
iC
=C
duC dt
iR1
=
uC R1
6 dc(t) + 10c(t) = 20e(t) dt
20 db(t) + 5b(t) = 10c(t) dt
且初始条件均为零,试求传递函数 C(s) / R(s) 及 E(s) / R(s)
解:系统结构图及微分方程得:
G(s) = 20
H (s) = 10
6s + 10
20s + 5
20
C(s) = 10G(s) =
d 2ui dt 2
+ ui R
+
2C1
dui dt
2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式的模态。
(1) 2x&(t) + x(t) = t;
解:对上式两边去拉氏变换得:
(2s+1)X(s)=1/s2→ X (s) =
1
= 1 −1+ 4
s 2 (2s + 1) s 2 s 2s + 1
正比,此时有
F
d(H − dt
H0)
=
(Q1

Q0 )

(Q2

Q0 )
于是得水箱的微分方程为
F
dH dt
= Q1 − Q2
2—2 设机械系统如图 2—57 所示,其中 xi 为输入位移, x0 为输出位移。试分别列写各系统的微分方程式
及传递函数。
图 2—57 机械系统 解 ①图 2—57(a):由牛顿第二运动定律,在不计重力时,可得
方程。 解:
设正常工作点为 A,这时 Q0 = K P0
在该点附近用泰勒级数展开近似为:
y
=
f
(
x0
)
+
df (x) dx
x0
(
x

x0
)
即 Q − Q0 = K1 (P − P0 )
其中 K1
= dQ dP P=P0
=
1K 2
1 P0
2-7 设弹簧特性由下式描述:
F = 12.65 y1.1
其中,是弹簧力;是变形位移。若弹簧在变形位移附近作微小变化,试推导的线性化方程。 解:
设正常工作点为 A,这时 F0
=
12.65
y1.1 0
在该点附近用泰勒级数展开近似为:
y
=
f
(
x0
)
+
df (x) dx
x0
(
x

x0
)
即 F − F0 = K1 ( y − y0 )
其中 K1
=
dF dy
y=
(4)
将(4)式代入(1)式中得
K1K 2 (xi − x0 ) + K1 f 2 (x&i − x&0 ) = K1 f1x&0 − f1K 2 (x&i − x&0 ) − f1 f 2 (&x&i − &x&0 )
整理上式得
f1 f 2 &x&0 + f1K 2 x&0 + K1 f1x&0 + K1 f 2 x&0 + K1K 2 x0 = f1 f 2 &x&i + f1K 2 x&i + K1 f 2 x&i + K1K 2 xi
=
1 C2s
(R2C2s + 1) =
1 C2
s
(T2
s
+ 1)
所以: U 0 (s) = Z 2 =
1 C2
s
(T2
s
+
1)
=
(T1s + 1)(T2 s + 1)
Ui (s)
Z1 + Z2
R1 T1s +
1
+
1 C2
s
(T2
s
+
1)
R1C2 s + (T1s + 1)(T2 s + 1)
(b)以 K1 和 f1 之间取辅助点 A,并设 A 点位移为 x ,方向朝下;根据力的平衡原则,可列出如下原始方程:
u0
= (iC
+ iR1 )R2
=
C
duC dt
+
uC R1
R2
=
C
d
(ui −
dt
u0
)
+
ui
− u0 R1
R2
整理得:
CR2
du0 dt
+ C
R2 R1
+ 1u0
= CR2
dui dt
+C
R2 R1
ui
(b) :列写电压平衡方程:
ui − u0 = uC1 (1)
iC1
=
C1
duC1 dt
= C2
du0 dt

C1C2
R
d 2uC1 dt 2
即: ui R
− u0 R
+ 2C1
dui dt
− 2C1
du0 dt
= C2
du0 dt

C1C2
R
d 2ui dt 2
+
C1C2
R
d 2u0 dt 2
整理得:
C1C2
R
d 2u0 dt 2
+
(C2
+
2C1 )
du0 dt
+ u0 R
=
C1C2 R
响应。 解:对输出响应取拉氏变换的:
C(s) = 1 − 1 + 1 = s 2 + 4s + 2 因为: C(s) = Φ(s)R(s) = 1 Φ(s)
s s + 2 s + 1 s(s + 1)(s + 2)
s
所以系统的传递函数为: Φ(s) = s 2 + 4s + 2 = 1 +
s
=1− 1 + 2
1
f1 (x&i − x&0 ) − f 2 x&0 = m&x&0
整理得
m d 2 x0 dt 2
+ ( f1
+
f
2
)
dx0 dt
=
f1
dxi dt
将上式进行拉氏变换,并注意到运动由静止开始,即初始条件全部为零,可得
[ ] ms 2 + ( f1 + f2 )s X 0 (s) = f1sX i (s)
相关文档
最新文档