【解析版】斑鸠店镇中学2016届九年级上第一次月考数学试卷

合集下载

2016-2017年人教版九年级上册数学第一次月考试卷及答案

2016-2017年人教版九年级上册数学第一次月考试卷及答案

2016年九年级上册第一次月考试卷满分100分,时间60分钟一、选择题(每题3分,共24分)1.已知关于的一元二次方程有两个相等的实数根,则的值是()A.4 B.-4 C.1 D.-12.如果,那么代数式的值是( )A、6B、8C、-6D、-83.如图,抛物线的对称轴是直线x=1,且经过点P(3,0),则的值为()A、0B、-1C、 1D、 24.已知二次函数的图象如图所示,则这个二次函数的表达式为()A.y=x2﹣2x+3 B. y=x2﹣2x﹣3 C. y=x2+2x﹣3 D. y=x2+2x+35.用配方法解方程,下列配方结果正确的是().A. B. C. D.6.如图,在一次函数的图象上取点P,作PA⊥轴于A,PB⊥轴于B,且长方形OAPB的面积为6,则这样的点P个数共有()A.4 B.3 C.2 D.17.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()8.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D 到直线PA的距离为y,则y关于x的函数图象大致是二、填空题(每题3分,共21分)9.要组织一场足球比赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛?设比赛组织者应邀请x支球队参赛,根据题意列出的方程是________________________________.10.如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴。

给出四个结论:①;②;③;④,其中正确结论的序号是___________11.已知方程是一元二次方程,则m= ;12.已知二次函数的图像过点A(1,2),B(3,2),C(5,7).若点M(-2,),N(-1,),K(8,)也在二次函数的图像上,则,,的从小到大的关系是.13.已知关于x的方程的一个根是2,则m=,另一根为.14.阅读材料:已知,是方程的两实数根,则的值为______ .15.若二次函数的图象向左平移2个单位长度后,得到函数的图象,则h=三、解答题(共55分)16.当满足条件时,求出方程的根17.关于x的方程x2-2x+k-1=0有两个不等的实数根.(1)求k的取值范围;(2)若k+1是方程x2-2x+k-1=4的一个解,求k的值.18.解下列方程(1)(2x-1)2-25=0;(2)y2=2y+3;(3)x(x+3)=2-x .19.先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.20.已知关于x的一元二次方程。

【最新】2016年初三数学上册第一次月考试卷含答案人教版

【最新】2016年初三数学上册第一次月考试卷含答案人教版

2017届九年级上学期第一次月考数学试卷一、单选题(共12小题)1.下列各式是一元二次方程的是()A.B.C.D.2.已知关于的一元二次方程的一个根是2,则的值是()A.2B.-2C.1D.﹣13.用配方法解下列方程,配方正确的是()A.2y2﹣4y﹣4=0可化为(y﹣1)2=4B.x2﹣2x﹣9=0可化为(x﹣1)2=8C.x2+8x﹣9=0可化为(x+4)2=16D.x2﹣4x=0可化为(x﹣2)2=44.关于x的一元二次方程(m﹣2)x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1B.2C.1或2D.05.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2C.y=﹣2x2﹣2D.y=2(x﹣2)26.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4D.y=2(x﹣3)2+47.已知二次函数,当取任意实数时,都有,则的取值范围是()A.B.C.D.8.若抛物线y=(x﹣a)2+(a﹣1)的顶点在第一象限,则a的取值范围为()A.a>1B.a>0C.a>﹣1D.﹣1<a<09.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.10.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y211.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于()A.8B.14C.8或14D.﹣8或﹣1412.军事演习时发射一颗炮弹,经xs后炮弹的高度为ym,且时间x(s)与高度y(m)之间的函数关系为y=ax2+bx(a≠0),若炮弹在第8s与第14s时的高度相等,则在下列哪一个时间的高度是最高的()A.第9s B.第11s C.第13s D.第15s二、填空题(共6小题)13.已知函数,当m= 时,它是二次函数.14.请你写一个一元二次方程,使该方程有一根为0,则这个方程可以是.15.如图所示,在同一平面直角坐标系中,作出①y=﹣3x2,②y=﹣,③y=﹣x2的图象,则从里到外的三条抛物线对应的函数依次是(填序号)16.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是.17.已知二次函数y=﹣x2+4x﹣2与x轴交于A,B两点,与y轴交于点C,则△ABC的面积为.18.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为 .三、解答题(共6小题)19.(1)(2)(3)(x+8)(x+1)=﹣12(4)(2x﹣3)2=5(2x﹣3)20.已知方程的两根分别是,,求的值。

【解析版】斑鸠店镇中学届九级上第一次月考数学试卷

【解析版】斑鸠店镇中学届九级上第一次月考数学试卷

2015-2016学年山东省泰安市东平县斑鸠店镇中学九年级(上)第一次月考数学试卷一、选择题1.下列命题:①相似三角形一定不是全等三角形;②相似三角形对应中线的比等于对应角平分线的比;③边数相同,对应角相等的两个多边形相似;④O是△ABC内任意一点,OA、OB、OC的中点连成的三角形△A′B′C′∽△ABC.其中正确的个数是()A.0个B.1个C.2个D.3个2.sin30°的值为()A.B.C.D.3.两个相似三角形的面积比是9:16,则这两个三角形的相似比是()A.9:16 B.3:4 C.9:4D.3:164.在直角三角形中,各边的长度都扩大3倍,则锐角A的三角函数值()A.也扩大3倍B.缩小为原来的C.都不变D.有的扩大,有的缩小5.已知△ABC,以点A为位似中心,作出△ADE,使△ADE是△ABC放大2倍的图形,这样的图形可以作出个()A.1个B.2个C.4个D.无数个6.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是()A.B.C.D.7.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A .B .C .D .8.如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为()A.1:3 B.2:3 C.1:4 D.2:59.在△ABC中,BC=5,CA=45,AB=46,另一个与它相似的三角形的最短边是15,则最长边是()A.138 B .C.135 D.不能确定10.小明沿着坡度为1:2的山坡向上走了1 000m,则他升高了()A.200m B.500m C.500m D.1000m11.△ABC中,∠C=90°,sinA=,则tanA的值是()A .B .C .D .12.在Rt△ABC中,∠C=90°,已知a和A,则下列关系中正确的是()A.c=asinA B.c=C.c=acosA D.c=13.身高相等的三名同学甲,乙,丙参加风筝比赛,三人放出风筝的线长,线与地面夹角如下表(假设风筝线是拉直的),则三人所()A.甲的最高B.丙的最高C.乙的最低 D.丙的最低14.D为△ABC的AB边上一点,若△ACD∽△ABC,应满足条件有下列三种可能:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=AB•AD,其中正确的个数是()A.0个B.1个C.2个D.3个15.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A.5m B.6m C.7m D.8m16.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()A.a B.C.D. a17.如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=()A.B.C.D.18.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:219.如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A.3 B.4 C.5 D.620.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题21.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EFO缩小,则点E的对应点E′的坐标是.22.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为m.23.将一副三角尺如图所示叠放在一起,则的值是.24.如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为海里(取,结果精确到0.1海里).三、解答题25.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.26.如图,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.27.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.28.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)29.如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.2015-2016学年山东省泰安市东平县斑鸠店镇中学九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题1.下列命题:①相似三角形一定不是全等三角形;②相似三角形对应中线的比等于对应角平分线的比;③边数相同,对应角相等的两个多边形相似;④O是△ABC内任意一点,OA、OB、OC的中点连成的三角形△A′B′C′∽△ABC.其中正确的个数是()A.0个B.1个C.2个D.3个考点:命题与定理.分析:根据全等三角形的定义:全等三角形就是能重合的三角形,形状相同,大小相同;相似三角形的定义:相似三角形是形状相同的三角形,大小不一定相等;相似多边形的定义:相似多边形就是形状相同的多边形,根据这些定义逐一分析解答即可.解答:解:①、相似三角形是形状相同的三角形,大小不一定相同,全等三角形就是能重合的三角形,形状相同,大小相同,因而全等三角形是特殊的相似三角形,此选项错误;②、相似三角形对应中线的比、对应角平分线的比都等于相似比,此选项正确;③、边数相同,对应角分别相等的两个矩形不一定相似,此选项错误;④、根据三角形的中位线得出三条边对应的比值为,两个三角形相似,此选项正确.故正确的命题是:②④共2个.故选:C.点评:此题考查命题与定理,掌握三角形全等与相似之间的联系,相似的判定,中位线定理是解决问题的关键.2.sin30°的值为()A.B.C.D.考点:特殊角的三角函数值.分析:直接根据特殊角的三角函数值进行计算即可.解答:解:sin30°=.故选C.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.3.两个相似三角形的面积比是9:16,则这两个三角形的相似比是()A.9:16 B.3:4 C.9:4 D.3:16考点:相似三角形的性质.分析:因为相似三角形的面积比等于相似比的平方,所以这两个三角形的相似比是3:4.解答:解:∵两个相似三角形的面积比为9:16,∴它们对应的相似比是3:4.故选B.点评:此题考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.4.在直角三角形中,各边的长度都扩大3倍,则锐角A的三角函数值()A.也扩大3倍B.缩小为原来的C.都不变D.有的扩大,有的缩小考点:锐角三角函数的增减性.分析:理解锐角三角函数的概念:锐角三角函数值即为直角三角形中边的比值.解答:解:根据锐角三角函数的概念,可知在直角三角形中,各边的长度都扩大3倍,锐角A的三角函数值不变.故选C.点评:理解锐角三角函数的概念,明白三角函数值与边的长度无关.5.已知△ABC,以点A为位似中心,作出△ADE,使△ADE是△ABC放大2倍的图形,这样的图形可以作出个()A.1个B.2个C.4个D.无数个考点:位似变换.分析:根据题意作图,注意有两种作法,在位似中心的两侧或同侧.所以这样的图形可以作出2个.解答:解:如图:∴这样的图形可以作出2个.故选B.点评:本题考查了位似的相关知识,位似是相似的特殊形式,此题考查了学生对位似图形的认识.注意有两种作法,在位似中心的两侧或同侧.6.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是()A.B.C.D.考点:相似三角形的判定与性质.分析:根据DE∥BC,证明△ADE∽△ABC,然后根据对应边成比例求得BC的长度.解答:解:∵DE∥BC,∴△ADE∽△ABC,则=,∵DE=1,AD=2,DB=3,∴AB=AD+DB=5,∴BC==.故选C.点评:本题考查了相似三角形的判定和性质,难度一般,解答本题的关键是根据平行证明△ADE∽△ABC.7.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.考点:勾股定理;锐角三角函数的定义.专题:压轴题;网格型.分析:先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB的长,再求出BD的长,即可求出余弦值.解答:解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.点评:本题考查了锐角三角函数的定义以及勾股定理的知识,此题比较简单,关键是找出与角B有关的直角三角形.8.如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为()A.1:3 B.2:3 C.1:4 D.2:5考点:相似三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理.分析:先利用SAS证明△ADE≌△CFE(SAS),得出S△ADE=S△CFE,再由DE为中位线,判断△ADE∽△ABC,且相似比为1:2,利用相似三角形的面积比等于相似比,得到S△ADE:S△ABC=1:4,则S△ADE:S四边形BCED=1:3,进而得出S△CEF:S四=1:3.边形BCED解答:解:∵DE为△ABC的中位线,∴AE=CE.在△ADE与△CFE中,,∴△ADE≌△CFE(SAS),∴S△ADE=S△CFE.∵DE为△ABC的中位线,∴△ADE∽△ABC,且相似比为1:2,∴S△ADE:S△ABC=1:4,∵S△ADE+S四边形BCED=S△ABC,∴S△ADE:S四边形BCED=1:3,∴S△CEF:S四边形BCED=1:3.故选:A.点评:本题考查了全等三角形、相似三角形的判定与性质,三角形中位线定理.关键是利用中位线判断相似三角形及相似比.9.在△ABC中,BC=5,CA=45,AB=46,另一个与它相似的三角形的最短边是15,则最长边是()A.138 B.C.135 D.不能确定考点:相似三角形的性质.分析:首先设最长边是x,由在△ABC中,BC=5,CA=45,AB=46,另一个与它相似的三角形的最短边是15,根据相似三角形的对应边成比例,即可求得答案.解答:解:设最长边是x,∵在△ABC中,BC=5,CA=45,AB=46,另一个与它相似的三角形的最短边是15,∴,解得:x=138.∴最长边是138.故选A.点评:此题考查了相似三角形的性质.注意掌握相似三角形的对应关系是关键.10.小明沿着坡度为1:2的山坡向上走了1 000m,则他升高了()A.200m B.500m C.500m D.1000m考点:解直角三角形的应用-坡度坡角问题.分析:根据题意作出图形,然后根据坡度为1:2,设BC=x,AC=2x,根据AB=1000m,利用勾股定理求解.解答:解:∵坡度为1:2,∴设BC=x,AC=2x,∴AB==x,即x=1000,解得:x=200.故选A.点评:本题考查了解直角三角形的应用,解答本题的关键是根据坡度构造直角三角形,利用勾股定理求解.11.△ABC中,∠C=90°,sinA=,则tanA的值是()A.B.C.D.考点:同角三角函数的关系.专题:计算题.分析:根据正弦的定义得到sinA==,则可设BC=4x,AB=5x,根据勾股定理计算易计算AC,然后根据正切的定义即可得到tanA的值.解答:解:如图,∵sinA==,∴设BC=4x,AB=5x,∴AC==3x,∴tanA===.故选A.点评:本题考查了三角函数的定义:在直角三角形中,一个锐角的正弦值等于它的对边与斜边的比,它的正切值等于它的对边与它的邻边的比.也考查了勾股定理.12.在Rt△ABC中,∠C=90°,已知a和A,则下列关系中正确的是()A.c=asinA B.c=C.c=acosA D.c=考点:解直角三角形.专题:计算题.分析:正确计算sinA、cosA即可求得a、c的关系,即可解题.解答:解:直角三角形中,sinA=,cosA=,∴可以求得c=,故B选项正确,故选 B.点评:本题考查了直角三角形中三角函数值的计算,正确计算∠A的正弦值是解题的关键.13.身高相等的三名同学甲,乙,丙参加风筝比赛,三人放出风筝的线长,线与地面夹角如下表(假设风筝线是拉直的),则三人所放的风筝中()D.丙的最低考点:解直角三角形的应用.专题:计算题;压轴题.分析:利用所给角的正弦函数可得到垂直高度,比较即可.解答:解:甲所放风筝的高度为100sin40°;乙所放风筝的高度为100si n45°≈70米;丙所放风筝的高度为90sin60°≈78米.而 100sin40°<100sin45°,因此可知丙的风筝飞得最高,乙次之,而甲最低.故选B.点评:本题考查解直角三角形在实际生活中的应用.14.D为△ABC的AB边上一点,若△ACD∽△ABC,应满足条件有下列三种可能:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=AB•AD,其中正确的个数是()A.0个B.1个C.2个D.3个考点:相似三角形的性质.分析:首先根据题意画出图形,然后由△ACD∽△ABC,根据相似三角形的对应边成比例,对应角相等,即可证得:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=AB•AD正确.解答:解:∵△ACD∽△ABC,∴∠ACD=∠B,∠ADC=∠ACB,,∴AC2=AB•AD.故①②③正确.故选D.点评:此题考查了相似三角形的性质.注意相似三角形的对应边成比例,对应角相等定理的应用是解此题的关键.15.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A.5m B.6m C.7m D.8m考点:解直角三角形的应用-坡度坡角问题.专题:压轴题.分析:利用坡度先求得垂直距离,根据勾股定理求得坡面距离.解答:解:∵水平距离为4m.∴铅直高度为0.75×4=3m.根据勾股定理知:坡面相邻两株数间的坡面距离为5m.故选A.点评:本题主要考查直角三角形问题.利用坡度tanα=0.75=求解.16.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()A.a B.C.D. a考点:相似三角形的判定与性质.专题:压轴题.分析:首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为a,进而求出△ACD的面积.解答:解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为a,∴△ACD的面积为a,故选C.点评:本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.17.如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=()A.B.C.D.考点:相似三角形的判定与性质;锐角三角函数的定义.分析:首先证明△ABD∽△ACD,然后根据BD:CD=3:2,设BD=3x,CD=2x,利用对应边成比例表示出AD的值,继而可得出tanB的值.解答:解:在Rt△ABC中,∵AD⊥BC于点D,∴∠ADB=∠CDA,∵∠B+∠BAD=90°,∠BAD+∠DAC=90°,∴∠B=∠DAC,∴△ABD∽△CAD,∴=,∵BD:CD=3:2,设BD=3x,CD=2x,∴AD==x,则tanB===.故选D.点评:本题考查了相似三角形的判定与性质及锐角三角函数的定义,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应边成比例求边长.18.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2考点:相似三角形的判定与性质;平行四边形的性质.分析:首先证明△DFE∽△BAE,然后利用对应边成比例,E为OD的中点,求出DF:AB的值,又知AB=DC,即可得出DF:FC的值.解答:解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.19.如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A.3 B.4 C.5 D.6考点:菱形的性质;相似三角形的判定与性质.分析:根据菱形的对角线平分一组对角可得∠1=∠2,然后求出△AFN和△AEM相似,再利用相似三角形对应边成比例列出求解即可.解答:解:在菱形ABCD中,∠1=∠2,又∵ME⊥AD,NF⊥AB,∴∠AEM=∠AFN=90°,∴△AFN∽△AEM,∴=,即=,解得AN=4.故选B.点评:本题考查了菱形的对角线平分一组对角的性质,相似三角形的判定与性质,关键在于得到△AFN和△AEM相似.20.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个考点:相似三角形的判定与性质;等边三角形的判定;直角三角形斜边上的中线.专题:压轴题.分析:根据直角三角形斜边上的中线等于斜边的一半可判断①正确;先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②正确;先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③正确;当∠ABC=45°时,∠BCN=45°,由P为BC边的中点,得出BN=PB=PC,判断④正确.解答:解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,正确.故选D.点评:本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.二、填空题21.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EF O缩小,则点E的对应点E′的坐标是(﹣2,1)或(2,﹣1).考点:位似变换;坐标与图形性质.分析:若位似比是k,则原图形上的点(x,y),经过位似变化得到的对应点的坐标是(kx,ky)或(﹣kx,﹣ky).解答:解:∵点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EFO缩小,∴点E的对应点E′的坐标是:(﹣2,1)或(2,﹣1).故答案为:(﹣2,1)或(2,﹣1).点评:此题考查了位似图形的性质,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.22.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为 4 m.考点:平行投影;相似三角形的应用.专题:计算题.分析:根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得=;即DC2=ED•FD,代入数据可得答案.解答:解:如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°,∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有=;即DC2=ED•FD,代入数据可得DC2=16,DC=4;故答案为:4.点评:本题通过投影的知识结合三角形的相似,求解高的大小;是平行投影性质在实际生活中的应用.23.将一副三角尺如图所示叠放在一起,则的值是.考点:相似三角形的判定与性质.分析:由∠BAC=∠ACD=90°,可得AB∥CD,即可证得△ABE∽△DCE,然后由相似三角形的对应边成比例,可得:,然后利用三角函数,用AC表示出AB与CD,即可求得答案.解答:解:∵∠BAC=∠ACD=90°,∴AB∥CD,∴△ABE∽△DCE,∴,∵在Rt△ACB中∠B=45°,∴AB=AC,∵在Rt△ACD中,∠D=30°,∴CD==AC,∴==.故答案为:.点评:此题考查了相似三角形的判定与性质与三角函数的性质.此题难度不大,注意掌握数形结合思想的应用.24.如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为67.5 海里(取,结果精确到0.1海里).考点:解直角三角形的应用-方向角问题.专题:应用题;压轴题.分析:过点D作DE⊥AB于点E,设DE=x,在Rt△CDE中表示出CE,在Rt△BDE中表示出BE,再由CB=25海里,可得出关于x的方程,解出后即可计算AB的长度.解答:解:∵∠DBA=∠DAB=45°,∴△DAB是等腰直角三角形,过点D作DE⊥AB于点E,则DE=AB,设DE=x,则AB=2x,在Rt△CDE中,∠DCE=30°,则CE=DE=x,在Rt△BDE中,∠DAE=45°,则DE=BE=x,由题意得,CB=CE﹣BE=x﹣x=25,解得:x=,故AB=25(+1)=67.5(海里).故答案为:67.5.点评:本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度,难度一般.三、解答题25.(8分)(2013•宁夏)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.考点:作图-位似变换;作图-旋转变换.专题:压轴题.分析:(1)由A(﹣1,2),B(﹣3,4)C(﹣2,6),可画出△ABC,然后由旋转的性质,即可画出△A1B1C1;(2)由位似三角形的性质,即可画出△A2B2C2.解答:解:如图:(1)△A1B1C1即为所求;(2)△A2B2C2即为所求.点评:此题考查了位似变换的性质与旋转的性质.此题难度不大,注意掌握数形结合思想的应用.26.如图,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.考点:解直角三角形的应用-坡度坡角问题.专题:计算题.分析:如果延长BC交AD于E点,则CE⊥AD,要求BC的高度,就要知道BE和CE的高度,就要先求出AE的长度.直角三角形ACE中有坡比,由AC的长,那么就可求出AE的长,然后求出BE、CE的高度,BC=BE﹣CE,即可得出结果.解答:解:延长BC交AD于E点,则CE⊥AD.在Rt△AEC中,AC=10,由坡比为1:可知:∠CAE=30°,∴CE=AC•sin30°=10×=5,AE=AC•cos30°=10×=.在Rt△ABE中,BE===11.∵BE=BC+CE,∴BC=BE﹣CE=11﹣5=6(米).答:旗杆的高度为6米.点评:两个直角三角形有公共的直角边,先求出公共边的解决此类题目的基本出发点.27.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.专题:压轴题.分析:(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC;(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在Rt△ADE中,利用勾股定理求出线段AE的长度.解答:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∴△ADF∽△DEC.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=8.由(1)知△ADF∽△DEC,∴,∴DE===12.在Rt△ADE中,由勾股定理得:AE===6.点评:本题主要考查了相似三角形的判定与性质、平行四边形的性质和勾股定理三个知识点.题目难度不大,注意仔细分析题意,认真计算,避免出错.28.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)考点:解直角三角形的应用.专题:压轴题.分析:(1)过A作BC的垂线AD.在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在Rt△ACD中,求出AC的长.(2)通过解直角三角形,可求出BD、CD的长,进而可求出BC、PC的长.然后判断PC的值是否大于2米即可.解答:解:(1)如图,作AD⊥BC于点D.Rt△ABD中,AD=ABsin45°=4×=2.在Rt△ACD中,∵∠ACD=30°,∴AC=2AD=4≈5.6.即新传送带AC的长度约为5.6米;(2)结论:货物MNQP应挪走.解:在Rt△ABD中,BD=ABcos45°=4×=2.在Rt△ACD中,CD=ACcos30°=2.∴CB=CD﹣BD=2﹣2=2(﹣)≈2.1.∵PC=PB﹣CB≈4﹣2.1=1.9<2,∴货物MNQP应挪走.点评:应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.在两个直角三角形有公共直角边时,先求出公共边的长是解答此类题的基本思路.29.如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.考点:相似三角形的判定与性质;菱形的判定.专题:证明题;压轴题.分析:(1)利用相似三角形的判定得出△ABE∽△ACB,进而求出答案;(2)首先证明AD=BF,进而得出AD∥BF,即可得出四边形ABFD是平行四边形,再利用AD=AB,得出四边形ABFD是菱形.解答:证明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=,又∵AB=AD,∴=;(2)设AE=x,∵AE:EC=1:2,∴EC=2x,由(1)得:AB2=AE•AC,即AB2=x•3x∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,∵F是BC中点,∴BF=x,∴BF=AB=AD,连接AF,则AF=BF=CF∠ACB=30°,∠ABC=60°,又∵∠ABD=∠ADB=30°,∴∠CBD=30°,∴∠ADB=∠CBD=∠ACB=30°,∴AD∥BF,∴四边形ABFD是平行四边形,又∵AD=AB,∴四边形ABFD是菱形.点评:此题主要考查了相似三角形的判定与性质以及菱形的判定等知识,得出△ABE∽△ACB是解题关键.。

九年级数学上册第一次月考试卷2

九年级数学上册第一次月考试卷2

K2MG-EHSWI++04-001 环境、健康安全、企业社会责任目标指标2015-2016学年度第一学期第一次阶段检测九年级(上)数学试卷一、选择。

(3′×10 = 30′)1、要使代数式 有意义,字母x 必须满足的条件是 ( )A. x >B. x ≥C. x > -D. x ≥-2、方程根的情况是x²+k x -1=0根的情况是 ( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定3、在 ABCD 中,AD=5cm ,AB=3cm 。

AE 平分∠BAD 交BC 于点E ,则CE 的长等于 ( )A.1cmB. 2cmC. 3cmD. 4cm 4、如图,CD 为⊙O 的直径,CD ⊥EF,垂点为G ,∠EOD=40°,则∠DCF= ( ) A.80°B.50°C.40°D.20°5、在根式 ,,,,, 中,与是同类二次根式的有 ( )A.1个B.2个C.3个D.4个6、关于x 的一元二次方程(m+1)x²+ x + m ²-2m-3=0有一个根是0,则m 的值为 ( )A.m=3或-1B. m=-3或1C. m=-1D. m=37、在⊙O 中,AB=2AC ,那么 ( ) A.AB=AC B.AB=2AC C.AB >2AC D.AB <2AC8、如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,AD=CD ,连结AD ,AC ,若∠DAB 等于55°,则∠CAB 等于 ( )A. 14°B.16°C. 18°D.20°9、关于x 的方程x²- x-1=0有两个不相等的实数根,则k 的取值范围是 A. k ≥0 B. k ﹥0 C. k ≥1 D. k ﹥1 ( )︵ ︵︵ ︵…………………密……………封……………线……………内……………不……………准……………学校 班 级____________ 姓 名____________BA E CDGA BC E F10、如图,在 ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,下列结论中正确的有 A.1个 B.2个 C.3个 D .4个 ( )1.BF= DF2.S △AFD=2S △EFB3.四边形AECD 是等腰梯形4. ∠AEB=∠ADC 二、填空。

2016-2017学年九年级(上)第一次月考数学试卷(含解析)-华东师大版

2016-2017学年九年级(上)第一次月考数学试卷(含解析)-华东师大版

3.下列各组二次根式中是同类二次根式的是(

A. 与
B.

C. 与
D. 与
4.下列运算正确的是(

A. + =3 B. 3 ﹣ =3 C. × =4 D. ÷ =2
5.方程( m+2) x |m| +4x+3m+1=0是关于 x 的一元二次方程,则(

A. m=± 2 B. m=2 C. m=﹣ 2 D. m≠± 2
D 选项的被开方数中含有分母;
7
【解答】 解:因为 A、 =3,可化简;
C、
= |a| ,可化简;
D、 =
,可化简;
所以,这三个选项都不是最简二次根式,故选
B.
【点评】 在判断最简二次根式的过程中要注意:
(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于
【考点】 二次根式的混合运算.
【分析】 根据二次根式的加法、乘法、除法法则即可判断.
【解答】 解: A、 和 不是同类二次根式,不能合并,选项错误;
B、 3 ﹣ =2 ,选项错误;
C、 × = =4,选项正确;
D、 ÷ = ,选项错误.
故选 C.
【点评】 本题考查了二次根式的运算,理解二次根式的加法、乘法、除法法则是关键.
【解答】 解: A、

,不是同类二次根式,故 A 错误;
B、

,最简二次根式的被开方数不同,不是同类二次根式,故
B错
误;
C、
, 是同类二次根式,故 C 正确;
D、

,不是同类二次根式,故 D错误;

2016初三数学上学期月考试卷及答案大全

2016初三数学上学期月考试卷及答案大全

2016初三数学上学期月考试卷及答案大全
2016初三数学上学期月考试卷及答案大全
》》》2016九年级数学上学期月考试卷(含答案和解释)
》》》2016学年湘教版九年级数学上册第一次月考试卷(含答案)
》》》2016九年级数学上册第一次月考试卷(附答案和解释)
》》》2016九年级数学上学期第一次月考试卷(带答案和解释)
》》》2016年九年级数学上册第一次月考模拟试卷(有答案)
》》》2016九年级数学上册月考试卷湘教版(有答案和解释)
》》》2016年九年级数学上第一次月考试卷(带答案)
》》》九年级数学上册第一次月考试卷2016
官方公众平台--精品初中生正式上线啦,大家可扫描下方的二维码关注,也可搜索微信号“zk51edu”或者直接输入“精品初中生”进行关注!!我们每天会为大家推送最新的内容哦~。

2016年九年级上册第一次月考试卷数学(精编文档).doc

2016年九年级上册第一次月考试卷数学(精编文档).doc

【最新整理,下载后即可编辑】2016年九年级上册第一次月考试卷数学注意事项:1. 本试卷分试题卷和答题卡两部分.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.评卷人得分一、选择题(题型注释)x的一元二次方程220x x a+-=有两个相等的实数根,则a的值是()A.4 B.-4 C.1 D.-1 2.如果012=-+xx,那么代数式7223-+xx的值是( )A、6B、8C、-6D、-83.如图,抛物线)0(2>++=acbxaxy的对称轴是直线x=1,且经过点P (3,0),则cba+-的值为()A、0B、-1C、1D、24.已知二次函数的图象如图所示,则这个二次函数的表达式为()A.y=x2﹣2x+3 B.y=x2﹣2x﹣3 C.y=x2+2x﹣3 D.y=x2+2x+3 5.用配方法解方程0142=-+xx,下列配方结果正确的是().A.5)2(2=+x B.1)2(2=+xC.1)2(2=-x D.5)2(2=-x6.如图,在一次函数5+-=xy的图象上取点P,作PA⊥x轴于A,PB⊥y轴于B,且长方形OAPB的面积为6,则这样的点P 个数共有()A.4 B.3C.2 D.17.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()8.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(题型注释)每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛?设比赛组织者应邀请x支球队参赛,根据题意列出的方程是____________________________ ____.10.如图,二次函数cbxaxy++=2的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴。

九年级上第一次月考数学试题含答案

九年级上第一次月考数学试题含答案

t/小时S/千米a 44056054321D CB A O 九年级数学试卷一、选择题(每小题3分,共计30分)1. 点M (-1,2)关于x 轴对称的点的坐标为( )(A )(-1,-2) (B )(-1,2) (C )(1,-2) (D )(2,-1)2. 下列计算正确的是( )(A )235a a a += (B )()326a a = (C )326a a a =÷ (D )a a a 632=⨯ 3. 下列图案中,既是轴对称图形又是中心对称图形的是( ) 4. 抛物线()2345y x =-+的顶点坐标是( )(A )(4,5) (B )(-4,5) C 、(4,-5) (D )(-4,5)5. 等腰三角形的一边长为4 cm,另一边长为9 cm,则它的周长为( )(A )13 cm (B )17 cm (C )22 cm (D )17 cm 或22 cm6. 已知反比例函数k y x=的图象经过点P(-l ,2),则这个函数的图象位于( ) (A )第二、三象限 (B )第一、三象限 (C )第三、四象限 (D )第二、四象限7. 某电动自行车厂三月份的产量为1 000辆,由于市场需求量不断增大,五月份的产量提高到l 210辆,则该厂四、五月份的月平均增长率为( )(A )12.1% (B )20% (C )21% (D )10%8. 如图,在Rt △ABC 中,∠BAC=90°,∠B=60°,△ADE 可以由△ABC 绕点 A 顺时针旋转900得到,点D 与点B 是对应点,点E 与点C 是对应点),连接CE ,则∠CED 的度数是( )(A )45° (B )30° (C )25° (D )15°9. 如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,∠AOB=600,AB=5,则AD 的长是( )(A )53 (B )52 (C )5 (D )1010. 甲乙两车分别从M 、N 两地相向而行,甲车出发1小时后,乙车出发,并以各自的速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的路程S (千米)与甲车所用时间t (小时)之间的函数图象,其中D 点表示甲车到达N 地停止运行,下列说法中正确的是( ) (A )M 、N 两地的路程是1000千米; (B )甲到N 地的时间为 4.6小时;(C )甲车的速度是120千米/小时; (D )甲乙两车相遇时乙车行驶了440千米. 二、填空题(每小题3分,共计30分)11. 将2 580 000用科学记数法表示为 .12. 函数12y x =-的自变量x 的取值范围是 . 13..14. 分解因式:322_____________x x x ---=.15. 抛物线223y x bx =-+的对称轴是直线1x =-,则b 的值为 .16. 如图,CD 为⊙O 的直径,AB ⊥CD 于E ,DE =8cm ,CE =2cm ,则AB = cm.17.不等式组⎩⎨⎧-≤--14352x x >的解集是 .19. 在ΔABC 中,若,∠B=3020. 如图,△ABC ,AB=AC ,∠BAC=90°,点D 为BC 上一点,CE ⊥BC ,连接AD 、DE ,若CE=BD ,DE=4,则AD 的长为 .三、解答题(其中21-22题各7分.23-24题各8分.25-27题各l0分.共计60分)21. 先化简,再求值:2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x=12+. 22. 如图,图1和图2都是7×4正方形网格,每个小正方形的边长是1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图1中画出一个等腰直角△ABC ;(2)在图2中画出一个钝角△ABD ,使△ABD 的面积是3.图1 图223. 某中学为了丰富校园文化生活.校学生会决定举办演讲、歌唱、绘画、舞蹈四项比赛,要求每位学生都参加.且只能参加一项比赛.围绕“你参赛的项目是什么?(只写一项)”的问题,校学生会在全校范围内随机抽取部分学生进行问卷调查.将调查问卷适当整理后绘制成如图所示的不完整的条形统计图.其中参加舞蹈比赛的人数与参加歌唱比赛的人数之比为1:3,请你根据以上信息回答下列问题:(1)通过计算补全条形统计图;(2)在这次调查中,一共抽取了多少名学生?(3)如果全校有680名学生,请你估计这680名学生中参加演讲比赛的学生有多少名?24. 已知:BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE=AF.(1)如图1,求证:四边形ADEF 是平行四边形;(2)如图2,若AB=AC ,∠A=36°,不添加辅助线,请你直接写出与DE 相等的所有线段(AF 除外).25. .某车队有载重量为8吨、10吨的卡车共12110吨残土. (1)(2)随着工程的进展,该车队需要一次运输残土不低于165吨,为了完成任务,该车队准备再新购进这两种卡车共6辆,则最多购进载重量为8吨的卡车多少辆?26. 如图,在⊙O 中,AB 、CE 是直径,BD ⊥CE 于G ,交⊙O 于点D ,连接CD 、CB.(1)如图1,求证:∠DCO=90°-21∠COB ; (2)如图2,连接BE ,过点G 作BE 的垂线分别交BE 、AB 、CD 于点F 、H 、M ,求证:MC=MD ;(3)在(2)的条件下,连接AC 交MF 于点N ,若MN=1,NH=4,求CG 的长.(第26题图1) (第26题图2) (第26题图3)27. 已知:如图,抛物线y=-x 2+bx+c 与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴正半轴交于点C ,OA=3,O B=1,点M 为点A 关于y 轴的对称点.(1)求抛物线的解析式;(2)点P 为第三象限抛物线上一点,连接PM 、PA ,设点P 的横坐标为t ,△PAM 的面积为S ,求S 与t 的函数关系式;(3)在(2)的条件下,PM 交y 轴于点N ,过点A 作PM 的垂线交过点C 与x 轴平行的直线于点G ,若ON ∶CG=1∶4,求点P 的坐标.答案一、ABCAC DDDAC二、11、2.58×106 12、x ≠2 13、23 14、-x(x+1)2 15、-4 16、817、x ≥5 18、30 19、34或38 20、22三、21、(7分)原式=2211=-x 22、(1)(3分) (2)(4分)23、(1)30%;(2分)(2)100-30-35-5=30,补图略;(3分)(3)(5÷100)×2000=100人(3分)24、(1)(4分)EB=ED=AF ,ED ∥AF∴四边形ADEF 为平行四边形;(2)(4分)CD 、BE 、BG 、FG25、(1)(4分)设89吨卡车有x 辆8x+10(12-x)=110解得:x=5,∴12-x=7;(2)(4分)设购进载重量8吨a 辆8(a+5)+10(6+7-a)≥165a≤2.5∵a 为整数,∴a 的最大值为226、(1)略 (2)略 (3)AC ∥BE ,△CNG ≌△BFH,设GN=x ,CE=x+1,BC=2x+2=FN=x+4,x=2CN=22,CG=3227、(1)322+--=x x y (2)963S 2-+=x x(3)过点A 作CG 的垂线,垂足为E ,四边形CEAO 为 正方形 △AGE ≌△MNO ,ON=EG ,CE=3ON=3,N (0,-1) 直线MP 解析式为131-=x y ,⎪⎩⎪⎨⎧+--=-=321312x x y x y 解得 P (6193-7-,18193-25-)。

九年级(上)第一次月考数学模拟试题(含答案).doc

九年级(上)第一次月考数学模拟试题(含答案).doc

第一学期第一月考模拟九年级数学(考试内容:第二I-一章——第二十二章第一节时间:120分钟,满分:150分)选择题(共40分)一、选择题(每小题4分,共40分)下列方程中,是关于兀的一元二次方程的是方程 2x(x -3) = 5(x — 3)的根为()如果x=4是一元二次方程X 2-3X = 6/2的一个根,贝I 」常数a 的值是三角形的两边长分別为3和6,第三边的长是方程疋-6x + 8 = 0的一个根,则这个三角形的周长是()8.从正方形铁片,截去2cm 宽的一个长方形,余下的血积是48cn?,贝U 原来的正方形铁片的面积是()9. —•个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A.25B.36C.25 或 36D. —25 或一36A. 2.3(X 4-1)2=2(X + 1);B. g +丄-2 = 0X X若函数y=做宀“一6是二次函数且图象开口向上,C. ax" +bx + c = 0 D ・ 2x = 14- A. -2 B. 4 C- 4或一2 D ・4或3关于函数y=,的性质表达正确的一项是(A.无论x 为任何实数,y 值总为正 C.它的图象关于y 轴对称B. D. 当兀值增人时,y 的值也增大 它的图象在第一、 三象限内一元二次方程X 2+3X = 0的解是(A ・ x = —3B. x { = 0?x 2 = —3C.D. x = 35.A. x = 2.5 B ・x = 3 C.x = 2.5 或兀=3D •以上都不对6.A ・2 B. -2 C. ±2D. ±4A. 13B. 11C. 9D. 147. A. 8cmB. 64cmC. 8cm 2D. 64cm 210.某经济开发区今年一刀份工业产值达50亿元,笫一季度总产值为175亿元,问二、三刀平均每刀的增长率是多少?设平均每月增长的百分率为x,根据题意得方程为()第II卷非选择题(共110分)二、填空题(每小题4分,共40分)11.把一元二次方程(兀一3)2=4化为一般形式为:_________ ,二次项系数为:__________ , 一次项系数为:________ ,常数项为: ________ .12.已知2是关于x的一元二次方程?+4x-p=0的一个根,则该方程的另一个根是_______________ ・13.已知兀】,JO是方程X2~2X+]= 0的两个根,则丄+丄=兀1 X214.若|/?-l|+V^4=0,且一元二次方程kx2+ax+b = 0有两个实数根,则R的取值范围是__________________ .15.已知函数y=(m-2)^+rnx-3(m为常数).⑴当〃7 ___________ 吋,该函数为二次函数;⑵当〃7 __________时,该函数为一次函数.16.二次函数y=ax2(a/0)(fy图象是__ ,当Q0时,开口向 ________ ;顶点坐标是 _____ ,对称轴是_______ .17.抛物线)=2,—加+3的对称轴是宜线x= -1,则b的值为______________ .18.抛物线y=—2,向左平移1个单位,再向上平移7个单位得到的抛物线的解析式是___________ .19.如左下图,已知二次函数y=ax2+bx+c的图象与x轴交于4(1,0), 3(3,0)两点,与y轴交于点C(0,3),则二次函数的图象的顶点坐标是20.二次函数y=~x2+bx+c的图象如右上图所示,则一次函数y=bx+c的图象不经过第__________________ 象限.三、解答题(共70分)21.(8分)已知x = \是一元二次方程+ -m2x-2m-\ = 0的一个根.求m的值,并写出此吋的一元二次方程的一般形式.22.(每题7分,共14分)用适当的方法解下列方程:(l)2?-3x-5 = 0 (2) <—4x+4=0.23. (10分)九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高二01,与篮圈屮心的水平9距离为7m,当球出手后水平距离为4m 时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1) 建立如图所示的平而直角处标系,求抛物线的解析式并判断此球能否准确投中?(2) 此时,若对方队员乙在甲前面lm 处跳起盖帽拦截,已知乙的最人摸高为3.1m,那么他能否获得成功?(JC4m24. (12分)已知,在同一平面直角坐标系中,正比例函数y = -2x 与二次函数y=-x 2+2x+c 的图象交于点 4(— 1, m ).(1) 求加,e 的值;(2) 求:次函数图彖的对称轴和顶点坐标.25. (12分)某商场礼品柜台新年期间购进人址贺年卡,一种贺年卡平均每天可售岀500张,每张盈利0.3元. 为了尽快减少库存,商场决定采取适当的降价措施,调杏发现,如果这种贺年卡的售价每降低0」元,那么 商场平均每天可多售出100张,商场耍想平均每天盈利120元,每张贺年R应降价多少元?4m26. (14分)如图,抛物线y=ax 2-5x+4a 与x 轴相交于点A, B,且过点C (5,4).⑴求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二彖限,并写出平移后抛物线的解析式.20 (本题10分)解:由题意可知,抛物线经过(0, —),顶点坐标是(4, 4) • 9设抛物线的解析式是y = 6/(x-4)2+4,解得a = --,所以抛物线的解析式是y = --(x-4)2+4 ;篮9 9 圈的坐标是(7, 3),代入解析式得y = -£(7-+4 = 7,这个点在抛物线上,所以能够投中.1 C(2)当x = \时,),=一6(1_4)「+4 = 3<3.1,所以能够盖帽拦截成功.24. (本题12分)解:(1);・点A 在正比例函数y = -2x 的图象上,/.w=-2x (-1)=2.・••点A 坐标为(一1, 2). T 点A 在二次函数图象上—1 —2 + c=2,即c=5.参考答案一、 选择题(每小题4分,共40分)1. A2.B 3・ C 4.B 5・ C 6・ C 7.A 8. D 9. C 10. D二、 填空题(每小题4分,共40分)11. %2-6X + 5 = 0;1;-6;5 12. -6 13.2 14.^<4H/r^0 15. H 2;=216.抛物线;上;(0,0)17. -41& y = -(x + l 『+7三、 解答题(共60分) 19.(2-1)20.三21.(本题8分)解:m = 0 ,22. 解: (每题7分,共14分) (1) X] = -1, x 2 =—(2) Xj — %2 = 223.(2)・.•二次函数的解析式为y=—x2+2x+5,・・.y=—f+2x+5= -(兀一I)? +6 .・・・对称轴为直线x=l,顶点坐标为(1, 6).25.(本题12分)解:设每张贺年卡应降价兀元. 则根据题意得:(0.3-X)(500+型兰)=120,0.1整理,得:100/ + 20x —3 = 0, 解得:坷=0.1,兀2=-0.3 (不合题意,舍去).・・・兀=0・1.答:每张贺年卡应降价0」元.26.(本题14 分)解:(1)«=1, P(-,~匕‘ 4丿。

【答案】2016级九年级(上)第一次月考数学试卷

【答案】2016级九年级(上)第一次月考数学试卷

【答案】2016级九年级(上)第一次月考数学试卷第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,有且仅有一项是符合题目要求的)123 4 523)67赠送标本182件,若全组有x 名同学,则根据题意列出方程是【C 】A .()111822x x -= B .()111822x x += C .()1182x x -=D .()1182x x +=8.如果关于x 的方程()21204m x -+=有两个实数根,则m 的取值范围是【B 】A .52m >B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠9.三角形的两边长分别是8和6,第三边的长是一元一次方程216600x x -+=的一个实数根,则该三角形的面积是【D 】1011120(((A 13= -3 . 14.若关于x 的一元二次方程x 2+kx +4k 2-3=0的两个实数根分别为x 1,x 2,且满足x 1+x 2= x 1x 2,则k =34.15.若(m 2+n 2)(m 2+n 2-4)=12,求m 2+n 2+4= 10 .16.已知一元二次方程2320x x --=的两根为1x ,2x ,则22121222335x x x x x ++--= 4 .A.17.已知一元二次函数2y x =,当y >1时x 的取值范围是 11x x ><-或.18.若二次函数2221y x mx m =-+-,当x ≤2时,y 随x 的增大而减小,则m 的取值范围是2m ≥.三、解答题(共66分.解答应写出文字说明、证明过程或推演步骤)21.(10分)如图△ABC 中,点D 为边BC 中点,点E 为AD 中点,过点A 作BC 的平行线交BA 的延长线于点F ,连接CF . (1)求证:AEF DEB ∆≅∆. (2)求证:四边形ADCF 为菱形.(3)若AB =5,AC =4,求菱形ADCF 的面积.(1),E AD AE DEAF BCEAF EDB EFA EBD AEF DEB EAF EDB EFA EBD ∴=∴∠=∠∠=∠∆∆∠=∠⎧⎪∠=∠⎨点为中点∥在和中,【解答】解:22克((【解答】解:(1)销售量:500-(55-50)×10=450(kg )销售利润:450×(55-40)=450×15=6750(元)∴当销售单价为每千克55元时,销售量为450kg ,月销售利润为6750元. (2)由题可得(x -40)[500-10(x -50)]=8000 解得:x 1=80,x 2=60•11••22325,ADCF ADCF A AG BC BC G S DC AG DC AG DC AG AB AC S ADCF ⊥==+=∴=∴菱菱过点作交于点菱形()AF BD Rt ABC BD AD AF AD ADCF AF AD=∆∴=∴=∴=∴中四边形平行四边形2512(22(21m a b m ab m m a b m ≥+=-=-=+=∴+=又)=21)125m m +=-△(①当x 1=80时销售量:500-10(80-50)=200(kg )销售成本:40×200=8000元<10000元,符合题意 ②当x 2=60时销售量:500-10(60-50)=400(kg )销售成本:40×400=16000元>10000元,舍去. 23b ; ((24.(14分)如图,已知直线14y x =-+与抛物线()222y a x =+相交于A 、B 两点,点A 在y 轴上,M 为抛物线的顶点 (1)求△ABM 的面积(2)直接写出12y y <时自变量x 的取值范围(3)平行于y 轴点的直线l 交直线AB 于点P ,交抛物线于点Q ,问在线段AB 之间是当∴把∴∵∴当∴∴∴B (-5,9)∵()()()111=+=222AMB AMH BMH A M M B A B S S S HM x x HM x x HM x x ⋅-+⋅-=⋅-△△△ ∴1=65=152AMB S ⨯⨯△(2)05x x ><-或(3)设P (m ,-m +4),Q (m ,m ²+4m +4) ∴∴即∴∴。

人教版九年级数学上册第一学期月考试题答案.docx

人教版九年级数学上册第一学期月考试题答案.docx

初中数学试卷 桑水出品2015--2016学年邹城八中第一学期九年级第一次月考数学试题一、选择题1.B2.A3.D4.C5.B6.C7.D8.B9.D 10.C二、填空题(3分×6=18分)11. x 1=0,x 2=3 . 12. 6米 . 13. x 2﹣70x+825=0 .14. y =﹣(x +6)2+4 . 15. __-2 __ 16. 0.5米 .三、解答题(本大题共8小题,满分52分,解答应写出文字说明、证明过程或演算步骤)17. (本题满分4分)解方程: 0)3(2)3(2=-+-x x x解:0)23)(3(=+--x x x …………………1分0)33)(3(=--x x ……………2分03=-x 或033=-x …………3分即31=x 或12=x …………4分18. (本题满分5分)先化简再求值:已知06x 3x 2=--,求x x 1x 3x 12++--的值. 解:xx 1x 3x 12++-- ⋅++--=)1x (x 1x 3x 1 x13x 1--=………………1分 )3x (x 3x )3x (x x ----= ………2分 .x 3x 32-= ………………3分 因为 06x 3x 2=--,所以 .6x 3x 2=-所以 原式.21= …………………5分 19. (本题满分6分)已知:关于x 的方程0122=-+kx x . (1)求证:方程有两个不相等的实数根;(2)若方程的一个根是-1,求另一个根及k 值. 解:(1)证明:∵a=2,b=k ,c=-1,∴△=k 2-4×2×(-1)=k 2+8,∵不论k 为何实数,k 2≥0,∴k 2+8>0,即△>0,因此,不论k 为何实数,方程总有两个不相等的实数根.…………………3分(2)把x=-1代入原方程得,2-k-1=0∴k=1 ……………………………………4分∴原方程化为2x 2+x-1=0,解得:x 1=-1,x 2=21 即另一个根为21.…………………6分 20. (本题满分6分)阅读下面材料:解答问题为解方程 (x 2-1)2-5 (x 2-1)+4=0,我们可以将(x 2-1)看作一个整体,然后设 x 2-1=y ,那么原方程可化为 y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,x 2-1=1,∴x 2=2,∴x =± 2 ;当y =4时,x 2-1=4,∴x 2=5,∴x =± 5 ,故原方程的解为 x 1= 2 ,x 2=- 2 ,x 3= 5 ,x 4=- 5 .上述解题方法叫做换元法;请利用换元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0解:设x 2-x=m 则原方程可化为m 2-4m-12=0 …………………1分解得:m 1= -2, m 2=6 ……………………………………3分当m= -2时,x 2-x= -2 此方程无实数根。

人教版九年级上册第一次月考数学试卷含答案解析6

人教版九年级上册第一次月考数学试卷含答案解析6

九年级(上)第一次月考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.每小题给出代号为A、B、C、D 的四个结论,其中只有一个正确,请考生用2B铅笔在答题卷上将选定的答案标号涂黑).1.一元二次方程5x2﹣1=4x的二次项系数是()A.﹣1B.1C.4D.52.抛物线y=3x2+2x的开口方向是()A.向上B.向下C.向左D.向右3.方程x2+x=0的根为()A.x=﹣1B.x=0C.x1=0,x2=﹣1D.x1=0,x2=14.如图,可以看作是由一个等腰直角三角形旋转若干次生成的,则每次旋转的度数是()A.45°B.50°C.60°D.72°5.下列图形中即是轴对称图形,又是旋转对称图形的是()A.①②B.①②③C.②③④D.①②③④6.用配方法解方程x2+8x+7=0,则配方正确的是()A.(x﹣4)2=9B.(x+4)2=9C.(x﹣8)2=16D.(x+8)2=577.已知方程x2+mx+3=0的两根是x1,x2,且x1+x2=4,则m的值是()A.4B.﹣4C.3D.﹣38.抛物线y=2x2﹣8x﹣6的顶点坐标是()A.(﹣2,﹣14)B.(﹣2,14)C.(2,14)D.(2,﹣14)9.如图所示,已知平行四边形ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点D的坐标为(3,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)10.在平面直角坐标系中,抛物线y=x2+2x﹣3与x轴的交点个数是()A.0B.1C.2D.311.按一定的规律排列的一列数依次为:…,按此规律排列下去,这列数中的第7个数是()A.B.C.D.12.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分.)请将答案填在答题卡上13.已知x=1是方程x2+mx+1=0的一个根,则m=.14.点P(2,3)关于x轴的对称点的坐标为.15.已知函数y=2(x+1)2+1,当x>时,y随x的增大而增大.16.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为.17.若方程kx2﹣6x﹣1=0有两个实数根,则k的取值范围是.18.对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n两点,以A n,B n表示这两点间的距离,则A1B1+A2B2+…+AB+AB的值是.三、解答题(本大题共8小题,共66分)请将答案写在答题卡上19.解方程:9x2﹣1=0.20.解方程:x2﹣2x+1=25.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)以原点O为对称中心,画出△ABC与关于原点O对称的△A1B1C1,并写出C1的坐标.(2)以原点O为旋转中心,画出把△ABC顺时针旋转90°的图形△A2B2C2.并写出C2的坐标.22.已知抛物线y=a(x﹣1)2经过点(2,2).(1)求此抛物线对应的解析式.(2)当x取什么值时,函数有最大值或最小值?23.如图所示,点P是正方形ABCD内的一点,连接AP,BP,CP,将△PAB绕着点B顺时针旋转90°到△P′CB的位置.若AP=2,BP=4,△APB=135°,求PP′及PC的长.24.种植雪梨已成为我县乡镇农民增加收入的优势产业,今年小王家种植的雪梨又获得大丰收,小王家两年雪梨卖出情况是:第一年的销售总额是10000元,第三年的销售总额是12100元.(1)如果第二年、第三年销售总额的增长率相同,求销售总额增长率;(2)按照(1)中卖雪梨销售总额的增长速度,第四年该农户的销售总额是多少元?25.某商场老板对一种新上市商品的销售情况进行记录,已知这种商品进价为每件40元,经过记录分析发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.(1)求y与x的函数关系式.(2)设商场老板每月获得的利润为P(元),求P与x之间的函数关系式;(3)如果想要每月获得2400元的利润,那么销售单价应定为多少元?26.如图所示,已知抛物线y=﹣x2+bx+c与x轴的一个交点为A(4,0),与y轴交于点B (0,3).(1)求此抛物线所对应的函数关系式;(2)在x轴的正半轴上是否存在点M.使得AM=BM?若存在,求出点M的坐标;若不存在,请说明理由.-学年广西桂林市灌阳县九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.每小题给出代号为A、B、C、D 的四个结论,其中只有一个正确,请考生用2B铅笔在答题卷上将选定的答案标号涂黑).1.一元二次方程5x2﹣1=4x的二次项系数是()A.﹣1B.1C.4D.5【考点】一元二次方程的一般形式.【分析】要确定二次项系数和常数项,首先要把方程化成一般形式.【解答】解:5x2﹣1﹣4x=0,5x2﹣4x﹣1=0,二次项系数为5.故选:D.【点评】此题主要考查了一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.抛物线y=3x2+2x的开口方向是()A.向上B.向下C.向左D.向右【考点】二次函数的性质.【分析】直接利用二次项系数判定抛物线的开口方向即可.【解答】解:△抛物线y=3x2+2x,a=3>0,△抛物线开口向上.故选:A.【点评】此题考查二次函数的性质,确定抛物线的开口方向与二次项系数有关.3.方程x2+x=0的根为()A.x=﹣1B.x=0C.x1=0,x2=﹣1D.x1=0,x2=1【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】把方程左边进行因式分解x(x+1)=0,方程就可化为两个一元一次方程x=0或x+1=0,解两个一元一次方程即可.【解答】解:x2+x=0,△x(x+1)=0,△x=0或x+1=0,△x1=0,x2=﹣1.故选C.【点评】本题考查了运用因式分解法解一元二次方程ax2+bx+c=0(a≠0)的方法:先把方程化为一般式,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.4.如图,可以看作是由一个等腰直角三角形旋转若干次生成的,则每次旋转的度数是()A.45°B.50°C.60°D.72°【考点】旋转对称图形.【分析】根据旋转的性质并结合一个周角是360°求解.【解答】解:△一个周角是360度,等腰直角三角形的一个锐角是45度,△如图,是由一个等腰直角三角形每次旋转45度,且旋转8次形成的.△每次旋转的度数是45°.故选:A.【点评】本题考查了旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.5.下列图形中即是轴对称图形,又是旋转对称图形的是()A.①②B.①②③C.②③④D.①②③④【考点】旋转对称图形;轴对称图形.【分析】直接利用轴对称图形的定义结合旋转对称图形定义得出答案.【解答】解:①不是轴对称图形,是旋转对称图形,故此选项错误;②是轴对称图形,是旋转对称图形,故此选项正确;③是轴对称图形,是旋转对称图形,故此选项正确;④是轴对称图形,是旋转对称图形,故此选项正确.故选:C.【点评】此题主要考查了旋转对称图形以及轴对称图形,正确把握定义是解题关键.6.用配方法解方程x2+8x+7=0,则配方正确的是()A.(x﹣4)2=9B.(x+4)2=9C.(x﹣8)2=16D.(x+8)2=57【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上16,配方得到结果,即可做出判断.【解答】解:方程x2+8x+7=0,变形得:x2+8x=﹣7,配方得:x2+8x+16=9,即(x+4)2=9,故选B【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.已知方程x2+mx+3=0的两根是x1,x2,且x1+x2=4,则m的值是()A.4B.﹣4C.3D.﹣3【考点】根与系数的关系.【分析】由方程x2+mx+3=0的两根是x1,x2,且x1+x2=4,根据根与系数的关系可得﹣m=4,继而求得答案.【解答】解:△方程x2+mx+3=0的两根是x1,x2,△x1+x2=﹣m,△x1+x2=4,△﹣m=4,解得:m=﹣4.故选B.【点评】此题考查了根与系数的关系.注意若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.8.抛物线y=2x2﹣8x﹣6的顶点坐标是()A.(﹣2,﹣14)B.(﹣2,14)C.(2,14)D.(2,﹣14)【考点】二次函数的性质.【分析】已知抛物线解析式的一般式,利用配方法化为顶点式求得顶点坐标.【解答】解:△y=2x2﹣8x﹣6=2(x﹣2)2﹣14,△顶点的坐标是(2,﹣14).故选:D.【点评】此题考查二次函数的性质,利用配方法求抛物线的顶点坐标、对称轴是常用的一种方法.9.如图所示,已知平行四边形ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点D的坐标为(3,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出B与D关于原点O对称,即可得出点B的坐标.【解答】解:△四边形ABCD是平行四边形,O为角线AC与BD的交点,△B与D关于原点O对称,△点D的坐标为(3,2),△点B的坐标为(﹣3,﹣2);故选:D.【点评】本题考查了平行四边形的性质、坐标与图形性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,由关于原点对称的点的坐标特征得出点B的坐标是解决问题的关键.10.在平面直角坐标系中,抛物线y=x2+2x﹣3与x轴的交点个数是()A.0B.1C.2D.3【考点】抛物线与x轴的交点.【分析】令y=0,得到关于x的一元二次方程x2+2x﹣3=0,然后根据△判断出方程的解得个数即可.【解答】解:令y=0得:x2+2x﹣3=0,△△=b2﹣4ac=22﹣4×1×(﹣3)=4+12=16>0,△抛物线与x轴有两个交点.故选:C.【点评】本题主要考查的是抛物线与x轴的交点,将函数问题转化为方程问题是解题的关键.11.按一定的规律排列的一列数依次为:…,按此规律排列下去,这列数中的第7个数是()A.B.C.D.【考点】规律型:数字的变化类.【专题】规律型.【分析】通过观察和分析数据可知:分子是定值1,分母的变化规律是:奇数项的分母为:n2+1,偶数项的分母为:n2﹣1.据此规律判断即可.【解答】解:分子的规律:分子是常数1;分母的规律:第1个数的分母为:12+1=2,第2个数的分母为:22﹣1=3,第3个数的分母为:32+1=10,第4个数的分母为:42﹣1=15,第5个数的分母为:52+1=26,第6个数的分母为:62﹣1=35,第7个数的分母为:72+1=50,…第奇数项的分母为:n2+1,第偶数项的分母为:n2﹣1,所以第7个数是.故选D.【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是通过分析分母找到分母的变化规律,奇数项的分母为:n2+1,偶数项的分母为:n2﹣1.12.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【解答】解:△函数y=x2+bx+c与x轴无交点,△b2﹣4ac<0;故①错误;当x=1时,y=1+b+c=1,故②错误;△当x=3时,y=9+3b+c=3,△3b+c+6=0;③正确;△当1<x<3时,二次函数值小于一次函数值,△x2+bx+c<x,△x2+(b﹣1)x+c<0.故④正确.故选B.【点评】主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二、填空题(本大题共6小题,每小题3分,共18分.)请将答案填在答题卡上13.已知x=1是方程x2+mx+1=0的一个根,则m=﹣2.【考点】一元二次方程的解.【分析】把x=1代入已知方程,列出关于m的新方程,通过解新方程来求m的值.【解答】解:△关于x的一元二次方程x2+mx+1=0有一个根是1,△12+m+1=0,解得:m=﹣2,故答案为:﹣2;【点评】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.点P(2,3)关于x轴的对称点的坐标为(2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y)得出即可.【解答】解:△点P(2,3)△关于x轴的对称点的坐标为:(2,﹣3).故答案为:(2,﹣3).【点评】此题主要考查了关于x轴、y轴对称点的性质,正确记忆坐标规律是解题关键.15.已知函数y=2(x+1)2+1,当x>﹣1时,y随x的增大而增大.【考点】二次函数的性质.【分析】先求对称轴,再利用函数值在对称轴左右的增减性可得x的范围.【解答】解:函数y=2(x+1)2+1的对称轴是x=﹣1,△a=2>0,△函数图象开口向上,△当x>﹣1时,函数值y随x的增大而增大.故答案为:﹣1.【点评】此题考查二次函数的性质,掌握函数的增减性和求抛物线的对称轴和顶点坐标的方法是解决问题的关键.16.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为(80﹣x)=7644.【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:设道路的宽应为x米,由题意有(80﹣x)=7644,故答案为:(80﹣x)=7644.【点评】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.17.若方程kx2﹣6x﹣1=0有两个实数根,则k的取值范围是k≥﹣9且k≠0.【考点】根的判别式;一元二次方程的定义.【分析】由方程kx2﹣6x﹣1=0有两个实数根,可得△≥0且k≠0,继而求得答案.【解答】解:△方程kx2﹣6x﹣1=0有两个实数根,△△=b2﹣4ac=(﹣6)2﹣4×k×(﹣1)=36+4k≥0,解得:k≥﹣9,△方程是一元二次方程,△k≠0,△k的取值范围是:k≥﹣9且k≠0.故答案为:k≥﹣9且k≠0.【点评】此题考查了一元二次方程的根的判别式.注意一元二次方程的二次项系数不为0.18.对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n两点,以A n,B n表示这两点间的距离,则A1B1+A2B2+…+A2013B2013+A2014B2014的值是.【考点】抛物线与x轴的交点.【专题】规律型.【分析】先转换抛物线解析式为两点式:y=x2﹣x+=(x﹣)(x﹣),则易求该抛物线与x轴的两个交点坐标;然后根据两点间的坐标差求出距离,找出规律解答即可.【解答】解:y=x2﹣x+=(x﹣)(x﹣),则故抛物线与x轴交点坐标为(,0)、(,0).由题意知,A n B n=﹣,那么,A1B1+A2B2…+A2013B2013+A2014B2014,=(1﹣)+(﹣)+…+(﹣)+(﹣),=1﹣,=,故答案为.【点评】题考查的是抛物线与x轴的交点,在解答过程中,注意二次函数与一元二次方程之间的联系,并从中择取有用信息解题;求两点间的距离时,要利用两点间的坐标差来解答.三、解答题(本大题共8小题,共66分)请将答案写在答题卡上19.解方程:9x2﹣1=0.【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】先把方程变形为x2=,然后利用直接开平方法解方程.【解答】解:x2=,x=±,所以x1=,x2=﹣.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.20.解方程:x2﹣2x+1=25.【考点】解一元二次方程-配方法.【分析】把方程左边直接利用完全平方公式因式分解,直接开方得出答案即可.【解答】解:x2﹣2x+1=25(x﹣1)2=25x﹣1=±5x﹣1=5,x﹣1=﹣5,解得:x1=6,x2=﹣4.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)以原点O为对称中心,画出△ABC与关于原点O对称的△A1B1C1,并写出C1的坐标.(2)以原点O为旋转中心,画出把△ABC顺时针旋转90°的图形△A2B2C2.并写出C2的坐标.【考点】作图-旋转变换.【分析】(1)利用关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,分别找出A、B、C的对应点,顺次连接,即得到相应的图形;(2)利用对应点到旋转中心的距离相等,以及对应点与旋转中心所连线段的夹角等于旋转角,即可作出图形.【解答】解:(1)如图所示:C1的坐标为:(﹣4,1).(2)如图所示:C2的坐标为:(﹣1,﹣4).【点评】本题考查的是旋转变换作图.无论是何种变换都需先找出各关键点的对应点,然后顺次连接即可.22.已知抛物线y=a(x﹣1)2经过点(2,2).(1)求此抛物线对应的解析式.(2)当x取什么值时,函数有最大值或最小值?【考点】待定系数法求二次函数解析式;二次函数的最值.【专题】计算题.【分析】(1)把已知点坐标代入抛物线解析式求出a的值,确定出解析式即可;(2)利用二次函数性质求出x的值,以及此时函数的最值即可.【解答】解:(1)把点(2,2)代入y=a(x﹣1)2得:a=2,△此函数解析式为y=2(x﹣1)2=2x2﹣4x+2;(2)△y=2(x﹣1)2,a=2>0,△当x=1时,函数有最小值.【点评】此题考查了待定系数法求二次函数解析式,以及二次函数的最值,熟练掌握待定系数法是解本题的关键.23.如图所示,点P是正方形ABCD内的一点,连接AP,BP,CP,将△PAB绕着点B顺时针旋转90°到△P′CB的位置.若AP=2,BP=4,△APB=135°,求PP′及PC的长.【考点】旋转的性质;勾股定理;正方形的性质.【专题】计算题.【分析】先根据旋转的性质得到BP′=BP=4,P′C=AP=2,△PBP′=90°,△BP′C=△BPA=135°,则可判断△PB P′是等腰直角三角形,根据等腰直角三角形的性质得PP′=BP=4,△BP′P=45°,于是可计算出△PP′C=90°,然后在Rt△PP′C中利用勾股定理计算PC的长.【解答】解:△△PAB绕着点B顺时针旋转90°到△P′CB的位置,△BP′=BP=4,P′C=AP=2,△PBP′=90°,△BP′C=△BPA=135°,△△PB P′是等腰直角三角形,△PP′=BP=4,△BP′P=45°,△△PP′C=△BP′C﹣△BP′P=135°﹣45°=90°,在Rt△PP′C中,PC===6.答:PP′和PC的长分别为4,6.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.本题的关键是证明△PB P′是等腰直角三角形.24.种植雪梨已成为我县乡镇农民增加收入的优势产业,今年小王家种植的雪梨又获得大丰收,小王家两年雪梨卖出情况是:第一年的销售总额是10000元,第三年的销售总额是12100元.(1)如果第二年、第三年销售总额的增长率相同,求销售总额增长率;(2)按照(1)中卖雪梨销售总额的增长速度,第四年该农户的销售总额是多少元?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设销售总额的增长率为x,则第三年的销售总额为10000(1+x)2元,根据第三年的销售总额为12100元建立方程求出其解即可;(2)用第三年的销售总额加上增长的部分求得第四年该农户的销售总额.【解答】解:(1)设第二年、第三年销售总额的增长率为x,依题意得10000(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不符题意舍去);△第二年、第三年销售总额的增长率为10%.(2)12100+12100×10%=13310(元).故第四年该农户的销售总额是13310元.【点评】本题考查一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时由增长率问题的数量关系建立方程是关键.25.某商场老板对一种新上市商品的销售情况进行记录,已知这种商品进价为每件40元,经过记录分析发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.(1)求y与x的函数关系式.(2)设商场老板每月获得的利润为P(元),求P与x之间的函数关系式;(3)如果想要每月获得2400元的利润,那么销售单价应定为多少元?【考点】二次函数的应用.【分析】(1)利用图象上的点的坐标,由待定系数法求一次函数解析式即可得出答案;(2)由每一件的利润×销售量=销售利润得出p与x的函数关系式为:p=(x﹣40)(﹣4x+360);(3)利用当P=2400时,列出方程求出x的值即可.【解答】解:(1)设y与x的函数关系式为:y=kx+b(k≠0),由题意得,解得.故y=﹣4x+360(40≤x≤90);(2)由题意得,p与x的函数关系式为:p=(x﹣40)(﹣4x+360)=﹣4x2+520x﹣14400,(3)当P=2400时,﹣4x2+520x﹣14400=2400,解得:x1=60,x2=70,故销售单价应定为60元或70元.【点评】此题主要考查了一次函数与二次函数的实际应用,根据已知图象上点的坐标得出直线解析式是解题关键.26.如图所示,已知抛物线y=﹣x2+bx+c与x轴的一个交点为A(4,0),与y轴交于点B (0,3).(1)求此抛物线所对应的函数关系式;(2)在x轴的正半轴上是否存在点M.使得AM=BM?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)用待定系数直接求之即可;(2)作AB的垂直平分线交x轴于点M,利用勾股定理算出OM即可.【解答】解:(1)把点A(4,0),B(0,3)代入二次函数y=﹣x2+bx+c得,解得:,c=3,所以二次函数的关系式为:;(2)如图,作AB的垂直平分线交x轴于点M,连接BM,则BM=AM,设BM=AM=x,则OM=4﹣x,在直角△OBM中,BM2=OB2+OM2,即:x2=32+(4﹣x)2,解得:x=,△OM=4﹣=,所以点M的坐标为:(,0);【点评】本题考查了待定系数求二次函数解析式、垂直平分线的性质、勾股定理等知识点,难度不大,属于基础题.第(2)问虽然简单,却是对称问题与勾股定理相结合的经典应用,要引起重视.2016年3月9日。

人教版九年级数学上册-上第一次月考试卷.docx

人教版九年级数学上册-上第一次月考试卷.docx

初中数学试卷桑水出品2015-2016九年级上数学第一次月考试卷一、选择题(每小题2分,共20分)1、下列方程中,是关于x的一元二次方程的为()A.2x2=0 B.4x2=3yC.x2+1x=-1 D.x2=(x-1)(x-2)2、将方程x2+4x+2=0配方后,原方程变形为()A.(x+4)2=2 B.(x+2)2=2 C.(x+4)2=-3 D.(x+2)2=-53、关于的一元二次方程有实数根,则( )A.<0B.>0C.≥0D.≤04、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )A. x(x+1)=1035B.x(x-1)=1035C.x(x+1)=1035D.x(x-1)=10355、正方形的对称轴的条数为()A.1B.2C.3D.46、边长为3cm的菱形的周长是()A.6cm B.9cm C.12cm D.15cm7、若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.等腰梯形C.对角线相等的四边形D.对角线互相垂直的四边形8、如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()A.2B.3C.6D.9、如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A .2.5 B.C.D.210、如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④第8题第9题第10题二、填空题(每小题3分,共18分)11、把一元二次方程化为一般形式是_______________12、学校的一块菱形花园两对角线的长分别是6m和8m,则这个花园的面积为.13、写出一个有一根为的一元二次方程___________________14、如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为cm.15、已知平行四边形ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使平行四边形ABCD成为一个菱形,你添加的条件是.16、如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.第14题 第16题 三、解答题17、.解下列方程(每小题5分,共20分)(1)、用公式法解方程①01422=--x x 用配方法解方程②x 2+4x -2=0用因式分解方程③062=-x x (2)、解方程01242=--x x18、(本题7分)已知:如图,在矩形ABCD 中,点E ,F 分别在AB ,CD 边上,BE =DF ,连接CE ,AF .求证:AF =CE .19、(本题8分)已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFED为菱形?请说明理由.20、(本题7分)矩形ABCD的对角线AC、BD相交于点O,点E、F、G、H分别是OA、OB、OC、OD的中点,顺次连结E、F、G、H所得的四边形EFGH是矩形吗?21、(本题8分)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.22、(本题12分)某数学兴趣小组的一次课外活动,过程如下:如图1,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合;三角板的两边分别交AB、BC 的延长线于点P、点Q.(1)求证:DP=DQ;(2)如图1,作∠PDQ的平分线DE交BC于点E,连接PE,得到如图2,请问线段PE和QE有什么数量关系,并证明你猜测的结论;(3)如图3,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEP的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又航行了半小时到达 C 处,望见渔船 D 在南偏东 60°方向,若海监船的速
度为 50 海里 /小时,则 A,B 之间的距离为
海里(取

结果精确到 0.1 海里).
三、解答题 25.如图,在平面直角坐标系中,已知△ ABC 三个顶点的坐标分不为 A(﹣ 1,2),B(﹣ 3,4)C(﹣ 2,6) (1)画出△ ABC 绕点 A 顺时针旋转 90°后得到的△ A1B1C1 (2)以原点 O 为位似中心,画出将△ A1B1C1 三条边放大为原先的 2 倍后的△ A2B2C2 .
7.在正方形网格中,△ ABC 的位置如图所示,则 cosB 的值为( )
A. B. C. D. 考点: 勾股定理;锐角三角函数的定义. 专题:压轴题;网格型. 分析: 先设小正方形的边长为 1,然后找个与∠ B 有关的 RT△ ABD , 算出 AB 的长,再求出 BD 的长,即可求出余弦值. 解答: 解:设小正方形的边长为 1,则 AB=4 , BD=4, ∴cos∠B= = . 故选 B.
26.如图,斜坡 AC 的坡度(坡比)为 1: ,AC=10 米.坡顶有一 旗杆 BC,旗杆顶端 B 点与 A 点有一条彩带 AB 相连, AB=14 米.试求旗 杆 BC 的高度.
27.如图,在平行四边形 ABCD 中,过点 A 作 AE⊥BC,垂足为 E, 连接 DE,F 为线段 DE 上一点,且∠ AFE=∠B.
参考答案与试题解析
一、选择题
1.下列命题:①相似三角形一定不是全等三角形;②相似三角形对应
中线的比等于对应角平分线的比;③边数相同,对应角相等的两个多边形
相似;④ O 是△ ABC 内任意一点, OA、OB、OC 的中点连成的三角形△ A′
B′C′∽△ ABC .其中正确的个数是(

A.0 个 B.1 个 C. 2 个 D.3 个
故正确的命题是:②④共 2 个.
故选: C.
点评: 此题考查命题与定理,把握三角形全等与相似之间的联系,相
似的判定,中位线定理是解决咨询题的关键.
2. sin30°的值为(

A.
B. C. D.
考点: 专门角的三角函数值.
分析: 直截了当按照专门角的三角函数值进行运算即可.
解答: 解: sin30°= .
标是

22.如图,小明在 A 时测得某树的影长为 2m,B 时又测得该树的影长
为 8m,若两次日照的光线互相垂直,则树的高度为
m.
23.将一副三角尺如图所示叠放在一起,则 的值是

24.如图,某海监船向正西方向航行,在 A 处望见一艘正在作业渔船
D 在南偏西 45°方向,海监船航行到 B 处时望见渔船 D 在南偏东 45°方向,
【解析版】斑鸠店镇中学 2016 届九年级上第一 次月考数学试卷
一、选择题
1.下列命题:①相似三角形一定不是全等三角形;②相似三角形对应
中线的比等于对应角平分线的比;③边数相同,对应角相等的两个多边形
相似;④ O 是△ ABC 内任意一点, OA、OB、OC 的中点连成的三角形△ A′
B′C′∽△ ABC .其中正确的个数是(
全等三角形确实是能重合的三角形,形状相同,大小相同,因而全等三角
形是专门的相似三角形,此选项错误;
②、相似三角形对应中线的比、对应角平分线的比都等于相似比,此
选项正确;
③、边数相同,对应角分不相等的两个矩形不一定相似,此选项错误;
④、按照三角形的中位线得出三条边对应的比值为 ,两个三角形相似,
此选项正确.
A. B. C. D. 考点: 相似三角形的判定与性质. 分析: 按照 DE∥BC,证明△ ADE ∽△ ABC ,然后按照对应边成比例 求得 BC 的长度. 解答: 解:∵ DE∥BC, ∴△ ADE ∽△ ABC , 则=, ∵DE=1,AD=2 ,DB=3 ,
∴AB=AD+DB=5 , ∴BC= = . 故选 C. 点评: 本题考查了相似三角形的判定和性质,难度一样,解答本题的 关键是按照平行证明△ ADE ∽△ ABC .
;③
△PMN 为等边三角形;④当∠ ABC=45 °时, BN= PC.其中正确的个数
是( )
A.1 个 B.2 个 C. 3 个 D.4 个
二、填空题
21.在平面直角坐标系中,已知点 E(﹣ 4, 2),F(﹣ 2,﹣ 2),以原
点 O 为位似中心, 位似比为 2:1 将△ EFO 缩小,则点 E 的对应点 E′的坐
考点: 命题与定理.
分析: 按照全等三角形的定义:全等三角形确实是能重合的三角形,
形状相同,大小相同;相似三角形的定义:相似三角形是形状相同的三角
形,大小不一定相等;相似多边形的定义:相似多边形确实是形状相同的
多边形,按照这些定义逐一分析解答即可.
解答: 解:①、相似三角形是形状相同的三角形,大小不一定相同,
19.如图,菱形 ABCD 中,点 M,N 在 AC 上,ME ⊥AD ,NF⊥AB .若 NF=NM=2 ,ME=3 ,则 AN= ( )
A.3 B. 4 C.5 D.6
20.如图,在△ ABC 中∠ A=60°,BM ⊥AC 于点 M,CN⊥AB 于点 N,
P 为 BC 边的中点,连接 PM,PN,则下列结论:① PM=PN;②
5.已知△ ABC ,以点 A 为位似中心,作出△ ADE ,使△ ADE 是△ AB
C 放大 2 倍的图形,如此的图形能够作出个(

A.1 个 B.2 个 C. 4 个 D.许多个
6.如图,△ ABC 中,DE∥BC,DE=1,AD=2 ,DB=3,则 BC 的长是 ()
A. B. C. D.
7.在正方形网格中,△ ABC 的位置如图所示,则 cosB 的值为( )
(1)求证:△ ADF∽△ DEC; (2)若 AB=8 ,AD=6 ,AF=4 ,求 AE 的长.
28.如图是某货站传送物资的平面示意图.为了提升传送过程的安全 性,工人师傅欲减小传送带与地面的夹角,使其由 45°改为 30°.已知原 传送带 AB 长为 4 米.
(1)求新传送带 AC 的长度; (2)如果需要在物资着地点 C 的左侧留出 2 米的通道,试判定距离 B 点 4 米的物资 MNQP 是否需要挪走,并讲明理由. (讲明:(1)(2)的运算 结果精确到 0.1 米,参考数据: ≈1.41, ≈1.73, 个 C. 2 个 D.3 个
2. sin30°的值为(

A.
B. C. D.
3.两个相似三角形的面积比是 9:16,则这两个三角形的相似比是 ( )
A.9:16 B.3:4 C.9:4 D .3:16
4.在直角三角形中,各边的长度都扩大 3 倍,则锐角 A 的三角函数值 ()
A.也扩大 3 倍 B.缩小为原先的 C.都不变 D.有的扩大,有的缩小

A.138 B. C .135 D.不能确定
10.小明沿着坡度为 1:2 的山坡向上走了 1 000m,则他升高了( )
A.200 m B.500m C.500 m D.1000m
11.△ ABC 中,∠ C=90°, sinA= ,则 tanA 的值是( ) A. B. C. D.
12.在 Rt△ABC 中,∠ C=90°,已知 a 和 A,则下列关系中正确的是 ()
故选 C.
点评: 本题考查的是专门角的三角函数值,熟记各专门角度的三角函
数值是解答此题的关键.
3.两个相似三角形的面积比是 9:16,则这两个三角形的相似比是 ( )
A.9:16 B.3:4 C.9:4 D .3:16 考点: 相似三角形的性质. 分析: 因为相似三角形的面积比等于相似比的平方,因此这两个三角 形的相似比是 3:4. 解答: 解:∵两个相似三角形的面积比为 9:16, ∴它们对应的相似比是 3:4. 故选 B. 点评: 此题考查了相似三角形的性质:相似三角形的面积比等于相似 比的平方.
17.如图,Rt△ABC 中,∠A=90°,AD ⊥ BC 于点 D,若 BD:CD=3: 2,则 tanB=( )
A. B. C. D.
18.如图所示,在平行四边形 ABCD 中,AC 与 BD 相交于点 O,E 为 OD 的中点,连接 AE 并延长交 DC 于点 F,则 DF:FC=( )
A.1:4 B.1:3 C. 2:3 D.1:2
故选 C. 点评: 明白得锐角三角函数的概念, 明白三角函数值与边的长度无关.
5.已知△ ABC ,以点 A 为位似中心,作出△ ADE ,使△ ADE 是△ AB
C 放大 2 倍的图形,如此的图形能够作出个(

A.1 个 B.2 个 C. 4 个 D.许多个
考点: 位似变换.
分析: 按照题意作图, 注意有两种作法, 在位似中心的两侧或同侧. 因
点评: 本题考查了锐角三角函数的定义以及勾股定理的知识,此题比 较简单,关键是找出与角 B 有关的直角三角形.
8.如图, DE 是△ ABC 的中位线,延长 DE 至 F 使 EF=DE,连接 CF, 则 S△CEF: S 四边形 BCED 的值为( )
A.1:3 B.2:3 C. 1:4 D.2:5 考点:相似三角形的判定与性质;全等三角形的判定与性质;三角形 中位线定理. 分析: 先利用 SAS 证明△ ADE ≌△ CFE(SAS),得出 S△ADE=S△ C FE,再由 DE 为中位线,判定△ ADE ∽△ ABC ,且相似比为 1:2,利用相
14.D 为△ ABC 的 AB 边上一点,若△ ACD ∽△ ABC ,应满足条件有
下列三种可能:①∠ ACD= ∠B;②∠ ADC= ∠ACB ;③ AC2=AB ? AD ,其
中正确的个数是(

A.0 个 B.1 个 C. 2 个 D.3 个
相关文档
最新文档