高中数学有关圆锥曲线的经典结论

合集下载

高中数学圆锥曲线最常用二级结论总结

高中数学圆锥曲线最常用二级结论总结

圆锥曲线的常用二级结论一、椭圆的常用二级结论1.(1)与椭圆22221x y a b +=共焦点的椭圆的方程可设为()222221,0x y b a b λλλ+=+>++.(2)与椭圆22221x y a b +=有相同的离心率的椭圆可设为2222x y a b λ+=,()2222,0x y b aλλ+=>.2.椭圆的两焦点分别为12,F F ,P 是椭圆上任意一点,则有以下结论成立:(1)122PF PF a +=;(2)1a c PF a c -≤≤+;(3)2212b PF PF a ≤⋅≤;(4)焦半径公式10||PF a ex =+,20||PF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ).3.椭圆的方程为22221x y a b +=(a >b >0),左、右焦点分别为12,F F ,()00,P x y 是椭圆上任意一点,则有:(1)()()22222222000022,b a y a x x b y a b =-=-;(2)参数方程()00cos sin x a y b θθθ=⎧⎨=⎩为参数;4.设P 点是椭圆上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2)焦点三角形的面积:122||=tan2PF F P S c y b θ∆=.(3)当P 点位于短轴顶点处时,θ最大,此时12PF F S ∆也最大;(4).21cos 2e -≥θ(5)点M 是21F PF ∆内心,PM 交21F F 于点N ,则caMN PM =||||.5.有关22b a-的经典结论(椭圆中的垂径定理)(1).AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a⋅=-.(2).椭圆的方程为22221x y a b+=(a >b >0),过原点的直线交椭圆于,A B 两点,P 点是椭圆上异于,A B 两点的任一点,则有22PA PBb K K a=-(3).椭圆的方程为22221x y a b+=(a >b >0),过原点的直线交椭圆于,A B 两点,F 1,F 2点是椭圆上两焦点,则有四边形AF 1BF 2至少为平行四边6.若000(,)P x y 在椭圆22221x y a b+=上,则(1)以000(,)P x y 为切点的切线斜率为2020b x k a y =-;(2)过0P 的椭圆的切线方程是00221x x y ya b+=.7.若000(,)P x y 在椭圆22221x y a b+=外,则过000(,)P x y 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.8.椭圆的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.9.过椭圆上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).10.若P 为椭圆上异于长轴端点的任一点,F 1,F 2是焦点,12PF F α∠=,21PF F β∠=,则()sin sin sin c e a αβαβ+==+.11.P 为椭圆上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.12.O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b +.13.已知A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x ,则22220a b a b x a a ---<<.14.过焦点且垂直于长轴的弦叫通经,其长度为ab 2215.从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线必经过椭圆的另一个焦点.16.若椭圆方程为22221(0)x y a b a b+=>>,半焦距为c ,焦点()()12,0,,0F c F c -,设(1).过1F 的直线l 的倾斜角为α,交椭圆于A 、B 两点,则有①2211,cos cos b b AF BF a c a c αα==-+;②2cos ab AB a c α=-2222(2).若椭圆方程为22221(0)x y a b a b+=>>,半焦距为c ,焦点()()12,0,,0F c F c -,设过F 2的直线l 的倾斜角为α,交椭圆于A 、B 两点,则有:①22,cos cos b b AF BF a c a c αα==22+-;②22cos ab AB a c α=-222结论:椭圆过焦点弦长公式:()()222cos 2sin ab x a c AB ab y a c αα⎧⎪⎪-=⎨⎪⎪-⎩222222焦点在轴上焦点在轴上17.若AB 是过焦点F 的弦,设,AF m BF n ==,则2112amnb+=18、过圆锥曲线的焦点F 作直线交圆锥曲线于A 、B 两点,若λ=BFAF ,则有下列结论:1、椭圆、双曲线(直线与双曲线两个交点在一支上)、抛物线(离心率e=1)(焦比公式)①焦点在x 轴上时:11cos +-=λλθe ,1112+-+=λλk e ;②焦点在y 轴上时:11sin +-=λλθe ,11112+-+=λλk e 。

【智博教育原创专题】三大圆锥曲线经典结论

【智博教育原创专题】三大圆锥曲线经典结论

注重结论 巧妙应用之三大圆锥曲线经典结论【结论1】在椭圆22221(0)x y a b a b +=>>上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为定值22b a -(注:若椭圆焦点在y 轴上时,即0b a >>,则定值为22a b-)。

【证明】设原点为1122,(,),(,)O A x y B x y 是椭圆上的任意不同的两点,00(,)P x y 是弦AB 中点。

2211221202212022221221x y x x x a b y y y x y a b ⎧+=⎪+=⎧⎪⇒⎨⎨+=⎩⎪+=⎪⎩,由以上几式可得:1212121222()()()()0x x x x y y y y a b +-+--=。

可转化为20122120y y y b x x x a-⋅=-,即22AB OP b k k a ⋅=-。

【结论2】双曲线22221(0,0)x y a b a b -=>>上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为定值22b a (注:若双曲线为焦点在y 轴上的形式,则定值为22a b)。

【证明】设原点为1122,(,),(,)O A x y B x y 是双曲线上的任意两个不同的点,00(,)P x y 是弦AB 的中点。

2211221202212022221221x y x x x a b y y y x y a b ⎧-=⎪+=⎧⎪⇒⎨⎨+=⎩⎪-=⎪⎩,由以上几式可得:1212121222()()()()0x x x x y y y y a b +-+--=。

可转化为20122120y y y b x x x a-⋅=-,即22AB OP b k k a ⋅=。

【结论3】抛物线22y px =上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为px (0x 为弦中点的横坐标)。

【证明】设原点为1122,(,),(,)O A x y B x y 为22y px =上任意两个不同的点,00(,)P x y 为弦AB 中点。

圆锥曲线常用方法与结论(收藏)

圆锥曲线常用方法与结论(收藏)

FAP HBQ 圆锥曲线常用方法与结论(收藏)1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。

圆锥曲线的十大经典结论一

圆锥曲线的十大经典结论一

圆锥曲线十大经典结论一一、焦点三角形面积公式:2tan 221θb S F PF =∆(椭圆); 2cot 221θb S F PF =∆(双曲线),其中θ=∠21PF F例1、(上海高考)已知21,F F 是椭圆C :)0(12222>>=+b a by a x 的两个焦点,P 为椭圆C 上一点,且→→⊥21PF PF ,若21F PF ∆的面积为9,则b =_______________例2、(全国卷)已知21,F F 是双曲线C :122=-y x 的左右焦点,点P 在C 上, 6021=∠PF F ,则P 到x 轴的距离为____________________二、(最重要的结论)θcos 2c a b AF -= θcos 2c a b BF += 证明如下:重点讲调:(1)其中θ为直线AB 的倾斜角;(2)不区分椭圆、双曲线;不区分左右焦点;(2)原则:长则(减)小;短则加(大);(4)焦点在y 轴上,θcos 换成θsin 。

例3、(安徽高考)已知椭圆C :14822=+y x(1)已知过点F 1(-2,0)倾斜角为θ的直线交椭圆C 于A ,B 两点.求证:22cos AB =-θ; (2)过点F 1(-2,0)作两条互相垂直的直线分别交椭圆C 于点A 、B 和D 、E ,求AB DE +的最小值.例4(江苏高考)如图,在平面直角坐标系xoy 中,椭圆1222=+y x 的左、右焦点分别为21,F F ,设B A ,是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF ,2AF 与1BF 交于点P 。

(1)若1AF -262=BF ,求直线1AF 的斜率;(2)求证:1PF +2PF 是定值。

例5、(重庆高考)过双曲线422=-y x 的右焦点F 作倾斜角为 105的直线交双曲线于Q P ,两点,则FQ FP •的值为_____________________________三、由焦半径推导出来→→=FB AF λ或→→=AF FB λ,则1112+-+=λλk e 或11cos +-=λλθe ,其中,θ为直线AB 的倾斜角;焦点在y 轴上,θcos 换成θsin 。

(完整版)解圆锥曲线问题常用方法及性质总结

(完整版)解圆锥曲线问题常用方法及性质总结

解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

高考数学经典二级结论解读与应用训练:专题14 圆锥曲线中的一类定点问题 (原卷版)

高考数学经典二级结论解读与应用训练:专题14   圆锥曲线中的一类定点问题 (原卷版)


4
于 A , B 两点,若 OA , OB 恰好是 RtVOAB 的“勾”“股”( O 为坐标原点),则此直线 l 恒过定点
例( )
A.
1 4
,
0
B.
1 2
,
0
C. 0, 2
D. 0, 4


由题意知
OA 2
OB 2
AB
2
,所以
OA
OB
,即
OA
OB
,设直线
AB
的方程为
y
kx
b


A x1, y1 , B x2, y2 ,联立直线与抛物线的方程由韦达定理得出 x1 x2 4k , x1x2 4b ,代入
同理,抛物线 x2=2py(p>0)上异于顶点的两动点 A,B,若푶 ⊥푶 ,则直线 AB 过定点(0,2p).


3.《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用.
直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“勾 2+股 2=弦 2”,设直线 l 交抛物线 y 1 x2
A.
1 2
,
1 3
B.
1 2
,
1 3
C.
1 2
,
2 3
D.
1 2
,
2 3
3.已知点
A,
B
在抛物线
y2
x
上且位于
x
轴的两侧, OA OB
2
(其中
O
为坐标原点),则直线
AB
一定
过点( )
A. (2, 0)
B.
� �

高中圆锥曲线结论总结

高中圆锥曲线结论总结

高中圆锥曲线结论总结
高中圆锥曲线结论总结
一、圆锥曲线的标准方程
圆锥曲线的标准方程为:
$$frac{x^2}{a^2}+frac{y^2}{b^2}=1$$
其中,a与b分别是椭圆的两个半径,且ab,a与b是正实数。

二、圆锥曲线的性质
1. 圆锥曲线的概念
圆锥曲线是由两个椭圆及其余部分所构成的四边形的边界线,是圆锥曲线的概念。

2. 圆锥曲线的对称性
由于圆锥曲线是由两个椭圆所构成,因此它具有x轴对称性和y 轴对称性,即曲线的俩边彼此对称。

3. 圆锥曲线的四个焦点
圆锥曲线的四个焦点分别位于椭圆的两个长轴端点,称为四个焦点。

4. 圆锥曲线的两个长轴
圆锥曲线的两个长轴是两个椭圆的长轴,它们的长度分别是a和b,两轴相交处的位置是圆锥曲线的中心点。

5. 圆锥曲线的弧长
圆锥曲线的弧长为:
$$mathcal{L}=2aarcsinfrac{b}{a}$$
其中,a与b是椭圆的两个半径,且ab。

6. 圆锥曲线的曲率
圆锥曲线的曲率为:
$$K=frac{a}{b}$$
其中,a与b是椭圆的两个半径,且ab。

【高考】数学圆锥曲线的经典性质50条

【高考】数学圆锥曲线的经典性质50条

【高考】数学圆锥曲线的经典性质50条椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=. 6.若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7.椭圆22221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8.椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12.若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.13.若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+. 双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5.若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b -=. 6.若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 7.双曲线22221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8.双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11.AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即022y a x b K AB=。

圆锥曲线的一些经典结论

圆锥曲线的一些经典结论

圆锥曲线的一些经典结论1. 圆锥曲线有四种类型:椭圆、抛物线、双曲线和圆。

2. 椭圆:椭圆是圆锥曲线的一种,它由离心率小于1的点构成。

椭圆具有两个焦点和一个长轴和短轴。

3. 抛物线:抛物线是圆锥曲线的一种,它具有一个焦点和一个直线作为其轴线。

所有的点到焦点的距离都等于其到轴线的距离。

4. 双曲线:双曲线是圆锥曲线的一种,它由离心率大于1的点构成。

双曲线具有两个焦点和两个分离的曲线枝。

5. 圆:圆是圆锥曲线的一种特殊情况,它的离心率为零,所有的点到圆心的距离相等。

6. 圆锥曲线的方程:圆锥曲线可以通过方程来表示。

例如,椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心点,a 和b分别是长轴和短轴的长度。

7. 长轴和短轴:圆锥曲线具有两个轴,它们都通过曲线的中心点。

长轴是椭圆或双曲线的主轴,它的长度是贯穿曲线的最长距离。

短轴是与长轴垂直的轴,它的长度是贯穿曲线的最短距离。

8. 离心率:离心率是一个非常重要的指标,用来描述圆锥曲线的形状。

离心率通常用字母e表示,可以通过离心率的定义公式e =c/a来计算,其中c是焦点离中心的距离,a是长轴的长度。

9. 集点定理:集点定理是圆锥曲线研究的基本定理之一。

它表明,对于一个椭圆或双曲线,所有点到两个焦点的距离之和是常数,等于长轴的长度。

10. 曲率:曲率是描述曲线弯曲程度的属性。

圆锥曲线的曲率在不同点上有不同的值,它可以通过曲线的方程来计算。

这些是圆锥曲线的一些经典结论,它们是圆锥曲线理论的基础,可以应用在许多科学和工程领域,如天文学、物理学和工程学等。

高中数学解析几何圆锥曲线的第三定义与斜率乘积是定值模型问题探究

高中数学解析几何圆锥曲线的第三定义与斜率乘积是定值模型问题探究

高中数学解析几何圆锥曲线的第三定义与斜率乘积是定值模型问题探究 问题与知识提出: 圆锥曲线的第三定义:平面内的动点到两定点1,0A a 2,0A a 的斜率乘积等于常数21e 点的轨迹叫做椭圆或双曲线,其中两个定点为椭圆和双曲线的两个顶点.其中如果常数211e时,轨迹为双曲线,如果211,0e 时,轨迹为椭圆。

圆锥曲线的第三定义的有关结论:1.椭圆方程中有关22b a-的经典结论(1).AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM ABb k k a⋅=-.(2).椭圆的方程为22221x y a b+=(a >b >0),,A A 为椭圆的长轴顶点,P 点是椭圆上异于长轴顶点的任一点,则有1222PA PA b K K a=-(3). 椭圆的方程为22221x y a b+=(a >b >0),,B B 为椭圆的短轴顶点,P 点是椭圆上异于短轴顶点的任一点,则有1222PB PB b K K a=-(4). 椭圆的方程为22221x y a b+=(a >b >0),过原点的直线交椭圆于,A B 两点,P 点是椭圆上异于,A B 两点的任一点,则有22PA PBb K K a=-2.双曲线方程中有关22b a的经典结论(1)AB 是双曲线22221x y a b -=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM ABb k k a⋅=, 即2020ABb x K a y =。

(2)双曲线的方程为22221x y a b-=(a >0,b >0),,A A 为双曲线的实轴顶点,P 点是双曲线上异于实轴顶点的任一点,则有1222PA PA b K K a= (3)双曲线的方程为22221x y a b-=(a >0,b >0),,B B 为双曲线的虚轴端点,P 点是双曲线上异于虚轴端点的任一点,则有1222PB PB b K K a= (4) 双曲线的方程为22221x y a b-=(a >0,b >0),过原点的直线交双曲线于,A B 两点,P点是双曲线上异于,A B 两点的任一点,则有22PA PB b K K a= 典型例题:例1.(2019全国卷2理科数学第21题)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM与BM 的斜率 之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.例2.已知平行四边形ABCD 内接于椭圆()2222:10x y a b a bΩ+=>>,且AB , AD 斜率之积的范围为32,43⎛⎫-- ⎪⎝⎭,则椭圆Ω离心率的取值范围是( )A. 12⎛ ⎝⎭B. ⎝⎭C. 14⎛ ⎝⎭D. 11,43⎛⎫⎪⎝⎭例3.设椭圆()012222>>=+b a by a x C :的左右顶点为A,B.P 是椭圆上不同于A,B 的一点,设直线AP,BP 的斜率分别为m,n ,则当()||ln ||ln 32323n m mnmn b a +++⎪⎭⎫ ⎝⎛-取得最小值时,椭圆C 的离心率为( )A.51B.22C.54D.23例4.已知椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为1F ,2F ,12F F =,经过点1F 的直线(不与x 轴重合)与椭圆C 相交于A ,B 两点,△2ABF 的周长为8. (1)求椭圆C 的方程;(2)经过椭圆C 上的一点Q 作斜率为1k ,2k (10k ≠,20k ≠)的两条直线分别与椭圆C 相交于异于点Q 的M ,N 两点.若M ,N 关于坐标原点对称,求12k k 的值巩固提升:1.已知椭圆C : 22221(0)x y a b a b+=>>的长轴长为4, A , B 是其长轴顶点, M 是椭圆上异于A , B 的动点,且34MA MB k k ⋅=-.(1)求椭圆C 的标准方程;(2)如图,若动点R 在直线6x =上,直线AR , BR 分别交椭圆C 于P , Q 两点.请问:直线PQ 是否过定点?若是,求出定点坐标;若不是,请说明理由.2.如图,设点,A B 的坐标分别为()),,直线,AP BP 相交于点P ,且它们的斜率之积为23-. (1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M N 、是轨迹为C 上不同于,A B 的两点,且满足//,//AP OM BP ON ,求证:MON ∆的面积为定值.3.已知椭圆C:22 221(0)x ya ba b+=>>的短轴长为25,离心率为32,圆E的圆心在椭圆C上,半径为2,直线1y k x=与直线2y k x=为圆E的两条切线.(1)求椭圆C的标准方程;(2)试问:12*k k是否为定值?若是,求出该值;若不是,说明理由.4.如图,在平面直角坐标系xOy中,椭圆2222:1x yCa b+=(0)a b>>的离心率为12,右准线的方程为4,x=1,F2F分别为椭圆C的左、右焦点,A,B分别为椭圆C的左、右顶点.(1)求椭圆C的标准方程;(2)过(,0)T t()t a>作斜率为k(0)k<的直线l交椭圆C于M,N两点(点M在点N的左侧),且12//F M F N,设直线AM,BN的斜率分别为1,k2k,求12k k⋅的值.5.已知椭圆C :()222210x y a b a b +=>>()2,1M 在椭圆上,O 为坐标原点.(1)求椭圆C 的标准方程;(2)已知A 、B 为椭圆上不同的两点.①设线段AB 的中点为点T ,证明:直线AB 、OT 的斜率之积为定值;②若A 、B 两点满足()0OA OB OM λλ+=≠,当OAB ∆的面积最大时,求λ的值.6.已知椭圆E :,直线l 不过原点O 且不平行于坐标轴,l 与E 有两个交点A ,B ,线段AB 的中点为M .若,点K 在椭圆E 上,、分别为椭圆的两个焦点,求的范围; 证明:直线OM 的斜率与l 的斜率的乘积为定值;若l 过点,射线OM 与椭圆E 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时直线l 斜率;若不能,说明理由.2229(0)x y m m +=>()13m =1F 2F 12KF KF ⋅()2()3,3mm ⎛⎫ ⎪⎝⎭高中数学解析几何圆锥曲线的第三定义与斜率乘积是定值模型问题探究 问题与知识提出: 圆锥曲线的第三定义:平面内的动点到两定点1,0A a 2,0A a 的斜率乘积等于常数21e 点的轨迹叫做椭圆或双曲线,其中两个定点为椭圆和双曲线的两个顶点.其中如果常数211e时,轨迹为双曲线,如果211,0e 时,轨迹为椭圆。

专题01 圆锥曲线的常用结论-2020届高三突破满分数学之圆锥曲线(文理通用)

专题01 圆锥曲线的常用结论-2020届高三突破满分数学之圆锥曲线(文理通用)

专题01 圆锥曲线的常用结论一.椭圆焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<e 越小,椭圆越圆;e 越大,椭圆越扁1.(1)与椭圆22221x y a b +=共焦点的椭圆的方程可设为()222221,0x y b a b λλλ+=+>++. (2)与椭圆22221x y a b +=有相同的离心率的椭圆可设为2222x y a b λ+=,()2222,0x y b aλλ+=>.2.椭圆的两焦点分别为12,F F ,P 是椭圆上任意一点,则有以下结论成立: (1)122PF PF a +=; (2)1a c PF a c -≤≤+; (3)2212b PF PF a ≤⋅≤;(4)焦半径公式10|PF a ex =+,20||PF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).3.椭圆的方程为22221x y a b+=(a >b >0), 左、右焦点分别为12,F F ,()00,P x y 是椭圆上任意一点,则有:(1)()()22222222000022,b a y a x x b y a b =-=-; (2)参数方程()00cos sin x a y b θθθ=⎧⎨=⎩为参数; 4.设P 点是椭圆上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2)焦点三角形的面积: 122||=tan 2PF F P S c y b θ∆=.(3)当P 点位于短轴顶点处时, θ最大,此时12PF F S ∆也最大;(4) .21cos 2e -≥θ(5)点M 是21F PF ∆内心,PM 交21F F 于点N ,则caMN PM =||||.5.有关22b a-的经典结论(1).AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-.(2).椭圆的方程为22221x y a b+=(a >b >0),,A A 为椭圆的长轴顶点,P 点是椭圆上异于长轴顶点的任一点,则有1222PA PA b K K a=-(3). 椭圆的方程为22221x y a b+=(a >b >0),,B B 为椭圆的短轴顶点,P 点是椭圆上异于短轴顶点的任一点,则有1222PB PB b K K a=-(4). 椭圆的方程为22221x y a b+=(a >b >0)P 点是椭圆上异于,A B 两点的任一点,则有22PA PBb K K a=-6. 若000(,)P x y 在椭圆22221x y a b+=上,则(1)以000(,)P x y 为切点的切线斜率为2020b x k a y =-;(2)过0P 的椭圆的切线方程是00221x x y ya b+=. 7.若000(,)P x y 在椭圆22221x y a b+=外 ,则过000(,)P x y 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b+=. 8.椭圆的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=. 9.过椭圆上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BCb x k a y =(常数). 10. 若P 为椭圆上异于长轴端点的任一点,F 1, F2是焦点, 12PF F α∠=, 21PF F β∠=,则()sin sin sin c e a αβαβ+==+ . 11. P 为椭圆上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.12.O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b+. 13. 已知A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.14. 离心率e=a c =21)(ab -、e 2=1-2)(ab 15. 过焦点且垂直于长轴的弦叫通经,其长度为ab 2216. 从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线必经过椭圆的另一个焦点.17. 过椭圆22221(0)x y a b a b+=>>左焦点的焦点弦为AB ,则)(221x x e a AB ++=过右焦点的弦)(221x x e a AB +-=.18. 内接矩形最大面积:2ab .19. 若椭圆方程为22221(0)x y a b a b+=>>,半焦距为c ,焦点()()12,0,,0F c F c -,设(1).过1F 的直线l 的倾斜角为α,交椭圆于A 、B 两点,则有①2211,cos cos b b AF BF a c a c αα==-+ ;②2cos ab AB a c α=-2222(2).若椭圆方程为22221(0)x y a b a b+=>>,半焦距为c ,焦点()()12,0,,0F c F c -,设过F 2的直线l 的倾斜角为α,交椭圆于A 、B 两点,则有:①22,cos cos b b AF BF a c a c αα==22+- ;②22cos ab AB a c α=-222结论:椭圆过焦点弦长公式:()()222cos 2sin ab x a c AB ab y a c αα⎧⎪⎪-=⎨⎪⎪-⎩222222焦点在轴上焦点在轴上 20.若AB 是过焦点F 的弦,设,AF m BF n ==,则2112a mnb+=二.双曲线焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>,e 越大,双曲线的开口越阔渐近线方程by x a=±a y x b=±1.(1)与22221x y a b -=共轭的双曲线方程为22221x y a b-=-,①它们有公共的渐近线;②四个焦点都在以原点为圆心,C 为半径的圆上;③2212111e e +=。

平面截圆锥是圆锥曲线 证明

平面截圆锥是圆锥曲线 证明

平面截圆锥是圆锥曲线证明平面截圆锥是圆锥曲线,这是一个经典的几何问题。

在证明这个命题之前,让我们先了解一下圆锥曲线的定义和一些基本知识。

圆锥曲线是通过固定一个点F(焦点)和一条直线L(准线),通过动点P(动点)到焦点和准线的距离的比值的保持不变而形成的曲线。

这个比值叫做离心率,通常用e表示。

离心率等于0时,得到的是一个圆;离心率等于1时,得到的是一个抛物线;离心率大于1时,得到的是一个双曲线。

接下来我们来证明平面截圆锥是圆锥曲线。

假设我们有一个圆锥,它的焦点是F,准线是L。

如果我们在圆锥上选择一个任意的平面Q,使其与准线相交于点A,并且与圆锥的侧面相交于一条曲线C。

首先,我们来证明曲线C是一个闭合曲线。

假设平面Q与圆锥的顶点O连接,这条线可以称为母线。

由于圆锥的性质,焦点F到准线L 的距离与焦点F到母线的距离之比是一个常数,即e。

由于Q与L相交于点A,因此Q与F到A的距离之比也是e。

由于F到A的距离是一个有限值,所以F到Q的距离也是有限的。

因此,曲线C是一个有限的闭合曲线。

其次,我们来证明曲线C是一个连续的曲线。

假设我们在曲线C上选择两个相邻的点B和C,它们之间的距离可以任意小。

然后,我们取点B和C在平面Q上的投影,分别记为B'和C'。

由于和平面Q相交的直线和圆锥的母线垂直,所以B'和C'距离准线L的距离之比也是e。

由于B'和C'在平面Q上的投影距离可以任意小,因此它们到准线L的距离之比也可以任意接近e。

从而证明了曲线C是一个连续的曲线。

最后,我们来证明曲线C是一个圆锥曲线。

由于Q是一个平面,所以曲线C在平面Q上的投影是一个闭合的曲线。

另外,根据平面几何的性质,曲线C与平面Q的相交点的轨迹构成一个圆锥曲线。

因此,我们可以得出结论:平面截圆锥是圆锥曲线。

从以上的证明过程中,我们可以看出,平面截圆锥作为圆锥曲线的一种特例,具有圆锥曲线的基本性质。

这个结论不仅在几何学中具有重要的意义,而且在物理学、工程学等应用领域也有广泛的应用。

2018年圆锥曲线常用结论(无需记忆-会推导即可)

2018年圆锥曲线常用结论(无需记忆-会推导即可)

椭圆、双曲线、抛物线--经典结论椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM ABb k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b+=+. 双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=. 8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关解析几何的经典结论一、椭 圆1.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3.以焦点弦PQ 为直径的圆必与对应准线相离.4.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y ya b +=. 6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b +=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a⋅=-,即0202y a x b K AB-=。

12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+. 二、双曲线1.点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3.以焦点弦PQ 为直径的圆必与对应准线相交.4.以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)00022a b 0线的切线方程是00221x x y ya b -=.6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - ,2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9.设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

00022a b分的中点弦的方程是2200002222x x y y x y a b a b -=-.13. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b-=-.椭圆与双曲线的对偶性质--(会推导的经典结论) 椭 圆1. 椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=. 2. 过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BCb x k a y =(常数). 3. 若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1,F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan t 22a c co a c αβ-=+. 4. 设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.5. 若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e 1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7. 椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++. 8. 已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b+.9. 过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 10. 已知椭圆22221x y a b+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.11. 设P 点是椭圆22221x y a b+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2)122tan2PF F S b γ∆=.12. 设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2)2tan tan 1e αβ=-.(3) 22222cot PABa b S b a γ∆=-. 13. 已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.双曲线1. 双曲线22221x y a b-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b+=.2. 过双曲线22221x y a b-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且2020BCb x k a y =-(常数).3. 若P 为双曲线22221x y a b-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan t 22c a co c a αβ-=+(或tan t 22c a co c a βα-=+). 4. 设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.5. 若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e 1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.7. 双曲线22221x y a b-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A a B b C -≤. 8. 已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,P 、Q为双曲线上两动点,且OP OQ ⊥. (1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a-.9. 过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF e MN =.10. 已知双曲线22221x y a b-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a+≥或220a b x a +≤-.11. 设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122cot 2PF F S b γ∆=.12. 设A 、B 是双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P是双曲线上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PABa b S b a γ∆=+. 13. 已知双曲线22221x y a b-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.其他常用公式:1、连结圆锥曲线上两个点的线段称为圆锥曲线的弦,利用方程的根与系数关系来计算弦长,常用的弦长公式:212122111AB k x x y y k=+-=+- 2、直线的一般式方程:任何直线均可写成(A,B 不同时为0)的形式。

相关文档
最新文档