3.4实际问题与一元一次方程--方案选择问题
3.4 实际问题与一元一次方程(一)配套与工程问题
3.4 实际问题与一元一次方程(一)配套与工程问题一、选择题1.某车间有20名工人,生产螺栓和螺母,每人每天能生产螺栓12个或螺母16个.如果分配x 名工人生产螺栓,其余的工人生产螺母,要恰好使每天生产的螺栓和螺母按1∶2配套.求x 所列的方程是( )A .12x =16(20-x )B .16x =12(20-x )C .2×16x =12(20-x )D .2×12x =16(20-x )2.41人参加运土劳动,有三十根扁担,要安排多少人抬(两人合用一根扁担),多少人挑(一人用一根扁担),可使扁担和人数刚好配套?若设有x 人挑土,则所列方程是( )A .41)30(2=--x xB .30)41(2=-+x x C .30241=-+x x D .x x -=-4130 3.在加固某段河坝时,需要动用15台挖土,运土机械,每台机械每小时能挖土18立方米或运土12立方米,为了使挖出的土能及时运走,若安排x 台机械挖土,则可列方程( )A .151218=-xB .)28(1218x x -=C .)15(1812x x -=D .151218=+x x4.某地下管道由甲工程队单独铺设需要20天,由乙工程队单独铺设需要30天.如果由这两个工程队从两端同时相向施工,总共需要( )A .10天B .12天C .14天D .16天5.某班组每天需生产了50个零件,才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前三天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程( )A .1205x +-506x +=3 B .50x -506x +=3 C .50x -120506x ++=3 D .120506x ++-50x =3 二、填空题6.某中学的学生自己动手整修操场,如果让八年级学生单独工作,需要6小时完成;如果让九年级学生单独工作,需要4小时完成.现在由八年级、九年级学生一起工作x 小时,完成了任务.则=x .7.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x 人做上衣,则做裤子的人数为 人,根据题意,可列方程为 ,解得x = .8.某瓷器厂共有120个工人,每个工人一天能做200只茶杯或50只茶壶.如果8只茶杯和一只茶壶为一套,则安排 人生产茶壶可使每天生产的瓷器配套.9.甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,那么需要从乙队抽调_______人到甲队.三、解答题10.某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?11.东方红机械厂加工车间有90名工人,平均每人每天加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问一天最多可以生产多少套这样成套的产品?12.用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?13.某玩具加工车间要赶在“6·1”儿童节前加工450个毛绒玩具,决定由甲、乙两班工人来完成.已知甲班工人每天做20个玩具,乙班工人的速度是甲班工人的1.5倍,问甲、乙两班工人需要做多少天才能完成任务?14.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.15.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?3.4 实际问题与一元一次方程(一)配套与工程问题一、选择题1.D 2.C 3.C 4.B 5.C二、填空题6.512 7.)54(x -,)54(108x x -=,30 8.40 9.8 三、解答题10.设每天有x 个工人生产镜片,)60(x -个工人生产镜架,一副眼镜有一个镜架,2片镜片,故可以设方程为250)60(200⨯⨯-=x x 200x=(60-x )*50*2方程两边同时除以100,得x x -=602解得20=x答: 20个工人生产镜片,40个工人生产镜架11.设一天最多可以生产x 套这样成套的产品, 由题意得90153202=+x x ,解得 300=x 答:一天最多可以生产300套这样成套的产品.12.设用x 张制盒身,则用)108(x -张制盒底正好制成整套罐头盒.列方程 )108(42152x x -=⨯ 解得:63=x 108-x =45答:用63张制盒身,则用45张制盒底正好制成整套罐头盒.13.设做x 天完成任务,由题意得450205.120=⨯+x x x解得:9=x答:甲、乙两班工人需要做9天才能完成任务。
人教版七年级上册数学实际问题与一元一次方程--方案选择问题训练
人教版七年级上册数学3.4实际问题与一元一次方程--方案选择问题训练一、单选题1.七年级学生计划乘客车去春游,如果减少一辆客车,每辆车正好坐60人.如果增加一辆客车,每辆正好坐45人,则七年级共有学生( )A .240人B .300人C .360人D .420人2.某单位元旦期间组织员工到正定出游,原计划租用28座客车若干辆,但有4人没有座位,若租用同样数量的33座客车,只有一辆空余了11个座位,其余客车都已坐满,则该单位组织出游的员工有( )A .80人B .84人C .88人D .92人3.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为( )A .6名B .7名C .8名D .9名4.某学校实行小班化教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室,那么这所学校共有教室( )A .18间B .22间C .20间D .21间5.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?( )A .39B .40C .41D .426.今年开学,由于疫情防控的需要,某学校统一购置口罩,其中给七年级(1)班全体学生配备了一定数量的口罩,若给每个学生发3个口罩,则多30个口罩,若给每个学生发5个口罩,则少50个口罩,请问该班有多少名学生?设该班有为x 名学生,可列方程( )A .330550x x +=+B .330550x x +=-C .350530x x -=+D .330550x x -=-7.甲、乙两店以同样价格出售一种商品,并推出不同的优惠方案在甲店累计购物超过100元后,超出100元的部分打9折;在乙店累计购物超过50元后,超出50元的部分打9.5折,则顾客到两店购物花费一样时为()A.累计购物不超过50元B.累计购物超过50元不超过100元C.累计购物超过100元D.累计购物不超过50元或刚好为150元8.阳光书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;①一次性购书超过100元,但不超过200元,一律打九折;①一次性购书超过200元,一律打八折.如果小明同学一次性购书付款171元,那么他所购书的原价为()A.190元或213.75元B.213.75元C.200元D.190元或200元二、填空题9.某校初一年级某班40个学生到湖边坐船游览,船家有三人船、二人船和一人船三种船提供出租,三人船每只船租金60元,二人船每只船租金50元,一人船每只船租金30元.40个学生刚好坐满了15只船,求这40个学生坐船的最低费用为_____元.10.东北师大附中校团委组织了职业微体验活动,初一(3)班52名学生分别去科技馆和图书馆参观,去科技馆的人数比去图书馆人数的2倍少5人,设去图书馆的人数为x 人,则可列方程:__________.11.小丽在水果店用18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,设小丽买了苹果x千克,可列方程__________.12.某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为______.13.几个人共同种一批核桃树,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗,若设参与种树的有x人,则列方程为______________________.14.学校买了大小椅子20张,共花去275元,已知大椅子每张15元,小椅子每张10元,若设大椅子买了x张,则小椅子买了________张,列出方程_________________.15.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了_____元.16.某校初中一年级组织学生春游活动,如果包车6辆会有10个学生没有座位,如果包车7辆则会多出30个空位,则该年级学生人数为______人.三、解答题17.甲超市在中秋节这天进行苹果优惠促销活动,苹果的标价为10元/kg ,如果一次购买4kg 以上的苹果,超过4kg 的部分按标价6折售卖,x (单位:kg )表示购买苹果的量.(1)中秋节这天,小明购买3kg 苹果需付款_______元;购买5kg 苹果需付款_______元;(2)中秋节这天,小明需购买苹果x kg ,则小明需付款_______元;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg ,且全部按标价的8折售卖,小明如果要购买多少kg 苹果时,随便在哪家购买都一样?18.商场的运动服每套标价a 元,运动鞋每双标价b 元,实际购买时都是按标价九折付款;该商场又制定了更优惠的买二送一方式,即按标价购买两套运动服时可赠一双运动鞋光明中学七年级五班50名同学每人需要一套运动服和一双运动鞋.(1)第一种购买方案:按打九折的方式直接购买50套运动服需费用为______.按打九折的方式直接购买50双运动鞋需费用为__________.(2)第二种购买方案(买二送一方式):可以先购买50套运动服获赠25双运动鞋、再购买25双鞋共需费用为___________.(3)当200,100a b ==时,如何购买更省钱?能省多少钱?19.某体育用品商店销售足球和篮球,其中篮球的单价比足球多30元,已知购买4个足球和3个篮球的费用相等.(1)求购买每个足球、篮球的单价分别是多少元?(2)由于“双十二”的来临,商店决定对所售商品进行促销.现有两种促销方案可供选择: 方案一:买5个篮球赠一个足球.方案二:所购买的商品均打9折.当购买6个篮球和多少个足球时,两种促销方案所花费用一致?(3)在(2)条件下,购买10个篮球和5个足球最少费用为_______元.20.我们用的练习本在甲、乙两个商店的标价都是每本1元,为了促销,在甲商店买10本以上,超出部分按七折出售:在乙商店购买,全部按八折优惠.(1)若小明要买20本,到哪个商店购买商合算?(2)若小亮拿着35.2元钱去买练习本,他怎样购买获得的练习本最多?最多可买多少本练习本?参考答案:1.C2.C3.A4.D5.A6.B7.D8.A9.83010.x+(2x -5)=52.11.3.2 2.6(6)18x x +-=12.4516509x x +=-13.10x +6=12x -614. (20)x - 1510(20)275x x +-=15.26016.25017.(1)30,46;(2)10x 或(6x +16);(3)小明如果要购买8kg 苹果时,随便在哪家购买都一样. 18.(1)45a 元,45b 元;(2)5022.5a b +元;(3)先用买二送一再用打九折方式购买,1250元;19.(1)每个足球单价90元,每个篮球的单价120元;(2)2个足球;(3)1443;20.(1)乙(2)甲商店购买,最多可买46本。
§_3.4实际问题与一元一次方程(练习答案)
§ 3.4实际问题与一元一次方程(知识要点)一、销售问题在生活中,人们购买商品和销售商品时,经常会遇到进价、原价(标价)、售价、打折等概念,在了解这些概念后,还必须熟悉销售问题中的两个基本关系式:① 利润=售价-进价; ② 利润率=进价利润×100%. 在①式中若等式左边的“利润”为正,就是盈利;若为负,就是亏损;由①和②式可以得到:利润=售价-进价=利润率×进价。
【例1】 某商店将某种服装按进价提高30%作为标价,又以九折优惠卖出,结果仍可获利17元,则这种服装每件进价是多少元?分析:此题要用的等量关系是:利润=售价-进价,如果把进价设为x 元,则标价为(1+30%)x ,打九折后售价为0.9×(1+30%)x ,再减去进价x 元得到的就是利润17元。
解:设这种服装每件的进价为x 元,依题意列方程为:0.9×(1+30%)x -x =17解得x =100答:这种服装的进价是100元。
练习:某商店对一种商品进行调价,按原价的八折出售,打折后利润率是20%,已知商品的原价是63元,求该商品的进价?二、行程问题1、相遇问题:主要是指两车(戓人)从两地同时相向而行。
其基本等量关系为两车(戓人)所行的路程这和恰好等于两地的距离;两车(或人)人开始行驶到相遇所用的时间相等。
2、追赶问题:主要是指甲、乙同向而行,快者追慢者称为追赶问题。
① 基本公式:速度差×追赶时间=被追赶的路程;② 对于同向同地不同时出发的问题有相等关系:追赶者行进路程=被追赶者行进路程; ③ 对于同时同向不同地出发的问题有等量关系:追赶者的行驶时间=被追赶者的行驶时间。
3、航行问题:基本公式:顺水速度=静水速度+水速,逆水速度=静水速度-水速 顺风速度=无风速度+风速,逆风速度=无风速度-风速 符号公式:v 顺水=v 静水+v 水 v 顺风=v 无风+v 风v 逆水=v 静水-v 水 v 逆风=v 无风-v 风 4、行程问题一般都能通过画线段示意图来分析,通过线段示意图,等量关系就能直观地显示出来,进而用方程表示出来。
3.4 实际问题与解一元一次方程(第1课时)教学设计
3.4 实际问题与解一元一次方程 (第1课时)教学目标1.理解配套问题、工程问题的背景.2.通过分析零件配套问题及工作量中的相等关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.3.进一步掌握列一元一次方程解应用题的方法步骤.教学重点:分清有关数量关系,能根据主要等量关系来列方程解决实际问题 教学难点:培养学生自主探究和合作交流的意识和能力,体会数学的应用价值. 教学过程 一、复习旧知1.解一元一次方程一般步骤是什么?2.解下列方程二、典型例题讲解类型一:配套问题例1:某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母. 1个螺钉需要配 2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? (1)填写表格:(2)本题中的等量关系是什么? 螺母总量=螺钉总量×293x+3=-6+x44(2)131x 2-61x )1(=+-93x-x=-6-344解:3x=-92x=-6x-1-2(2x+1)=6解:x-1-4x-2=6-3x=9x=-3(3)请写出本题完整的过程:解:设应安排x 名工人生产螺钉,(22-x)名工人生产螺母. 依题意,得 2000(22-x)=2×1200x . 解方程,得 x=10. 所以 22-x=12.答:应安排10名工人生产螺钉,12名工人生产螺母.总结1.分析配套问题时需要注意问题中所涉及的量的比例关系, 比如:1个张桌子需要配4把椅子可表示为桌子数:椅子数= 1:4;2.可以根据比例式的內项积等于外项积将含比的方程转化为我们熟悉的一元一次方程:如 椅子数量=4X 桌子数量类型二:工程问题(一)温故知新:小学我们学过工程问题,请回答下列问题: 1. 工作时间、工作效率、工作量之间的关系: (1) 工作量=工作时间×工作效率 (2)工作时间=工作量÷工作效率. (3)工作效率=工作量÷工作时间 2.填空:(1) 一项工作甲单独做需要2天完成,乙单独做需要5天完成,那么甲每天的工作效率是____,乙每天的工作效率是____,两人合作3天完成的工作量是_________ (2)一项工作甲单独做需要x 天完成,乙单独做需要y 天完成,那么甲每天的工作效率是____,乙每天的工作效率是____,两人合作2天完成的工作量是_________(二)例题讲解例3 某校七(4)班准备为教室添置一个图书角,同学们纷纷捐出自己喜欢的图书.若将所有的图书每人分2本,则还剩15本;若每人分3本,则缺35本.共有多少名学生?共捐赠图书多少本?1215113+25⨯()112()x y+1y 1x(1)填写表格:(2)本题中的等量关系是什么? 工作量之和等于工作总量1 (3)请写出本题完整的过程: 解:设应先安排 x 人先做4 h. 依题意得: 解得:x =2. 答:应先安排 2人做4 h.归纳:1.基本关系式:工作量=工作效率×工作时间,工作时间= ,工作效率= .2.当问题中总工作量未知而又不求总工作量时,通常把总工作量看作整体1.3.常见的相等关系为:总工作量=各部分工作量之和.三、例题同步跟踪练习 同步练习(一)(教材P101练习2)一套仪器由一个 A 部件和三个 B 部件构成. 用1 立方米钢材可做 40 个 A 部件或 240 个 B 部件. 现要用 6 立方米钢材制作这种仪器,应用多少钢材做 A 部件,多少钢材做B 部件,才能恰好配成这种仪器?共配成多少套?解:设应用 x 立方米钢材做 A 部件,则应用(6-x)立方米做 B 部件. 根据题意,列方程: 3×40x = (6-x)×240.解得 x = 4. 则 6-x = 2. 共配成仪器:4×40=160 (套).答:应用 4 立方米钢材做 A 部件, 2 立方米钢材做 B 部件,共配成仪器 160 套.48(2)1.4040xx ++=工作效率工作量工作时间工作量111.1224x x +=77-x+11020=()113285,80804x x ⨯+⨯+=同步练习(二)(教材P101练习2)一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设要 x 天可以铺好这条管线,由题意得:解方程,得 x = 8.答:要8天可以铺好这条管线.四、课堂巩固提升1. 某人一天能加工甲种零件 40个或加工乙种零件60个,且1 个甲种零件与 3 个乙种零件配成一套,先发现15天能制作最多的成套产品。
人教版七年级数学上册3.4实际问题与一元一次方程分段计费、方案选择问题优秀教学案例
在教学过程中,我会提出一系列的问题来引导学生思考和探究。这些问题会帮助学生分析问题,找到关键信息,并运用数学知识来解决问题。
例如,我会问学生:“你能告诉我通话时间和流量是如何影响套餐费用的吗?”“你能列出方程来计算不同套餐的费用吗?”“你认为哪种套餐更划算?”等问题。
(三)小组合作
在教学过程中,我会组织学生进行小组合作,让他们共同解决问题,并分享解题过程和结果。
3.小组合作的学习方式:通过组织学生进行小组合作,让学生共同解决问题,培养了他们的团队合作意识和沟通能力。这种小组合作的学习方式不仅提高了学生的学习效果,也培养了他们的社交技能和团队协作能力。
4.反思与评价的环节:在课堂的最后,引导学生进行反思和评价,使学生能够总结自己的学习过程,发现和改正自己的错误,提高自己的解题能力。这种反思与评价的环节有助于培养学生的批判性思维能力和自我改进的能力。
在这个案例中,我设定了一个假设的电话套餐,其中通话时间和流量分别有不同的价格,而且有不同的套餐选项。学生需要根据自己和家人的通话时间和流量需求,选择最合适的套餐。这个问题既联系了学生的生活实际,又需要他们运用一元一次方程的知识来解决。
在教学过程中,我引导学生通过列出方程来计算不同套餐的费用,并比较哪种套餐更划算。这样不仅能够帮助学生理解和掌握一元一次方程的解法,还能够让他们认识到数学在生活中的实际应用,提高他们的数学素养。
(四)总结归纳
在学生小组讨论后,我会组织学生进行总结归纳。我会邀请每个小组分享他们的解题过程和结果,并引导其他学生对他们的解决方案进行评价和讨论。通过这个过程,学生可以加深对一元一次方程应用的理解,并总结解决问题的方法和技巧。
(五)作业小结
在课堂的最后,我会布置相关的作业,让学生在课后进一步巩固和应用所学的知识。我会设计一些实际问题,让学生运用一元一次方程的知识来解决。同时,我还会要求学生在作业中反思自己的学习过程,总结自己学到了什么,以及如何改进自己的解题方法。
人教版七年级数学上 册 3.4 实际问题与一元一次方程(含答案)
3.4 实际问题与一元一次方程1.王刚是某校的篮球明星,在一场篮球比赛中,他一人得21分,如果他投进的2分球比3分球多3个,那么他一共投进的2分球有( ) A.2个 B.3个 C.6个 D.7个2.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26-x)=800xB .1000(13-x)=800xC .1000(26-x)=2×800xD .1000(26-x)=800x 3.用铁皮做罐头盒,每张铁皮可制作15个盒身或42个盒底,一个盒身与两个盒底配成一套罐头盒.现有108张铁皮,怎样分配材料可以正好制成整套罐头盒?若设用x 张铁皮做盒身,根据题意可列方程( )A .2×15(108-x)=42xB .15x =2×42(108-x)C .15(108-x)=2×42x D.2×15x=42(108-x)4.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗句中谈到的鸦 为 只,树为 棵. 5.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( ) A .10天 B .20天 C .30天 D .25天6.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%.设把x 公顷旱地改造为林地,则可列方程( ) A .60-x =20%(120+x) B .60+x =20%×120 C .180-x =20%(60+x) D .60-x =20%×1207.我校“春之声”广播室小记者谭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队韦老师那里了解到校队共参加了16场比赛,积分28分.按规定赢一场得2分,输一场得1分.可是小谭忘记了输赢各多少场了,请你根据上面提供的信息分别求出输、赢各多少场.8.整理一批数据,由一人做需80小时完成,现在计划先由一些人做2小时,再增加5人做8小时,完成这项工作的34,应该怎样安排参与整理数据的具体人数?9. 打扫本班清洁区域卫生,1个人打扫需要30 min 完成,生活委员计划由一部分人先打扫5 min ,然后增加2人与他们一起打扫3 min 完成打扫任务.假设同学们打扫清洁区域卫生的效率相同,那么生活委员应先安排多少人打扫?10.现有甲、乙两家商店出售茶瓶和茶杯,茶瓶每只价格为20元,茶杯每只5元.已知甲店制定的优惠方法是买一只茶瓶送一只茶杯;乙店按总价的92%付款.某单位办公室需购茶瓶4只,茶杯若干只(不少于4只).(1)当需购买40只茶杯时,若让你去办这件事,你将打算去哪家商店购买,为什么?(2)当购买茶杯多少只时,两种优惠方法的效果是一样的?11.某工厂现有15 m3木料,准备制作圆桌或方桌(用部分木料制作桌面,其余木料制作桌腿).(1)已知一张圆桌由一个桌面和一条桌腿组成,如果1 m3木料可制作40个桌面或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,直接写出制作桌面的木料为多少立方米.(2)已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题.①如果1 m3木料可制作50个桌面或制作300条桌腿,应怎样计划用料才能使做好的桌面和桌腿恰好配套?②如果3 m3木料可制作20个桌面或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子?12.某公司新建办公楼需要装修,若由甲工程队单独完成需要18周,由乙工程队单独完成需要12周.现在招标的结果是由甲工程队先做3周,再由甲、乙两队合做,共需装修费40000元.若按两队完成的工作量支付装修费,该如何分配?13.某市为节约用水,制定了如下标准:每月用水量不超过20吨,按每吨1.2元收费;超过20吨,则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费( )A.20元 B.24元 C.30元 D.36元14.北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如图所示.比如6口以下的家庭年天然气用量在第二档时,其中350立方米按2.28元/米3收费,超过350立方米的部分按2.5元/米3收费.小冬一家有5口人,他想帮父母计算一下实行阶梯价格收费后,家里天然气费的支出情况.(1)如果他家2017年全年使用300立方米天然气,需要交天然气费________元;如果他家2017年全年使用500立方米天然气,需要交天然气费________元.(2)如果他家2017年需要交1563元天然气费,那么他家2017年用了多少立方米天然气?15.某牛奶加工厂现有鲜奶8吨,若直接销售鲜奶,每吨可获取利润500元;若制成酸奶销售,每吨可获取利润1200元;若制成奶片销售,每吨可获取利润2000元.该工厂的生产能力如下:制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批鲜奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多地制成奶片,其余直接销售鲜奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利较多?为什么?答案1. C2. C3.D4. 20 55. D6.A7. 解设球队赢了x场,则输了(16-x)场.由题意,得2x+(16-x)×1=28,解得x=12,答:球队赢了12场,输了4场.8.解:设开始安排x人做.依题意,得2×180x+8×180(x+5)=34.解得x=2.答:应该先安排2人做2小时后,再增加5人做8小时.9.解:设生活委员应先安排x人打扫.根据题意,得130x×5+130×3(x+2)=1,解得x=3.答:生活委员应先安排3人打扫.10. 解(1)当购买40只茶杯时,则甲商店需付:4×20+5(40-4)=260(元). 则乙商店需付:(4×20+5×40)×92%=257.6(元).因此应去乙商店买.(2)设购买茶杯x 只,由题意列方程,得4×20+(x -4)×5=(4×20+5x)×92%, 即5x+60=73.6+4.6x, 解得x=34.所以当购买茶杯34只时,两种优惠方法的效果是一样的.11. 解:(1)设用x m 3木料制作桌面,则用(15-x)m 3木料制作桌腿恰好配套. 由题意,得40x =20(15-x).解得x =5.答:制作桌面的木料为5 m 3.(2)①设用a m 3木料制作桌面,则用(15-a)m 3木料制作桌腿恰好配套.由题意,得4×50a=300(15-a).解得a =9.所以制作桌腿的木料为15-9=6(m 3).答:用9 m 3木料制作桌面,用6 m 3木料制作桌腿恰好配套.②设用y m 3木料制作桌面,则用(15-y) m 3木料制作桌腿能制作尽可能多的桌子.由题意,得4×20×y 3=320×15-y3.解得y =12.所以制作桌腿的木料为15-12=3(m 3).答:用12 m 3木料制作桌面,用3 m 3木料制作桌腿能制作尽可能多的桌子. 12.解:设甲工程队先做3周后还需x 周完成.由题意,得118(x +3)+112x =1,解得x =6.即甲工程队做了9周,乙工程队做了6周,甲工程队的工作量为118×9=12,乙工程队的工作量为112×6=12. 因为两队完成的工作量相同,所以装修费40000元应平分,两队各得20000元.13.C14. 解:(1)如果他家2017年全年使用300立方米天然气,那么需要交天然气费2.28×300=684(元);如果他家2017年全年使用500立方米天然气,那么需要交天然气费 2.28×350+2.5×(500-350)=798+375=1173(元). 故答案为684,1173.(2)设小冬家2017年用了x 立方米天然气.因为1563>1173,所以小冬家2017年所用天然气超过了500立方米. 根据题意,得2.28×350+2.5×(500-350)+3.9(x -500)=1563, 解得x =600.答:小冬家2017年用了600立方米天然气.15.解:选择方案二获利最多.理由:方案一:最多生产4吨奶片,其余的鲜奶直接销售,其利润为4×2000+(8-4)×500=10000(元);方案二:设x 天生产奶片,(4-x)天生产酸奶.根据题意,得x +3(4-x)=8,解得x =2,则4-x =2,所以2天生产酸奶加工的鲜奶是2×3=6(吨),则方案二的利润为2×2000+6×1200=4000+7200=11200(元). 因为11200>10000,所以选择方案二获利较多。
5.3.4+实际问题与一元一次方程+课件-2024-2025学年七年级数学上册人教版(2024)+
首重
续重
10元/千克
3元/千克
12元/千克
8元/千克
说明:①每件快递按送达地(市内,市外)分别计算运费. ②运费计算方式:首重价格+续重×续重运费. 首重均为1千克,超过1千克即要续重,续重以0.5千克为计重单位(不足0.5千克按0.5千克计算)
解:(3)设小彤所寄物品的重量为(x+a)(x为正整数,a为小数 部分)千克,则小华所寄物品的重量为(x+a+2.5)千克, ①当0<a≤0.5时,小彤的运费为10+3(x-1)+0.5×3=(3x+8.5)元, 小华的运费为12+8(x-1)+3×8=(8x+28)元, 根据题意得:8x+28-(3x+8.5)=57, 解得:x=7.5(不符合题意,舍去); ②当0.5<a<1时,小彤的运费为10+3(x-1)+1×3=(3x+10)元, 小华的运费为12+8(x-1)+3.5×8=(8x+32)元, 根据题意得:8x+32-(3x+10)=57, 解得:x=7, ∴3x+10+8x+32=3×7+10+8×7+32=119(元). 答:小华和小彤共需付运费119元.
8元/千克
说明:①每件快递按送达地(市内,市外)分别计算运费. ②运费计算方式:首重价格+续重×续重运费. 首重均为1千克,超过1千克即要续重,续重以0.5千克为计重单位(不足0.5千克按0.5千克计算)
(3)某日小华和小彤同时在该快递公司寄物品,小华寄往市外,小彤寄往 市内,小彤所寄物品的重量不是整数,小华的运费比小彤的运费多57元,物 品的重量比小彤多2.5千克,则小华和小彤共需付运费多少元?
人教版七年级上册数学3.4实际问题与一元一次方程(分段计费和方案决策问题)
人教版七年级上册数学3.4实际问题与一元一次方程(分段计费和方案决策问题)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN人教版七年级上册数学3.4实际问题与一元一次方程(分段计费和方案决策问题)分段计费问题知识点分段计费问题1.某市按如下规定收取每月煤气费:用户每月用煤气如果不超过60立方米,每立方米按1元收费,如果超过60立方米,超过部分每立方米按元收费.已知12月份某用户的煤气费平均每立方米元,那么12月份该用户用煤气立方米.2.平凉市出租车的收费标准是:起步价10元(行驶距离不超过2 km,都需付10元车费),超过2 km时,每增加1 km,加收元.小陈乘出租车到达目的地后共支付车费49元,那么小陈坐车可行驶的路程最远是(不考虑其他收费)()A.15 km B.16 km C.17 km D.18 km3.参加医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表:A.1 000元B.1 250元C.1 500元D.2 000元4.据电力部门统计,每天8:00至21:00是用电的高峰期,简称“峰时”,21:00至次日8:00是用电的低谷时期,简称“谷时”,为了缓解供电需求紧张矛盾,某市电力部门于本月初统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:(1)琪琪家上月“峰时”用电50度,“谷时”用电20度,若上月初换表,则相对于换表前琪琪家的电费是增多了,还是减少了增多或减少了多少元请说明理由;(2)琪琪家这个月用电95度,经测算比换表前使用95度电节省了元,问小张家这个月使用“峰时电”和“谷时电”分别是多少度5例如:一户居民七月份用电420度,则需缴电费420×=357(元).某户居民五、六月份共用电500度,缴电费元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度方案决策问题知识点方案决策问题1.请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.2(1)设通话时间为x分钟,则方式一每月收费 )元,方式二每月收费元;(2)当本地通话分钟时,两种收费方式一样;(3)当通话时间为250分钟时,选择比较合算;当通话时间为150分钟时,选择比较合算.3.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元,经粗加工后销售,每吨利润可达4 500元,经精加工后销售,每吨利润涨至7 500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司制定了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多为什么4.某景点的门票价格如表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,那么一共支付 1 118元;如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生(2)团体购票与单独购票相比较,两个班各节约了多少钱5.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物,所有商品价格可获九五折优惠;方案二:若交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,分别用含有x的式子表示出两种购物方案中的支出金额;(2)若某人计划在商都购买价格为5 880元的电视机一台,请分析选择哪种方案更省钱(3)哪种情况下,两种方案下的支出金额相同6.某地上网有两种收费方式,用户可以任选其一:A计时制:1元/小时;B包月制:80元/月.此外,每一种上网方式都加收通信费元/小时.(1)某用户每月上网40小时,选择哪种上网方式比较合算(2)某用户每月有100元钱用于上网,选用哪种上网方式比较合算(3)请你为用户设计一个方案,使用户能合理地选择上网方式.。
《3.4实际问题与一元一次方程》作业设计方案-初中数学人教版12七年级上册
《3.4 实际问题与一元一次方程》作业设计方案(第一课时)一、作业目标本节课的作业目标是帮助学生更好地理解和掌握一元一次方程的解法,以及将实际问题转化为数学问题的能力。
通过完成本节作业,学生能够灵活运用一元一次方程解决生活中的实际问题,增强数学应用的意识和能力。
二、作业内容作业内容主要分为以下几个部分:1. 复习巩固:要求学生回顾一元一次方程的基本概念和解题步骤,加深对一元一次方程的理解。
2. 实际问题练习:选取5-8个实际问题,要求学生将问题中的信息转化为数学语言,建立一元一次方程,并求解。
问题类型包括购物问题、行程问题、分配问题等,旨在培养学生的数学建模能力和解决问题的能力。
3. 拓展提高:设置一定难度的题目,如含有多元、多次方程或复杂的实际情境等,引导学生对所学知识进行深度探究和应用。
三、作业要求在完成作业过程中,学生应遵循以下要求:1. 独立完成:学生应独立完成作业,不得抄袭他人答案或寻求他人帮助。
2. 认真审题:审清题目中的每一个条件,理解题目的实际背景和数学含义。
3. 规范书写:解答过程应清晰、规范,答案要准确无误。
4. 时间安排:合理安排时间,确保在规定时间内完成作业。
四、作业评价作业评价主要从以下几个方面进行:1. 正确性:答案是否准确无误。
2. 解题思路:解题思路是否清晰、有条理。
3. 规范性:书写是否规范、整洁。
4. 创新性:是否有独特的解题方法和思路。
五、作业反馈作业反馈是本节作业设计的重要环节,具体包括:1. 教师点评:教师对学生的作业进行详细点评,指出优点和不足。
2. 错误分析:对常见错误进行归类分析,帮助学生找出错误原因并加以改正。
3. 拓展延伸:针对学生的实际情况和需求,提供适当的拓展题目和思路,帮助学生进一步提高。
4. 学习建议:根据学生的作业情况,提出针对性的学习建议和方法,帮助学生更好地掌握一元一次方程的解法和应用。
通过以上的作业设计,使学生能够逐步提升自己的一元一次方程的应用能力和问题解决能力。
七年级数学上册3-4 实际问题与一元一次方程同步习题精讲精练【含答案】
3.4 实际问题与一元一次方程同步习题精讲精练【高频考点精讲】1.由实际问题抽象出一元一次方程审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.2.一元一次方程的应用题类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题:①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量;(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).【热点题型精练】一、选择题1.把一个长为4cm、宽为3cm的长方形的长增加xcm,则该长方形的面积增加了( )cm2.A.2x B.2x+8C.3x D.3x+122.一队同学在参观花博会期间需要在农庄住宿,如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,设这队同学共有x人,可列得方程( )A.=B.=C.﹣8=+3D.4x+8=5x﹣33.已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店( )A.不盈不亏B.盈利20元C.盈利10元D.亏损20元4.端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x元,则可列方程为( )A.10x+5(x﹣1)=70B.10x+5(x+1)=70C.10(x﹣1)+5x=70D.10(x+1)+5x=705.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队进行了6场比赛,得了14分,该队获胜的场数是( )A.2B.3C.4D.56.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x,则可列方程为( )A.10(x﹣1)=8x﹣6B.10(x﹣1)=8x+6C.10(x+1)=8x﹣6D.10(x+1)=8x+67.某超市为了回馈顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物付款合并一次性付款可节省( )A.18元B.16元C.18或46.8元D.46.8元8.如图,在2021年4月份日历中按如图所示的方式任意找7个日期“H”,那么这7个数的和可能是( )A.64B.72C.98D.1189.我国元朝朱世杰所著的《算学启蒙》(1299年)记载:良马日行二百四十里,驽马日行一百五十里,驽马先行六日,问良马几何追及之.翻译为:跑的快的马每天走240里,跑的慢的马每天走150里,慢马先走6天,快马追上慢马的时间为( )A.10天B.15天C.20天D.25天10.我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是( )A.8(x﹣3)=7(x+4)B.8x+3=7x﹣4C.=D.=11.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x的值为( )A.1B.3C.4D.612.小亮原计划骑车以10千米/时的速度从A地去B地,在规定时间就能到达B地,但他因事比原计划晚出发15分钟,只好以15千米/时的速度前进,结果比规定时间早到6分钟,若设A,B两地间的距离为x千米,则根据题意列出的方程正确的为( )A.+15+6B.C.D.二、填空题13.课外活动中一些学生分组参加活动,原来每组都为6人,后来重新编组,每组都为8人,这样就比原来减少2组,则这些学生共有 人.14.我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”若设有牧童x人,根据题意,可列方程为 .15.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为 .16.甲、乙两人分别从A、B两地出发,相向而行,甲比乙早出发15分钟,甲的速度是每小时6公里,乙速度是甲速度的,乙出发1小时后两人相距11公里,A、B两地的距离为 公里.17.一批课外读物分给学生,若每人分3本,则多20本;若每人分4本,则少30本,问课外读物共有多少本?若设共有x本课外读物,则可列方程为 .18.某音乐厅在暑假期间举办学生专场音乐会,入场券分团体票和零售票,团体票占总票数的,已知7月份团体票每张20元,共售出团体票数的,零售票每张24元,共售出零售票数的;如果在8月份,团体票按每张25元售出,并计划在8月份售出全部票.那么为了使这两个月的票款总收入相等,零售票应按每张 元.三、解答题19.小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.20.为了有效控制新型冠状病毒(世界卫生组织正式将其命名为2019﹣nCoV)的传播,某市在推广疫苗之前,利用网络调查的方式,对不同的医药集团生产的G、K两种生物新冠灭活疫苗进行了接受程度的匿名调查.在收集上来的有效调查的m人的数据中,能接受G的市民占调查人数的60%,其余不接受G;且接受K的比接受G的多30人,其余不接受K.另外G、K都不接受的市民比对G、K都能接受的市民的还多10人.下面的表格是对m人调查的部分数据:疫苗种类都能接受不接受G集团a bK集团330人c(1)请你写出表中a、b、c的人数:a= ,b= ,c= ;(2)求对G、K两个医药集团的疫苗都能接受的人数.21.已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=28,动点P从A点出发,以每秒3个单位长度的速度沿数轴向左匀速运动.设运动时间为t秒.(1)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,当P、Q之间的距离恰好等于8个单位长度,求t的值;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,当P、Q之间的距离小于8个单位长度,求t的取值范围.22.某商店对A,B两种商品在进价的基础上提高50%作为标价出售.春节期间,该商店对A,B两种商品开展促销活动,活动方案如下:商品A B标价(元/件)150225春节期间每件商品出售的价格按标价降价10%按标价降价a%(1)商品B降价后的售价为 元(用含a的代数式表示);(2)不考虑其他成本,在春节期间商店卖出A种商品20件,B种商品10件,获得总利润1000元,试求a的值.3.4 实际问题与一元一次方程同步习题精讲精练【高频考点精讲】1.由实际问题抽象出一元一次方程审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.2.一元一次方程的应用题类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题:①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量;(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).【热点题型精练】一、选择题1.把一个长为4cm、宽为3cm的长方形的长增加xcm,则该长方形的面积增加了( )cm2.A.2x B.2x+8C.3x D.3x+12解:3(4+x)﹣3×4=3x.答案:C.2.一队同学在参观花博会期间需要在农庄住宿,如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,设这队同学共有x人,可列得方程( )A.=B.=C.﹣8=+3D.4x+8=5x﹣3解:设这队同学共有x人,可列得方程:=.答案:B.3.已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店( )A.不盈不亏B.盈利20元C.盈利10元D.亏损20元解:设盈利的运动衫的进价为x元,亏损的运动衫的进价为y元,依题意得:160﹣x=60%x,160﹣y=﹣20%y,解得:x=100,y=200,∴(160﹣100)+(160﹣200)=60﹣40=20(元),∴在这次买卖中这家商店盈利20元.答案:B.4.端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x元,则可列方程为( )A.10x+5(x﹣1)=70B.10x+5(x+1)=70C.10(x﹣1)+5x=70D.10(x+1)+5x=70解:设每个肉粽x元,则每个素粽(x﹣1)元,依题意得:10x+5(x﹣1)=70.答案:A.5.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队进行了6场比赛,得了14分,该队获胜的场数是( )A.2B.3C.4D.5解:设该队获胜x场,则负了(6﹣x)场,依题意得:3x+(6﹣x)=14,解得:x=4.答案:C.6.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x,则可列方程为( )A.10(x﹣1)=8x﹣6B.10(x﹣1)=8x+6C.10(x+1)=8x﹣6D.10(x+1)=8x+6解:设该校准备的桌子数为x,依题意得:10(x﹣1)=8x+6.7.某超市为了回馈顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物付款合并一次性付款可节省( )A.18元B.16元C.18或46.8元D.46.8元解:(1)若第二次购物超过300元,设此时所购物品价值为x元,则90%x=288,解得x=320.两次所购物价值为180+320=500>300.所以享受9折优惠,因此应付500×90%=450(元).这两次购物合并成一次性付款可节省:180+288﹣450=18(元).(2)若第二次购物没有超过300元,两次所购物价值为180+288=468(元),这两次购物合并成一次性付款可以节省:468×10%=46.8(元).答案:C.8.如图,在2021年4月份日历中按如图所示的方式任意找7个日期“H”,那么这7个数的和可能是( )A.64B.72C.98D.118解:设7个日期的中间数为x,则另外6个数分别为(x﹣8),(x﹣6),(x﹣1),(x+1),(x+6),(x+8),∴7个数之和为7x.当7x=64时,x=,不合题意;当7x=72时,x=,不合题意;当7x=98时,x=14,符合题意;当7x=118时,x=,不合题意.9.我国元朝朱世杰所著的《算学启蒙》(1299年)记载:良马日行二百四十里,驽马日行一百五十里,驽马先行六日,问良马几何追及之.翻译为:跑的快的马每天走240里,跑的慢的马每天走150里,慢马先走6天,快马追上慢马的时间为( )A.10天B.15天C.20天D.25天解:设快马追上慢马的时间为x天,则此时慢马走了(x+6)天,依题意得:240x=150(x+6),解得:x=10.答案:A.10.我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是( )A.8(x﹣3)=7(x+4)B.8x+3=7x﹣4C.=D.=解:设物价是y钱,根据题意可得:=.答案:D.11.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x的值为( )A.1B.3C.4D.6解:由题意,可得8+x=2+7,解得x=1.答案:A.12.小亮原计划骑车以10千米/时的速度从A地去B地,在规定时间就能到达B地,但他因事比原计划晚出发15分钟,只好以15千米/时的速度前进,结果比规定时间早到6分钟,若设A,B两地间的距离为x千米,则根据题意列出的方程正确的为( )A.+15+6B.C.D.解:设A、B两地间距离为x千米,由题意得:.答案:B.二、填空题13.课外活动中一些学生分组参加活动,原来每组都为6人,后来重新编组,每组都为8人,这样就比原来减少2组,则这些学生共有 48 人.解:设这些学生共有x人,根据题意得:﹣2=,解得x=48,答案:48.14.我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”若设有牧童x人,根据题意,可列方程为 6x+14=8x .解:设有牧童x人,依题意得:6x+14=8x.答案:6x+14=8x.15.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为 ﹣2 .解:依题意得:﹣1﹣6+1=0+a﹣4,解得:a=﹣2.答案:﹣2.16.甲、乙两人分别从A、B两地出发,相向而行,甲比乙早出发15分钟,甲的速度是每小时6公里,乙速度是甲速度的,乙出发1小时后两人相距11公里,A、B两地的距离为 23 公里.解:∵甲的速度是每小时6公里,乙速度是甲速度的,∴乙速度是6×=4.5公里/小时,设A、B两地的距离为x公里,依题意,得:x﹣(1+)×6﹣4.5×1=11或(1+)×6+4.5×1﹣x=11,解得:x=23或x=1(不合题意),答案:2317.一批课外读物分给学生,若每人分3本,则多20本;若每人分4本,则少30本,问课外读物共有多少本?若设共有x本课外读物,则可列方程为 = .解:设共有x本课外读物,根据题意得:=,答案:=.18.某音乐厅在暑假期间举办学生专场音乐会,入场券分团体票和零售票,团体票占总票数的,已知7月份团体票每张20元,共售出团体票数的,零售票每张24元,共售出零售票数的;如果在8月份,团体票按每张25元售出,并计划在8月份售出全部票.那么为了使这两个月的票款总收入相等,零售票应按每张 32 元.解:设总票数为a张,8月份零售票按每张x元定价,由题意得:20××a×+24×(a﹣a)=25×(1﹣)×a+(a﹣a)x,∴8a+4a=a+ax,∴x=.∴x=32.即:零售票应按每张32元定价,才能使这两个月的票款总收入相等.答案:32.三、解答题19.小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.解:(1)250﹣75÷15×10=250﹣50=200(毫升).故输液10分钟时瓶中的药液余量是200毫升;(2)设小华从输液开始到结束所需的时间为t分钟,依题意有(t﹣20)=160,解得t=60.故小华从输液开始到结束所需的时间为60分钟.20.为了有效控制新型冠状病毒(世界卫生组织正式将其命名为2019﹣nCoV)的传播,某市在推广疫苗之前,利用网络调查的方式,对不同的医药集团生产的G、K两种生物新冠灭活疫苗进行了接受程度的匿名调查.在收集上来的有效调查的m人的数据中,能接受G的市民占调查人数的60%,其余不接受G;且接受K的比接受G的多30人,其余不接受K.另外G、K都不接受的市民比对G、K都能接受的市民的还多10人.下面的表格是对m人调查的部分数据:疫苗种类都能接受不接受G集团a bK集团330人c(1)请你写出表中a、b、c的人数:a= 300 ,b= 200 ,c= 170 ;(2)求对G、K两个医药集团的疫苗都能接受的人数.解:(1)因为“接受K的比接受G的多30人”,所以a=330﹣30=300(人).因为“能接受G的市民占调查人数的60%”,所以m==500(人).因为“能接受G的市民占调查人数的60%,其余不接受G”,所以b=500﹣300=200(人).因为“接受K的比接受G的多30人,其余不接受K”,所以c=500﹣330=170(人).答案:300;200;170;(2)设对G、K两个医药集团的疫苗都能接受的人数为x人,根据题意,得,解得x=210.答:对G、K两个医药集团的疫苗都能接受的人数为210人.21.已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=28,动点P从A点出发,以每秒3个单位长度的速度沿数轴向左匀速运动.设运动时间为t秒.(1)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,当P、Q之间的距离恰好等于8个单位长度,求t的值;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,当P、Q之间的距离小于8个单位长度,求t的取值范围.解:(1)∵数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=28,∴点B表示的数为﹣20,由题意可得:|8﹣3t﹣(﹣20+2t)|=8,解得:t=4或,∴t的值为4或;(2)由题意可得:|8﹣3t﹣(﹣20﹣2t)|<8,解得:20<t<36,∴t的取值范围为20<t<36.22.某商店对A,B两种商品在进价的基础上提高50%作为标价出售.春节期间,该商店对A,B两种商品开展促销活动,活动方案如下:商品A B标价(元/件)150225春节期间每件商品出售的价格按标价降价10%按标价降价a%(1)商品B降价后的售价为 225(1﹣a%) 元(用含a的代数式表示);(2)不考虑其他成本,在春节期间商店卖出A种商品20件,B种商品10件,获得总利润1000元,试求a的值.解:(1)B商品标价是225元,出售价格按标价降低a%,那么降价后的标价是225(1﹣a%)元,答案:225(1﹣a%);(2)设A商品进价为m元,则m(1+50%)=150.解得m=100.设B商品的进价为n元,则n(1+50%)=225.解得n=150.由题意得:[150(1﹣10%)﹣100]×20+[225(1﹣a%)﹣150]×10=1000.解得:a=20,∴a的值是20.。
人教版数学初中七年级上册知识讲解,巩固练习(教学资料,补习资料):专题3.4 实际问题与一元一次方程
知识1.列一元一次方程解应用题的一般步骤:(1)审题:理解题意.弄清问题中___________是什么,___________是什么,问题给出和涉及的___________是什么.(2)设元(未知数):用含未知数的___________表示相关的量.①直接未知数;②间接未知数(往往二者兼用).(3)寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列___________.(4)解方程及___________.(5)答题.2.列一元一次方程解应用题的关键是:___________.知识参考答案:1.(1)已知量,未知量,相等关系(2)代数式(3)方程(4)检验2.找相等关系重点—重点(1)产品配套问题;(2)工程问题;(3)商品销售问题;(4)球赛积分问题;(5)电话计费问题.—难点准确理解配套问题中的数量关系.—易错注意验根要符合实际.一、配套问题1.在配套问题中,配套的物品之间具有一定的数量关系,这个数量关系可以作为列方程的依据.2.配套问题中的基本数量关系:若m个A和n个B配成一套,则A mB n的数量的数量,可得等量关系:m×B的数量=n×A的数量.3.审题时,要注意对题目中“恰好”“最多”等关键词的理解.【例1】佳福服装公司为学校加工一批校服,3米长的布料可制作上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的布料加工校服,请你帮该公司计算一下,分别用多少布料生产上衣和裤子,才能配套?共能加工多少套校服?【答案】用360米布料生产上衣,则用240米布料生产裤子才能配套,共加工240套校服. 【解析】设用x 米布料生产上衣,则用(600–x )米布料生产裤子才能配套, 由题意得,2x =3(600–x ), 解得:x =360, 则600–x =240,共加工校服:360÷3×2=240(套). 答:用360米布料生产上衣,则用240米布料生产裤子才能配套,共加工240套校服.二、工程问题1.工程问题的基本量:工作量、工作效率、工作时间. 2.工程问题的基本数量关系: 工作量=工作效率×工作时间; 合作的效率=各单独做的效率和; 总工作量=各部分工作量之和.【例2】现加工一批机器零件,甲单独完成需4天,乙单独完成需6天,现由乙先做1天,然后两人合作完成,共付给报酬600元,若按个人完成的工作量付给报酬,该如何分配? 【答案】若按个人完成的工作量付给报酬,甲、乙各分300元. 【解析】设两人合作x 天完成. 则列方程:4x +16x =1, 解得:x =2,则甲、乙各做了工作量的12. 故甲、乙各分300元.故若按个人完成的工作量付给报酬,甲、乙各分300元.三、商品销售问题在现实生活中,购买商品和销售商品时,经常会遇到进价、售价、标价、打折等概念,在了解这些基本概念的基础上,还必须掌握以下相等关系: 利润率=利润进价×100%;打x 折后的售价=标价×10x;售价=进价×(1+利润率); 利润=售价–进价;利润=进价÷利润率.【例3】某服装店卖出两件不同的衣服,均以91元卖出,其中一件赚30%,另一件亏30%,则卖出这两件衣服后商店 A .不赚不亏 B .赚了21元C .亏了18元D .赚了39元【答案】C【解析】设盈利的进价是x 元,则x +30%x =91,解得x =70. 设亏损的进价是y 元,则y –30%y =91,解得y =130. 所以91+91–130–70=–18,所以亏了18元. 故选C .四、比赛中的积分问题在比赛积分问题中,基本相等关系有:某个队的参赛场数=该队的胜场数+该队的负场数+该队的平场数; 某个队的总积分=该队的胜场积分+该队的负场积分+该队的平场积分.【例4】篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是 A .2 B .3C .4D .5【答案】B【解析】设该队获胜x 场,则负了(6–x )场, 根据题意得:3x +(6–x )=12,解得:x =3. 故选B .【名师点睛】(1)并不是每种比赛都按胜、平、负情况积分,有的只按胜、平两种情况积分,所以解题时一定要认真理解比赛的积分规则.(2)比赛中的积分与胜负场数有关,同时也与比赛积分规则有关,需先弄清“胜一场积几分,平一场积几分,负一场积几分”.五、方案选择问题在现实生活中,做一件事往往有多种方案可供选择,如何选择对我们最有利的方案呢?这就需要我们利用所学的知识,通过列方程、计算和比较,来选择最优方案.【例5】某市蔬菜基地有一批蔬菜若干吨,有三种销售方式,利润如下表:销售方式市场直接销售粗加工销售精加工销售每吨获利(万元)0.1 0.45 0.75已知加工能力如下:若蔬菜总量再增加20吨,粗加工刚好10天全部加工完.若蔬菜总量减少20吨,精加工刚好20天全部加工完,且精加工比粗加工每天少加工10吨,又精加工和粗加工不能同时进行,而受季节限制,基地必须要15天(含15天)内全部加工或销售,为此基地特制定了三种方案:①尽可能多的精加工,来不及加工的在市场上直接销售,②全部粗加工,③将一部分精加工,其余蔬菜粗加工,且刚好15天完成.解答下列问题:(1)求基地这批蔬菜有多少吨;(2)哪种方案获利最多?最多为多少万元?【答案】(1)基地这批蔬菜有140吨;(2)方案③获利最多,最多为81万元.∵81>72.5>63,所以方案③获利最多,最多为81万元.基础训练1.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为 A .100元B .105元C .110元D .120元2.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是 A .31128x x++= 33B 1128x x +-+=.C 1128x x+=.3D 1128x x -+=. 3.某商品的进价是500元,标价是750元,商店要求以利润率为5%的售价打折出售,售货员可以打几折出售此商品 A .5B .6C .7D .84.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x 元,则可列方程为 A .8x +3=7x +4B .8x –3=7x +4C .3487x x -+=34D 87x x +-=.5.某车间有26名工人,每人每天可以生产800个螺栓或1000个螺母,1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,设安排x 名工人生产螺母,则下面所列方程正确的是 A .2×800(26–x )=1000x B .800(13–x )=1000x C .800(26–x )=2×1000xD .800(26–x )=1000x6.某商店换季准备打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的成本为 A .230元B .250元C .270元D .300元7.一件服装标价200元,若以七折销售,仍可获利40%,则这件服装的进价是 A .100元B .105元C .108元D .118元8.某工程甲单独完成要45天,乙单独完成要30天.若乙先单独干22天,剩下的由甲单独完成.则甲、乙一共用几天可以完成全部工作?设甲、乙一共用x 天完成,则符合题意的方程是A .2245x -+2230=1 B .2230x ++2245=1C .2245x ++2230=1D .30x +2245x -=1 9.甲乙两地相距180千米,已知轮船在静水中的航速是a 千米/时,水流速度是10千米/时,若轮船从甲地顺流航行3小时到达乙地后立刻逆流返航,则逆流行驶1小时后离乙地的距离是 A .40千米 B .50千米C .60千米D .140千米10.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为A .152元B .156元C .160元D .190元11.一件毛衣先按成本提高50%标价,再以8折出售,获利28元,求这件毛衣的成本是多少元,若设成本是x 元,可列方程为 A .()0.828150%x x +=+()B 0.828150%x x -=+. C .()280.8150%x x +=⨯+()D 280.8150%x x -=⨯+.12.跃进公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为 A .29元B .28元C .27元D .26元13.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是 A .7.5秒B .6秒C .5秒D .4秒14.某班把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,设获得一等奖的学生人数为x ,则下列方程不正确的是 A .200x +50(22-x )=1400 B .1400-50(22-x )=200x C .140020050x-=22-xD .50+200(22-x )=140015.某品牌不同种类的文具均按相同折数打折销售,如果原价300元的文具,打折后售价为240元,那么原价75元的文具,打折后售价为 A .50元B .55元C .60元D .65元16.A 、B 两地相距450千米,甲乙两车分别自A 、B 两地同时出发,相向而行,已知甲车速度是120千米/时,乙车的速度是80千米/时,经过________小时后两车相距50千米.17.某书店销售某种中考复习资料,每本的售价是20元.若每本打九折,全部卖完可获利1000元;若每本打八折,全部卖完可获利800元,则这批书共购进了_________本.18.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;则该校运动员人数为__________人.19.一件不打折的商品,售价为880元,能获利10%,则该商品的进价为__________元.20.某商场购进一批运动服,每件售价120元,可获利20%,这种运动服每件的进价是__________元.21.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60支,卖得87元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支?22.用一根长120米的绳子围成一个长方形,使它的长是宽的2倍,求这个长方形的长和宽各是多少.23.椰岛文具店的某种毛笔每支售价25元,书法练习本每本售价5元.该店为了促销该种毛笔和书法练习本,制定了两种优惠方案.方案一:买一支毛笔赠送一本书法练习本;方案二:按购买金额的九折付款.某校欲为校书法兴趣小组购买这种毛笔10支,书法练习本x(x>10)本.(1)请你用含x的式子表示每种优惠方案的付款金额;(2)购买多少本书法练习本时,两种优惠方案的实际付款数一样多?能力测试24.一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为A.盈利16元B.亏损24元C.亏损8元D.不盈不亏25.某市中学生运动会篮球比赛,每场比赛都要决出胜负,每队胜一场得3分,负一场得1分,已知某篮球队在七场比赛中共得到15分,则该篮球队在这七场比赛中获胜了A.六场B.五场C.四场D.三场26.一列匀速前进的火车,从它进入320米长的隧道到完全通过隧道共用了18秒,隧道顶部一盏固定的小灯灯光在火车上照了10秒钟,则这列火车的长为A.190米B.400米C.380米D.240米27.某种商品的进价为800元,出售时标价为1200元,后来由于该项商品积压,商品准备打折出售,但要保持利润率是5%,则出售时此商品可打A.五折B.六折C.七折D.八折28.一个两位数,个位数字比十位数字的2倍多1,如果个位与十位的数字交换位置,得到一个新的两位数,新的两位数比原来两位数的2倍少1,则原两位数为__________.29.已知A=5x+2,B=11–x,当x=__________时,A比B大3.30.在一次有12个队参加的足球循环赛中(每两队之间比赛一场),规定胜一场记3分,平一场记1分,负一场记0分.某队在这次循环赛中所胜场数比所负场数多2场,结果共积19分.问:该队在这次循环赛中战平了几场?31.某地电话拨号上网有两种收费方式,用户可以任选其一:A.计时制,0.05元∕分;B.包月制,50元∕分(限一部个人住宅电话上网);此外,每种上网方式都附加通信费0.02元∕分。
人教版数学七年级上册3.4实际问题与一元一次方程:方案选择问题
实际问题与一元一次方程——方案选择问题一、单选题1.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg ,李丽平均每小时采摘7kg .采摘结束后,王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多长时间?设她们采摘所用时间为t 小时,下列方程正确的是( ) A .80.257t t -=B .()80.257t t -=C .()()80.2570.25t t -=+D .80.2570.25t t -=+2.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽.问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的每3家共取一头,恰好取完.问城中有多少户人家?( ) A .55户B .65户C .75户D .85户3.把一些笔记本分给某班学生,如果每人分2本,则剩余20本;如果每人分3本,则还缺30本,设该班有x 名学生,可列一元一次方程为( ) A .220330x x -=- B .220330x x +=+ C .220330x x -=+D .220330x x +=-4.某新华书店暑假期间推出售书优惠方案:①一次性购书不超过200元,不享受优惠;①一次性购书超过200元但不超过400元一律打九折;①一次性购书400元以上一律打八折.如果黄聪同学一次性购书共付款324元,那么黄聪所购书的原价是( ) A .360元 B .405元C .360元或400元D .360元或405元5.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( ) A .3x ﹣20=24x +25 B .3x +20=4x ﹣25 C .3x ﹣20=4x ﹣25D .3x +20=4x +256.某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如下表:例如,购买A 类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元. 若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为A .购买A 类会员卡B .购买B 类会员卡C .购买C 类会员卡D .不购买会员卡 7.2019年猪肉涨价幅度很大.周日妈妈让张明去超市买猪肉,张明买二斤猪肉,剩余19元,买三斤猪肉还差20元.设妈妈一共给了张明x 元钱,则根据题意列方程是( ) A .192023x x +-= B .192023x x -+= C .192023x x+=-D .192023x x-=+8.今年五一长假期间,某博物馆门票的收费标准如下:小明和小鹏两个家庭分别去该博物馆参观,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果小明家比小鹏家少花40元.则小明家购门票共花了( ) A .200元B .240元C .260元D .300元9.某制衣店现购买蓝色.黑色两种布料共 138m ,共花费 540 元.其中蓝色布料每米 3 元,黑色布料每米 5 元,两种布料各买多少米?设买蓝色布料 x 米,则依题意可列方程( ) A .3x + 5(138 - x ) = 540 B .5x +3(138 -x ) =540 C .3x +5(138+x ) =540D .5x +3(138+x ) =54010.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A.300B.260C.240D.22011.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:例如,购买A类会员年卡,一年内健身20次,消费1500+100×20=3500元.若一年内在该健身俱乐部健身55次,则最省钱的方式为()A.购买C类会员年卡B.购买B类会员年卡C.购买A类会员年卡D.不购买会员年卡12.北流市某风景区的门票价格在2019年国庆期间有如下优惠:购票人数为1~50人时,每人票价格为50元;购票人数为51~100人时,每人门票价格45元;购票人数为100人以上时,每人门票价格为40元.某初中初一有两班共103人去该风景区,如果两班都以班为单位分别购票,一共需付4860元,则两班人数分别为()A.56,47B.57,48C.58,45D.59,44二、填空题13.某班计划奖给期中考试进步学生每人一件同样的奖品,班主任从班费中拨出一笔款项,如果购买一种单价为40元的创意笔记本,则可购得20本;若购买单价为50元的笔记本与保温杯套装,则可购得___________.14.某校组织若干名师生到九龙口风景区进行社会实践活动.若学校租用30座的客车x辆,则余下18人无座位;若租用45座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆45座客车的人数是____.15.2020年元旦,班主任老师组织同学一起去看电影,电影院规定:票价每张45元,20张以上(不含20张)全部打八折,他们一共花了900元,则他们买到的电影票的张数可能是__________ .16.东北师大附中校团委组织了职业微体验活动,初一(3)班52名学生分别去科技馆和图书馆参观,去科技馆的人数比去图书馆人数的2倍少5人,设去图书馆的人数为x人,则可列方程:__________.17.某商场在促销期间规定:商场内所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应的奖券(奖券购物不再享受优惠).根据上述促销方法,顾客在该商场购物可获得双重优惠.如果胡老师在该商场购的商品获得优惠额为240元(折扣金额+奖券金额),则这家购的商品的标价为__________元.三、解答题18.有两种消费券:A券,满60元减20元;B券,满90元减30元即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购买了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,求所购商品的标价是多少元?19.某种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?20.为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;①乙队单独完成;①甲、乙两队全程合作完成.哪一种方案的施工费用最少?21.为发展校园篮球运动,某县城区四校决定联合购买一批篮球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的篮球队服和篮球,已知每套队服比一个篮球多50元,两套队服与三个篮球的费用相等.经洽谈,甲商场优惠方案是:每购买五套队服,送一个篮球,乙商场优惠方案是:若购买篮球队服超过80套,则购买篮球打八折.(1)求每套队服和每个篮球的价格是多少?(2)若城区四校联合购买100套篮球队服和a(a>20)个篮球,请用含a的式子分别表示到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=90,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?请通过计算说明理由.22.利用一元一次方程解应用题:下表中有两种移动电话计费方式:月使用费固定收:主叫不超过限定时间不再收费,主叫超时部分加收超时费;被叫免费.(1)若童威某月主叫通话时间为200分钟,则他按方式一计费需________元,按方式二计费需_______元;若他按方式二计费需107元,则主叫通话时间为______分钟.(2)是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等?若存在,请求出t的值;若不存在,请说明理由.(3)直接写出当月主叫通话时间t(分钟)满足什么条件时,选择方式一省钱;当每月主叫通话时间t(分钟)满足什么条件时,选择方式二省钱.参考答案1.D解:设她们采摘用了t 小时, 根据题意可得:80.2570.25t t -=+, 故选:D . 2.C解:设城中有x 户人家,根据题意得, 1+1003x x = 解得41003x =75x ∴=故选:C . 3.D解:这个班级有x 名学生,依题意得, 220330x x +=-故选:D . 4.D解:设所购书的原价是x 元, ①一次性购书共付款324元,①原价一定大于324元,则①不用考虑,根据①,200400x <≤,列式:0.9324x =,解得360x =,在范围内符合题意, 根据①,400x >,列式:0.8324x =,解得405x =,在范围内符合题意, ①购书原价是360元或405元. 故选:D . 5.B解:根据题意可得:3x +20=4x ﹣25. 故选B . 6.C解:设一年内在便利店购买咖啡x 次,购买A 类会员年卡,消费费用为40+2×(0.9×10)x =(40+18x)元;购买B类会员年卡,消费费用为80+2×(0.8×10)x=(80+16x)元;购买C类会员年卡,消费费用为130+(10+5)x=(130+15x)元;把x=75代入得A:1390元;B:1280元;C:1255元,把x=85代入得A:1570元;B:1440元;C:1405元,则小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为购买C类会员年卡.故选:C.7.B解:设妈妈一共给了张明x元钱,由题意得,1920 23x x-+=.故选:B.8.C解:设小明家花了x元,依题意,得:x+40=60×5,解得:x=260.故选:C.9.A解:设蓝布料x米,则黑布料(138-x)m,根据题意可得:3x+5(138-x)=540,故选:A.10.B解:若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.设花费较少的一家花了x元,则另一家花了40x+元,根据题意得:40=605x+⨯解得:260x=检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B.11.A解:购买A类会员年卡,一年内健身55次,消费:1500+100×55=7000(元)购买B类会员年卡,一年内健身55次,消费:3000+60×55=6300(元)购买C类会员年卡,一年内健身55次,消费:4000+40×55=6200(元)不购买会员年卡,一年内健身55次,消费:180×55=9900(元)①6200<6300<7000<9900,①最省钱的方式为购买C类会员年卡.故选:A.12.C解:①103×45=4635<4860,①一个班的人数不多于50人,另一个班的人数多于50人,①若(1)班人数为1~50人,(2)班的人数为51~100人时,设(1)班有x人,(2)班有(103-x)人,则由题意,得50x+45(103-x)=4860,解得x=45,①103-x=58人,经检验符合题意;①若(1)班人数为1~50人,(2)班的人数为51~100人时,设(1)班有x人,(2)班有(103-x)人,则由题意,得50x+40(103-x)=4860,解得x=74,①103-x=29人,经检验不符合题意,舍去;①一个班有45人,另一个班有58人.故选C.13.16套解:设可购得x套,x=⨯,由题意得:504020x=(套),解得16故答案为:16套.14.(153-15x)解:①学校租用30座的客车x 辆,则余下18人无座位;若租用45座的客车则可少租用2辆,且最后一辆还没坐满,①乘坐最后一辆60座客车的人数是: (30x+18)-45(x -3) =30x+18-45x+135 =153-15x .故答案为:153-15x . 15.20或25解:①当票数不超过20张(包括20张)时,设票数为x 张,由题意得: 45900x =,解得20x;①当票数超过20张时,设票数为x 张,由题意得: 450.8900x ⨯⋅=,解得:25x =;综上所述:票数可能是20或25; 故答案为20或25. 16.x+(2x -5)=52.解:已知去图书馆人数x 人,则去科技馆人数为(2x -5)人, 根据总人数为52人,可列方程x+(2x -5)=52. 故答案为:x+(2x -5)=52. 17.450解:设这家购的商品的标价为x 元 ①若100≤x <200时,由题意可知:(1-80%)x +50=240 解得:x =950,(不符合前提条件,舍去); ①若200≤x <400时,由题意可知:(1-80%)x +100=240 解得:x =700,(不符合前提条件,舍去); ①若400≤x <600时,由题意可知:(1-80%)x +150=240 解得:x =450,符合前提条件.综上所述:这家购的商品的标价为450元.故答案为:450.18.100或85元解:设所购商品的标价是x 元,由题意可知,60x >;依题意得①当90x <时,20150x x -+=,解得85x =;①当90x ≥元,2030150x x -+-=,解得100x =.故所购商品的标价是100或85元.19.(1)20盒;(2)买15盒时去甲店较合算,买30盒时,去乙店较合算解:(1)设购买x 盒乒乓球时,两种优惠办法付款一样.根据题意:()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得20x. 所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款()3051555200⨯+-⨯=(元),乙店需付款()3051550.9202.5⨯+⨯⨯=(元).因为200202.5<,所以,购买15盒乒乓球时, 去甲店较合算.当购买30盒时:甲店需付款()3053055275⨯+-⨯=(元);乙店需付款()3053050.9270⨯+⨯⨯=(元).因为275270>,所以购买30盒乒乓球时,去乙店较合算.答:购买15盒乒乓球,去甲店较合算,购买30盒乒乓球,去乙店较核算.20.(1)甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米;(2)选择方案①完成施工费用最少解:(1)设乙队每天能完成绿化的面积是x 平方米,则甲队每天能完成绿化的面积是(x +200)米,依题意得:x +x +200=800解得:x =300,x +200=500①甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米. (2)选择方案①甲队单独完成所需费用=1200060014400500⨯=(元); 选择方案①乙队单独完成所需费用=1200040016000300⨯=(元);选择方案①甲、乙两队全程合作完成所需费用=()1200040060015000800+⨯=(元);①选择方案①完成施工费用最少.21.(1)每套队服150元,每个篮球100元;(2)到甲商场的花费为(100a+13000)元,到乙商场的花费为(80a+15000)元;(3)在甲商场购买比较合算,理由见解析解:(1)设每个篮球的定价是x元,则每套队服是(x+50)元,根据题意得:2(x+50)=3x,解得x=100,x+50=150(元).答:每套队服150元,每个篮球100元;(2)到甲商场购买所花的费用为:150×100+100(a-1005)=100a+13000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);答:到甲商场的花费为(100a+13000)元,到乙商场的花费为(80a+15000)元;(3)在甲商场购买比较合算,理由如下:将a=90代入,得:甲商场:100a+13000=22000(元),乙商场:80a+15000=22200(元),因为22200>22000,所以在甲商场购买比较合算.22.(1)73,100,408;(2)存在,335分钟或560分钟;(3)若t<335或t>560,方式一省钱;若335<t<560,方式二省钱,t=335或t=560时,两种方式费用相同.解:(1)根据题意得:若主叫通话时间为200分钟,①按方式一计费需65+(200-160)×0.2=73(元),按方式二计费需100元,若他按方式二计费需107元,设主叫通话时间为x分钟,根据题意得:100+(x-380)×0.25=107,解得:x=408,故答案为:73,100,408;(2)若160<t≤380,根据题意得:65+(t-160)×0.2=100,解得:t=335,若t>380,根据题意得:65+(t-160)×0.2=100+(t-380)×0.25,解得:t=560,答:存在某主叫通话时间335分钟或560分钟,按方式一和方式二的计费相等,(3)由题意可得:若t<335或t>560,选择方式一省钱,若335<t<560,选择方式二省钱,若t=335或t=560时,两种方式费用相同。
方案选择问题
3.4实际问题与一元一次方程(6)——方案选择实验中学数学组主备人:学习目标:1、能用一元一次方程解决方案选择问题;2、理解并掌握方案问题的一般解题思路和解题方法。
学习过程:一、板书课题:同学们,今天我们来学习一元一次方程中的方案选择问题,我们应该达到什么目标呢?请看学习目标二、出示学习目标1、能用一元一次方程解决方案选择问题;2、理解并掌握方案问题的一般解题思路和解题方法。
自学指导:解决此类问题的一般步骤:1、设未知数,用含未知数的式子分别表示两种方案的费用;2、利用方程求出两种方案费用相等时的未知数的值;3、根据情况分为大于、等于、小于三种情况讨论,分别确定怎样选择更优惠。
先学例、小明为书房买灯,想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价60元月另一种是60瓦(即0.06千瓦)的白炽灯,售价30元。
两种灯的照明效果一样,使用寿命也相同(3000小时)。
节能灯售价高,但较省电风;白炽灯售价低,但用电多,如果电费是0.5元/千瓦时,若小明计划照明时间不超过3000小时,选择哪种灯可以节省费用?分析:1、费用的构成:费用=灯泡售价+电费2、设照明时间为x小时,则白炽灯的费用:30+0.06×0.5x=30+0.03x(元)节能灯的费用:60+0.01×0.5x=60+0.05x(元)3、分为等于、小于、大于三种情况讨论,确定最佳方案4、学生演板,并自行纠正解:后教请同学们认真看黑板上演板的内容,注意上面学生所得的结果正确吗?当堂训练在“五一”黄金周期间,小明小亮等同学随家人一同到将狼山游玩,下面是购买门票是,小明与他爸爸的对话:爸爸说:“大人总门票每张35元,学生门票五折优惠,我们总共有12人,共要350元。
”小敏说:“爸爸,等一下,让我算一算,换一种方式买票是否更省钱。
”票价单:成人:35元一张。
学生:按成人5折优惠,团体票:16人以上(含16人)按成人票6折优惠。
3.4实际问题与一元一次方程习题
工程问题一、某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作,那么正好按期完工.问该工程的工期是几天?二、某班组天天需生产50个零件才能在规定的时刻内完成一批零件任务,事实上该班组天天比打算多生产了6个零件,结果比规定的时刻提早3天并逾额生产120个零件,则该班组要完成的零件任务为多少个?3、有一批零件加工任务甲独做40小时完成,已独做30小时完成,甲做了几小时还有任务,剩下的由乙单独完成,乙比甲多做2小时,求甲做了几小时。
4、水池有一注水管,单开5小时能够住满水池;还有一处水管,单开18小时能够把满池水放完.假设两管齐开,求注满水池所用的时刻。
五、9人14天完成了一件工作的53,且每一个人的工作效率相同,假设剩下的工作要在4天内完成,那么需要增加多少人?销售问题1、某超市为“开业三周年”举行了店庆活动,对A 、B 两种商品实行打折销售.已知购买5件A 商品和1件B 商品只需84元;购买6件A 商品和3件B 商品需用108元.求A 、B 两种商品的单价。
2、一件衣服先按本钱提高50%标价,再以8折(标价的80%)出售,结果获利28元.求这件衣服的本钱。
3、下表为衣饰与原价对账表.某日衣饰店举行大拍卖,外衣按原价打六折出售,衬衫和裤子按原价打八折出售,衣饰共卖出200件,共得24000元.求外衣、衬衫和裤子各卖出多少件。
4、某个体户进了40套服装,以高出进价40元的售价卖出了30套,后因换季,剩下的10套服装以原售价的六折售出,结果40套服装共收款4320元,问每套服装的进价是多少元?这位个体户是赚了仍是赔了?赚了或赔了多少元?5、两件商品都卖84元,其中一件亏损20%,另一件盈利40%,那么这两件商品卖出后是盈利仍是赔本?盈利或赔本多少元?竞赛积分问题一、学校举行排球赛,积分榜部份情形如下.(1)分析积分榜,平一场比负一场多得______分.(2)假设胜一场得3分,七(6)班也竞赛了6场,胜场是平场的一半且共积14分,那么七(6)班胜几场?二、一份试卷共有25道题,每道题都给出了4个答案,每道题选对得4分,不选或选错扣1分,甲同窗说他得了71分,乙同窗说他得了62分,丙同窗说他得了96分,你以为哪个同窗说的对?请说明理由.配套问题1、现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底正好配成一个完整的盒子,需要多少张铁皮做盒身,多少铁皮做盒底才能使加工出的盒身与盒底配套?2、某车间有27个工人,生产甲乙两种零件.每3个甲零件与2个乙零件配成一套,已知每一个工人天天能加工甲零件12个或乙零件16个,为使天天生产的两种零件配套,应如何分派工人的生产任务?3、某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼,制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉,现有面粉4500kg,制作2种月饼应各用多少面粉,才能生产最多的月饼.4、某车间有27个工人,生产甲乙两种零件.每3个甲零件与2个乙零件配成一套,已知每一个工人天天能加工甲零件12个或乙零件16个,为使天天生产的两种零件配套,应如何分派工人的生产任务?5、.某军队派出一支有25人组织的小分队参加防汛抗洪斗争,假设每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使泥和抬泥紧密配合,而正好清场干净.分段收费问题1、某通信公司推出两种电话付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费0.10元.两种方式不足1分钟均按1分钟计算.(1)若是一个月通话x分钟,那么用甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)若是求一个月通话多少分钟时两种方式的费用相同,能够列出一个如何的方程?它是一元一次方程吗?二、某商场国庆节弄促销活动,购物不超过200元不给优惠,超过200元不足500元的优惠10%,超过500元的,其中500元按9折优惠,超过的部份按8折优惠,某人两次购物别离用了124元、466元.(1)假设这人于某次购物时付款198元,那么这次购物的物品实际价值是多少元?(2)这人两次购物其物品实际价值共是多少元?(3)在这次活动中他节省了多少钱?(4)假设这人将两次购物的钱合起来,一次购物时更节省仍是亏损?节省或亏损多少钱?请说明理由.3、某市供电公司分时电价执行分为平、谷两个时段,平段为8:00-22:00,谷段为22:00-第二天8:00,10小时;平段用电价钱在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份有效平段用电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元。
人教版七年级上册数学:实际问题与一元一次方程---方案选择问题课件
(4)小康持会员卡购书,一年共节省80元,请你 帮他计算一下这一年他在唐人书店买书共花了多 少钱?
解:设他在唐人书店买书花了x元钱, 由题意得: 20+0.8x=x-80 解得:x=500
答:他在唐人书店买书花了500元钱.
拓展提高
校长带领“三好学生”去旅行,已知甲、乙两家旅行社 的全票价均为240元,为了争取游客,甲旅行社推出的 优惠方案是:校长全票,其余学生享受半价优惠;乙旅 行社:包括校长在内,全部按票价的6折优惠。 (1)当学生人数为多少时,两旅行社收费一样? (2)请根据实际人数为校长设计一个省钱的旅行方案。
解:方式一:30+0.3×200=90(元) 方式二:0.4×200=80(元) 所以选方式二.方式一:30+0.3×350=135(元) 方式二:0.4×350=140(元) 所以选方式一.
问题探究
方式一
方式二
月租费
30元/月 0
本地通话费 0.3元/分 0.4元/分
(1)当购买乒乓球多少盒时,到两家商店花钱一样多?
(2)若同学们需要15盒乒乓球,请你去办这件事,你决 定去哪家商店购买?
2、为了积极配合学校开展的“阳光体育”活动,七(1) 班同学准备购买一些乒乓球和乒乓球拍,每副球拍30元, 每盒乒乓球5元,甲、乙两商店又推出不同的优惠方案: 甲商店买一副球拍赠送1盒乒乓球;乙商店全部按定价 的9折优惠。同学们需要球拍5副,乒乓球若干盒(不小 于5盒) (1)当购买乒乓球多少盒时,到两家商店花钱一样多?
如果通话时间等于300分钟,两种方式都可以。
例题解析
例题:唐人书店出售一种购书会员卡,每张会员卡20
3.4 实际问题与一元一次方程 试卷2(含答案)
实际问题与一元一次方程一、选择题(共12小题)1.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)2.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x度,则所列方程正确的是()A.6x+6(x﹣2000)=150000 B.6x+6(x+2000)=150000C.6x+6(x﹣2000)=15 D.6x+6(x+2000)=153.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,耀轩将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,则此时甲尺的刻度21会对准乙尺的哪一个刻度?()A.24 B.28 C.31 D.324.永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明山景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:005.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元6.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A.25台B.50台C.75台D.100台7.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.1008.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元9.“六一”期间,某商店将单价标为130元的书包按8折出售可获利30%,该书包每个的进价是()A.65元B.80元C.100元D.104元10.附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200﹣x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200﹣x)=2400011.王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25x)=3382512.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87 B.1.2×0.8x+2×0.9(60﹣x)=87C.2×0.9x+1.2×0.8(60+x)=87 D.2×0.9x+1.2×0.8(60﹣x)=87二、填空题(共11小题)13.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为.14.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省元.15.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水m3.16.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了千克.17.湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票张.18.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为元.19.公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为.20.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.21.(2015•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入分钟的水量后,乙的水位比甲高0.5cm.22.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边上.23.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为.三、解答题(共7小题)24.小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?25.小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.26.为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?27.下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22 a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?28.如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿直线匀速爬向B点的过程中,到达C点时用了6分钟,那么还需要多长时间才能到达B点?29.为支持亚太地区国家基础设施建设,由中国倡议设立亚投行,截止2015年4月15日,亚投行意向创始成员国确定为57个,其中意向创始成员国数亚洲是欧洲的2倍少2个,其余洲共5个,求亚洲和欧洲的意向创始成员国各有多少个?30.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?参考答案与试题解析一、选择题(共12小题)1.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)【考点】由实际问题抽象出一元一次方程.【分析】设把x公顷旱地改为林地,根据旱地面积占林地面积的20%列出方程即可.【解答】解:设把x公顷旱地改为林地,根据题意可得方程:54﹣x=20%(108+x).故选B.【点评】本题考查一元一次方程的应用,关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.2.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x度,则所列方程正确的是()A.6x+6(x﹣2000)=150000 B.6x+6(x+2000)=150000C.6x+6(x﹣2000)=15 D.6x+6(x+2000)=15【考点】由实际问题抽象出一元一次方程.【分析】设上半年每月平均用电x度,在下半年每月平均用电为(x﹣2000)度,根据全年用电量15万度,列方程即可.【解答】解:设上半年每月平均用电x度,在下半年每月平均用电为(x﹣2000)度,由题意得,6x+6(x﹣2000)=150000.故选A.【点评】本题考查了有实际问题抽象出一元一次方程,解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,列方程.3.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,耀轩将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,则此时甲尺的刻度21会对准乙尺的哪一个刻度?()A.24 B.28 C.31 D.32【考点】一元一次方程的应用.【分析】由将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,得出甲尺相邻两刻度之间的距离:乙尺相邻两刻度之间的距离=48:36=4:3,如果甲尺的刻度0对准乙尺的刻度4,设此时甲尺的刻度21会对准乙尺刻度x,根据甲尺的刻度21与刻度0之间的距离=乙尺刻度x与刻度4之间的距离列出方程,解方程即可.【解答】解:如果甲尺的刻度0对准乙尺的刻度4,设此时甲尺的刻度21会对准乙尺刻度x,根据题意得36(x﹣4)=21×48,解得x=32.答:此时甲尺的刻度21会对准乙尺的刻度32.故选D.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4.永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明山景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:00【考点】一元一次方程的应用.【分析】设开幕式当天该景区游客人数饱和的时间约为x点,结合已知条件“从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人”列出方程并解答.【解答】解:设开幕式当天该景区游客人数饱和的时间约为x点,则(x﹣8)×(1000﹣600)=2000,解得x=13.即开幕式当天该景区游客人数饱和的时间约为13:00.故选:C.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元【考点】二元一次方程的应用.【专题】压轴题.【分析】设该商品的进价为x元,标价为y元,根据题意可以得到x,y的值;然后计算打九折销售该电器一件所获得的利润.【解答】解:设该商品的进价为x元,标价为y元,由题意得,解得:x=2500,y=3750.则3750×0.9﹣2500=875(元).故选:B.【点评】此题考查二元一次方程的实际运用,掌握销售中的基本数量关系是解决问题的关键.6.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A.25台B.50台C.75台D.100台【考点】一元一次方程的应用.【分析】设今年购置计算机的数量是x台,根据今年购置计算机数量是去年购置计算机数量的3倍列出方程解得即可.【解答】解:设今年购置计算机的数量是x台,去年购置计算机的数量是(100﹣x)台,根据题意可得:x=3(100﹣x),解得:x=75.故选C.【点评】此题考查一元一次方程的应用,关键是根据今年购置计算机数量是去年购置计算机数量的3倍列出方程.7.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.100【考点】一元一次方程的应用.【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.8.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元【考点】一元一次方程的应用.【分析】设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依据“2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同”列出方程并解答.【解答】解:设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依题意得100x=(x﹣80)×100×(1+10%),解得x=880.即1月份每辆车售价为880元.故选:A.【点评】本题考查了一元一次方程的应用.根据题意得到“2月份每辆车的售价”和“2月份是销售总量”是解题的突破口.9.“六一”期间,某商店将单价标为130元的书包按8折出售可获利30%,该书包每个的进价是()A.65元B.80元C.100元D.104元【考点】一元一次方程的应用.【分析】设书包每个的进价是x元,等量关系是:售价﹣进价=利润,依此列出方程,解方程即可.【解答】解:设书包每个的进价是x元,根据题意得130×0.8﹣x=30%x,解得x=80.答:书包每个的进价是80元.故选B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200﹣x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200﹣x)=24000【考点】由实际问题抽象出一元一次方程.【分析】由于外套卖出x件,则衬衫和裤子卖出(200﹣x)件,根据题意可得等量关系:外套的单价×6折×数量+衬衫和裤子的原价×8折×数量=24000元,由等量关系列出方程即可.【解答】解:若外套卖出x件,则衬衫和裤子卖出(200﹣x)件,由题意得:0.6×250x+0.8×125(200﹣x)=24000,故选:B.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.11.王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25x)=33825【考点】由实际问题抽象出一元一次方程.【专题】增长率问题.【分析】根据“利息=本金×利率×时间”(利率和时间应对应),代入数值,计算即可得出结论.【解答】解:设王先生存入的本金为x元,根据题意得出:x+3×4.25%x=33825;故选:A.【点评】此题主要考查了一元一次方程的应用,计算的关键是根据利息、利率、时间和本金的关系,进行计算即可.12.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87 B.1.2×0.8x+2×0.9(60﹣x)=87C.2×0.9x+1.2×0.8(60+x)=87 D.2×0.9x+1.2×0.8(60﹣x)=87【考点】由实际问题抽象出一元一次方程.【分析】设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60﹣x)支圆珠笔的售价=87,据此列出方程即可.【解答】解:设铅笔卖出x支,由题意,得1.2×0.8x+2×0.9(60﹣x)=87.故选:B.【点评】考查了由实际问题抽象出一元一次方程,根据根据描述语找到等量关系是解题的关键.二、填空题(共11小题)13.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为2x+16=3x.【考点】由实际问题抽象出一元一次方程.【分析】根据“送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完”表示出牛奶的总盒数,进而得出答案.【解答】解:设敬老院有x位老人,依题意可列方程:2x+16=3x,故答案为:2x+16=3x.【点评】此题主要考查了由实际问题抽象出一元一次方程,根据已知表示出牛奶的总盒数是解题关键.14.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省18或46.8元.【考点】一元一次方程的应用.【分析】按照优惠条件第一次付180元时,所购买的物品价值不会超过300元,不享受优惠,因而第一次所购物品的价值就是180元;300元的9折是270元,因而第二次的付款288元所购买的商品价值可能超过300元,也有可能没有超过300元.计算出两次购买物品的价值的和,按优惠条件计算出应付款数.【解答】解:(1)若第二次购物超过300元,设此时所购物品价值为x元,则90%x=288,解得x=320.两次所购物价值为180+320=500>300.所以享受9折优惠,因此应付500×90%=450(元).这两次购物合并成一次性付款可节省:180+288﹣450=18(元).(2)若第二次购物没有过300元,两次所购物价值为180+288=468(元),这两次购物合并成一次性付款可以节省:468×10%=46.8(元)故答案是:18或46.8.【点评】本题考查了一元一次方程的应用.能够分析出第二次购物可能有两种情况,进行讨论是解决本题的关键.15.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水28m3.【考点】一元一次方程的应用.【分析】20立方米时交40元,题中已知五月份交水费64元,即已经超过20立方米,所以在64元水费中有两部分构成,列方程即可解答.【解答】解:设该用户居民五月份实际用水x立方米,故20×2+(x﹣20)×3=64,故x=28.故答案是:28.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.16.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了5千克.【考点】一元一次方程的应用.【分析】设买了甲种药材x千克,乙种药材(x﹣2)千克,根据用280元买了甲、乙两种药材,甲种药材比乙种药材多买了2千克,列方程求解.【解答】5解:设买了甲种药材x千克,乙种药材(x﹣2)千克,依题意,得20x+60(x﹣2)=280,解得:x=5.即:甲种药材5千克.故答案是:5.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.17.湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票50张.【考点】一元一次方程的应用.【分析】根据总售出门票100张,共得收入4000元,可以列出方程求解即可.【解答】解:设当日售出成人票x张,儿童票(100﹣x)张,可得:50x+30(100﹣x)=4000,解得:x=50.答:当日售出成人票50张.故答案为:50.【点评】此题考查一元一次方程的应用,本题解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为100元.【考点】一元一次方程的应用.【分析】根据题意可知商店按零售价的8折再降价10元销售即销售价=150×80%﹣100,得出等量关系为150×80%﹣10﹣x=x×10%,求出即可.【解答】解:设该商品每件的进价为x元,则150×80%﹣10﹣x=x×10%,解得x=100.即该商品每件的进价为100元.故答案是:100.【点评】此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.19.公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为【考点】一元一次方程的应用.【专题】数字问题.【分析】设“它”为x,根据它的全部,加上它的七分之一,其和等于19列出方程,求出方程的解得到x的值,即可确定出“它”的值.【解答】解:设“它”为x,根据题意得:x+x=19,解得:x=,则“它”的值为,故答案为:.【点评】此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键.20.(2015•绍兴)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.【考点】一元一次方程的应用.【专题】压轴题;分类讨论.【分析】由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,②当甲的水位低于乙的水位时,甲的水位不变时,③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.【解答】解:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,有1﹣t=0.5,解得:t=分钟;②当甲的水位低于乙的水位时,甲的水位不变时,∵t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向乙容器溢水,∵5÷=分钟,=,即经过分钟丙容器的水到达管子底部,乙的水位上升,∴,解得:t=;③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,。
七年级数学第三章一元一次方程3.4实际问题与一元一次方程第1课时配套问题与工程问题教案
3.4实际问题与一元一次方程第1课时配套问题与工程问题【知识与技能】会根据实际问题中数量关系列方程解决问题,并进一步熟练掌握一元一次方程的解法。
【过程与方法】培养学生数学建模能力,分析问题、解决问题的能力。
【情感态度】通过开放性问题的设计,培养学生创新能力和挑战自我的意识,增强学生的学习兴趣。
【教学重点】从实际问题中抽象出数学模型.【教学难点】根据题意,分析各类问题中的数量关系,会熟练地列方程解应用题。
一、情境导入,初步认识在前两节中,我们着重探讨了解一元一次方程的概念和几种方法,这几种解法包括合并同类项与移项、去括号与去分母等.这几个课时我们着重探讨如何用一元一次方程解决实际问题,我们先来看两个问题:问题1 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?思考:①若安排x名工人加工大齿轮,则有___名工人加工小齿轮。
②x名工人每天可加工_____个大齿轮,加工小齿轮的工人每天可加工____个小齿轮。
③按题中的配套方法,你是否可找出其中的等量关系呢?问题2一件工作,甲单独做20小时完成,乙单独做12小时完成,那么两人合作多少小时完成?思考:①两人合作32小时完成对吗?为什么?②甲每小时完成全部工作的______;乙每小时完成全部工作的_______;甲x小时完成全部工作的_______;乙x小时完成全部工作的_______。
【教学说明】提出这个问题,旨在让学生能快速进入课堂,进行思考。
教师可根据上面所列思考题引导学生进行思考,问题1是配套问题,教师最终要引导学生找出等量关系:生产的大齿轮数量的3倍与小齿轮数量的2倍相等.题①、②依次填:(85-x)、16x、10(85-x)。
依次我们可列得方程为3×16x=2×\[10×(85—x)\].问题2提出了一个新问题:如何解决与工作量相关的应用题,这类题求解时一般都需要去分母。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
情境导入
为响应国家提速降费号召,近日中国电信、中国移 动和中国联通相对以往的套餐确实作出了改变,相 继降低资费。作为消费者,我们该如何选择呢?
问题探究
阅读下面的文字,重点弄清楚以下几个问题: 小宁的爸爸新买了一部手机,他从移动公司了解到 现在有两种计费方式:
校长带领“三好学生”去旅行,已知甲、乙两家旅行社 的全票价均为240元,为了争取游客,甲旅行社推出的 优惠方案是:校长全票,其余学生享受半价优惠;乙旅 行社:包括校长在内,全部按票价的6折优惠。
(1)当学生人数为多少时,两旅行社收费一样?
解:设学生人数为x人时,两家旅行社收费一样,
由题意得:240+0.5×240x=0.6×240(x+1)
乙商店花钱:5×30+5×(15-5)=200(元)
答:当购买乒乓球15盒时,选乙商店省钱.
课堂小结
1.谈谈你今天又学到了那些知识?
2.对照学习目标,检查自己哪些知识已经掌 握了,哪些知识还有疑惑?
当堂达标
1.商场计划拨款9万元,从厂家购进50台电视机,已知该 厂家生产三种不同型号的电视机,出厂价分别为:甲种每 台1500元,乙种每台2100元,丙种每台2500元。 (1)若商场同时购进两种不同型号的电视机共50台,用 去9万元,请你研究一下商场的进货方案。 (2)若商场销售一台甲种电视机可获利150元,销一台乙 种电视机可获利200元,销售一台丙种电视机获利250元, 那么你会选择哪种进货方案?
解:方式一:30+0.3×200=90(元) 方式二:0.4×200=80(元) 所以选方式二.
3、如果爸爸一个月在本地通话350分钟,该选 择哪种方式?
解:方式一:30+0.3×350=135(元) 方式二:0.4×350=140(元) 所以选方式一.
问题探究
方式一
方式二
月租费
30元/月 0
本地通话费 0.3元/分 0.4元/分
(1)方案一:进甲种电视机χ台,乙种(50-χ)台, 则1500χ+(50-χ)×2100=90000 χ=25,50-χ=25 故甲、乙两种电视机各进25台。 方案二:进甲种电视机у台,丙种(50-у)台, 则1500у+(50-у)×2500=90000, у=35,50-у=15 故甲种进35台,丙种15台。 方案三:进乙种电视机z台丙种(50-z)台。 则2100z+(150-z)×2500=90000, Z=87.5(舍去) 因此有两种进货方案。 (2)获利情况: 方案一:150×25+200×15=8750(元) 方案二:35×150+15×250=9000(元) 因为:8750<90000, 所以应选择方案二进货。
费多少元?按方式二呢?
3、如果爸爸一个月在本地通话350分钟,该选择哪种方
式?
4、爸爸问小宁,打多少分钟时,这两种计费方式一样多?
你能帮小明回答这个问题吗?
5、你能帮小宁的爸爸做出最正确的选择吗?
问题探究
1、话费= 月租费+本地通话费. 2、如果爸爸一个月在本地通话200分钟,按 方式一需交费多少元?按方式二呢?
解得:
x=4
答:当学生人数为4人时,两家旅行社收费一样.
(2)请根据实际人数为校长设计一个省钱的旅行方案。 答:当学生人数多于4人时,选甲旅行社省钱;
当学生人数少于4人时,选乙旅行社省钱;
当学生人数等于4人时,两家旅行社花费一样.
跟踪训练
2、为了积极配合学校开展的“阳光体育”活动,七(1) 班同学准备购买一些乒乓球和乒乓球拍,每副球拍30元, 每盒乒乓球5元,甲、乙两商店又推出不同的优惠方案: 甲商店买一副球拍赠送1盒乒乓球;乙商店全部按定价 的9折优惠。同学们需要球拍5副,乒乓球若干盒(不小 于5盒),问:
如果通话时间等于300分钟,两种方式都可以。
例题解析
例题:唐人书店出售一种购书会员卡,每张会员卡20
元,仅限本人使用,有效期一年,凭卡购书可享受8折 优惠,无卡购书不打折。请讨论: (1)购书多少元时,买卡与不买卡花钱一样多? (2)什么情况下买卡划算? (3)什么情况下,不买卡划算? (4)小康持会员卡购书,一年共节省80元,请你帮他计 算一下这一年他在唐人书店买书共花了多少钱?
例题:唐人书店出售一种购书会员卡,每张会员卡20元, 仅限本人使用,有效期一年,凭卡购书可享受8折优惠, 无卡购书不打折。请讨论:
(1)购书多少元时,买卡与不买卡花钱一样多? 解:设购书x元时,买卡与不买卡花钱一样多, 由题意得: 20+0.8x=x 解得:x=100 答:购书100元时,买卡与不买卡花钱一样多.
(2)什么情况下买卡划算? (3)什么情况下,不买卡划算?
(4)小康持会员卡购书,一年共节省80元,请你 帮他计算一下这一年他在唐人书店买书共花了多 少钱?
解:设他在唐人书店买书花了x元钱, 由题意得: 20+0.8x=x-80 解得:x=500
答:他在唐人书店甲、乙两家旅行社 的全票价均为240元,为了争取游客,甲旅行社推出的 优惠方案是:校长全票,其余学生享受半价优惠;乙旅 行社:包括校长在内,全部按票价的6折优惠。 (1)当学生人数为多少时,两旅行社收费一样? (2)请根据实际人数为校长设计一个省钱的旅行方案。
(1)当购买乒乓球多少盒时,到两家商店花钱一样多?
(2)若同学们需要15盒乒乓球,请你去办这件事,你决 定去哪家商店购买?
2、为了积极配合学校开展的“阳光体育”活动,七(1) 班同学准备购买一些乒乓球和乒乓球拍,每副球拍30元, 每盒乒乓球5元,甲、乙两商店又推出不同的优惠方案: 甲商店买一副球拍赠送1盒乒乓球;乙商店全部按定价 的9折优惠。同学们需要球拍5副,乒乓球若干盒(不小 于5盒) (1)当购买乒乓球多少盒时,到两家商店花钱一样多?
4、爸爸问小宁,打多少分钟时,这两种计费方式一样多?你
能帮小明回答这个问题吗? 解:打x分钟时,这两种计费方式一样多,
由题意得: 30+0.3x=0.4x
解得:x=300
答:打300分钟时,这两种计费方式一样多. 5、你能帮小宁的爸爸做出最正确的选择吗?
答:如果通话时间多于300分钟,选方式一;
如果通话时间少于300分钟,选方式二;
解:设当购买乒乓球x盒时,到两家商店花钱一样多,
由题意得:(5×30+5x)×0.9=5×30+5(x-5)
解得:
x=20
答:当购买乒乓球20盒时,到两家商店花钱一样多.
(2)若同学们需要15盒乒乓球,请你去办这件事,
你决定去哪家商店购买? 解:甲商店花钱:(5×30+5×15)×0.9=202.5(元)
方式一
方式二
月租费
30元/月
本地通话费 0.3元/分
0 0.4元/分
妈妈说选择方式一省钱,可爸爸却说选择方 式 二更省钱,你能帮助他们做出最正确的选择吗?
问题探究
方式一
方式二
月租费
30元/月
本地通话费 0.3元/分
0 0.4元/分
解答下面的问题,看哪个小组计算又快又准确,
1、话费= +
.
2、如果爸爸一个月在本地通话200分钟,按方式一需交