岩石物理
第1章岩石的物理性质
1) 岩石的吸水性
岩石在一定的试验条件下吸收水分的能力,称为岩石的吸水性。常 用吸水率,饱和吸水率与饱水系数等指标表示。
(1)吸水率:岩石的吸水率(a)是指岩石试件在大气压力条件下自由 吸入水的质量(mw1)与岩样干质量(ms)之比,用百分数表示,岩石的 颗粒密度属实测指标,常用比重瓶法进行测定。
1.2
岩石的水理性质: 岩石的崩解性
物理性质指标
岩石的崩解性是指岩石与水相互作用时失去粘结性并变成完全丧失强度的松 散物质的性能。这种现象是由于水化过程中削弱了岩石内部的结构联络引起 的。常见于由可溶盐和粘土质胶结的沉积岩地层中。
岩石崩解性一般用岩石的耐崩解性指数表示。这项指标可以在实验室内做干 湿循环试验确定。
1.2
岩石的水理性质: 岩石的膨胀性
物理性质指标
岩石的膨胀性是指岩石浸水后体积增大的性质。 大多数结晶岩和化学岩是不具有膨胀性的,这是因为岩石中的矿物亲水性小 和结构联结力强的缘故。如果岩石中含有绢云母、石墨和绿泥石一类矿物, 由于这些矿物结晶具有片状结构的特点,水可能渗进片状层之间,同样产生 楔劈效应,有时也会引起岩石体积增大。 岩石膨胀大小一般用膨胀力和膨胀率两项指标表示,这些指标可通过室内试 验确定。目前国内大多采用土的固结仪和膨胀仪的方法测定岩石的膨胀性。
1.3
岩体的工程分类
按岩体质量指标分级: 美国伊利诺斯大学用岩体质量指标RQD来表示岩石的完整性。 采用直径为75mm的双层岩心管金刚石钻进,提取直径为54mm的岩心, 将长度小于10cm的破碎岩心及软弱物质剔除,然后测量大于或等于 10cm长柱状岩心的总长度(Lp)。用这一有效的岩心长度与采集岩心段 的钻孔总进尺(L)之比,取其百分数就是RQD。
岩石物理 Rock Physics
教 材:
陈颙,黄庭芳著,岩石物理学,北京大学出版社,2001年 参 考 书: 1)赵鸿儒、唐文榜、郭铁栓编著,超声地震模型试验技术 及应用,石油工业出版社,1986 2)R.E.Sheriff et.al., Reservoir Geophysics, SEG, 1992 3)Amos Nur著,许云译,双相介质中波的传播,石油工
Rock Physics: bridge between reservoir and seismic properties
Reservoir properties
Porosity 孔隙度 4D Feasibility & Seismic modeling 四维 Density 密度 地震可行性及地震模拟 Saturation 饱和度 Fluid type 流体类型 Pressure 压力 Interpretation Temperature 温度 and Inversion Fracture 裂隙 解释及反演
Seismic properties
Seismic velocity 地震 波速 Travel time 走时 Impedance 阻抗 Amplitude 振幅 AVO response AVO 响 应 Other attributes 其他属 性
Role of Rock Physics in Seismic Lithology
Rock physics is the basis for building the predictive tools and interpreting the predicted or inverted data 岩石物理是建立预测工具及解释反演结果的物理 Rock properties Seismic data 基础
岩石的物理力学性质
n0
Vn0 V
100%
(5)闭空隙率nc: 即岩石试件内闭型空隙的体积(Vnc)占 试件总体积(V)的百分比。
nc
Vnc V
100%
2 、空隙比(e)
所谓空隙比是指岩石试件内空隙的体积(V V)与 岩石试件内固体矿物颗粒的体积(Vs)之比。
e VV V Vs n
Vs
Vs
1 n
四、岩石的水理性质
c 具有粘性的弹性岩石
由于应变恢复 有滞后现象,即加 载和卸载曲线不重 合,加载曲线弹模 和卸载弹模也不一 样。P点加载弹模 取过P点的加载曲 线的切线斜率,P 点卸载弹模取过P 点的卸载曲线的切 线斜率。
d、弹塑性类岩石
Ee e
2、变形模量
E0 e p
变形
弹性变形 塑性变形
线弹性变形 非线弹性变形
o
理想弹性体
s
o
线性硬化弹塑性体
s
o
理想弹塑性体
o
d
dt
理想粘性体
一、岩石在单轴压缩状态下的力学特性
1、σ~ε曲线的基本形状 美国学者米勒将σ~ε曲线分为6种。
σ~ε曲线的基本形状
致密、坚硬、少裂隙 致密、坚硬、多裂隙
少裂隙、 岩性较软
较多裂隙、 岩性较软
d
Ws V
d d g
(g/cm3) (kN /m3)
式中:Ws——岩石试件烘干后的质量(g); V——岩石试件的体积(cm3);
g——重力加速度。
3、饱和密度(ρ )和饱和重度(γw)
饱和密度就是饱水状态下岩石试件的密度。
w
Ww V
(g/cm3)
w wg
(kN /m3)
式中:WW——饱水状态下岩石试件的质量 (g); V——岩石试件的体积(cm3);
岩石物理、化学性质及其分类
主要内容
岩石性质及其分类
1.1 岩石的物理性质 1.2 岩
1 岩石的孔隙度η
岩石的物理性质
η为岩石中孔隙总体积V0与岩石的总体积V之比,
用百分率表示。
V0 V 100%
2 密度ρ和容重γ
密度ρ:不包括孔隙在内的岩石密度。(g/cm3)
M V V0
坚固的石灰岩、砂岩、大理岩、不坚固的花岗 岩、黄铁矿 一般的砂岩、铁矿 砂质页岩、页岩质砂岩
Ⅴ
中等
坚固的粘土质岩石、不坚固的砂岩和石灰岩
4
Ⅴa
Ⅵ Ⅵa Ⅶ Ⅶa Ⅷ Ⅸ Ⅹ
中等
较软弱 较软弱 软弱 软弱 土质岩石
各种不坚固的页岩、致密的泥灰岩
软弱的页岩,很软的石灰岩,白垩、岩盐、石 膏、冻土 碎石质土壤,破碎页岩、坚固的煤等
3)磨蚀性
岩石对工具的磨蚀能力,主要与岩石的成分有关。
4)凿岩性
岩石被凿碎的难易程度:用每米炮眼所消耗
的钎头数,纯凿速,比能三指标表示
5)爆破性 表示岩石被爆碎的难易程度:用单位原岩的
炸药消耗量和所需炮眼长度表示。
第三节
1 普氏分级法
岩石的分级
1)基本观点 是岩石的坚固性所综合上述各特性趋于一 致,即硬度、强度、凿岩性、爆破性是一致的。 2)分级方法 用坚固性系数f来大致概括,作为分级的根 据。f=R/10,或 共分10级。
图1-2 冲击载荷与时间的关系
②岩石变形不均匀,质点运动速度不一致
即岩石中各质点不是以一致速度运动,岩石不是均匀地 变形,这是与静载作用根本区别所在。如图1-3。 运动与变形首先开始
于受冲击的端面,端面处
质点受到扰动后,产生变 形和应力,由于质点间的
岩石的物理性质与性质分析
岩石的物理性质与性质分析岩石是地球表面最常见的地质材料之一,其物理性质和性质分析对于地质学研究以及工程建设都起到至关重要的作用。
本文将对岩石的物理性质进行介绍,并探讨如何对岩石的性质进行分析。
一、岩石的物理性质1. 密度密度是岩石的重要物理性质之一,通常用质量与体积的比值表示。
岩石的密度不仅与岩石的成分有关,还与其孔隙度和结构形态等因素密切相关。
不同类型的岩石其密度差异较大,例如火山岩的密度一般较低,而花岗岩和玄武岩的密度相对较高。
2. 弹性模量弹性模量是衡量岩石抗弹性变形能力的重要指标,通常用应力与应变的比值表示。
弹性模量可分为体积弹性模量、剪切模量和弯曲模量等。
不同类型的岩石其弹性模量也不同,例如砂岩的弹性模量相对较低,而页岩和石灰岩的弹性模量相对较高。
3. 磁性岩石的磁性是指岩石在外磁场作用下表现出的磁特性。
大部分岩石都具有不同程度的磁性,但具体的磁性表现与岩石的成分、结构以及成岩过程等因素有关。
通过对岩石的磁性分析,可以了解地质历史和构造变形。
4. 热性质岩石的热性质包括导热性、热膨胀系数和热导率等。
岩石的导热性取决于其成分、密度和孔隙度等因素,而热膨胀系数则决定了岩石在温度变化下的体积变化。
热导率是指岩石传导热量的能力,与岩石的矿物含量和孔隙度等因素有关。
二、岩石性质分析方法1. 物理试验常用的岩石性质分析方法之一是物理试验,包括密度测定、弹性模量测定和磁性测定等。
密度测定可通过称重和容器体积测量来完成,而弹性模量的测定通常使用弹性波速度的测量方法。
磁性测定则需要使用磁化强度计等仪器完成。
2. 岩心实验岩心是由地下取得的连续岩石样本,在岩石性质分析中起到非常重要的作用。
通过对岩心的观察和实验室分析,可以了解岩石的颜色、质地、孔隙度、矿物组成等特征,从而推测岩石的物理性质。
3. 地球物理勘探地球物理勘探是一种通过地球物理方法研究地壳结构和性质的方法。
它包括地震勘探、电磁测深、重力测量和磁力测量等。
岩石物理学ppt
6.1 差应力作用下岩石的特性 6.1.3 声发射及其他性质
5、用声发射研究岩石的破裂过程 岩石变形直至发生破裂的过程中,岩石内部不断地产生微破裂,微
破裂产生时会有声波辐射出来,这就是声发射(acoustic emission)。 用仪器测定每个声发射发生的地点,就可以知道微破裂产生的地点,并 可以从其辐射图形(radiation pattern)定出其破裂机制(focal mechansim)。记录下岩石变形时微破裂不断产生的位置、频度,这 样用声发射的方法就可以知道岩石破裂微破裂的发展演变,以及和岩石 最终破裂的关系
同样平均应力
下由流体静压力实验得到的体积应变之差。前一
种方法比较简单,在处理实验资料时紧常采用,后一种方法物理意义清楚,
在理论分析时经常采用。
6.1 差应力作用下岩石的特性
6.1.1 岩石的膨胀
图6-2给出了四种岩石的体积膨胀实验绍果
6.1 差应力作用下岩石的特性
6.1.1 岩石的膨胀
(2)岩石膨胀的特点
岩石物理学ppt
《岩石物理学》
第1章 岩石 第2章 岩石孔隙度和渗透率 第3章 岩石中波的传播与衰减 第4章 岩石的弹性 第5章 岩石的变形 第6章 岩石的断裂 第7章 岩石的强度
《岩石物理学》
第6章 岩石的断裂 6.1 差应力作用下岩石的特性 6.2 脆性断裂(brittle fracture) 6.3 岩石断裂力学 6.4 流体对断裂的影响
6.1.1 岩石的膨胀
为了确定岩石的膨胀A, 必须知道在差应力σd作用下岩石的弹性变
形.以这种弹性变形为参考基准,才能得到膨胀A·。通常是把在低差应
力下岩石应力-应变曲线的线性部分外推,得到σd—εv曲线。但当岩石孔
岩石的物理性质
(一)、岩石的吸水性
岩石在一定的试验条件下吸收水分的能力,称为岩 石的吸水性。 1.吸水率(Wa):岩石试件在大气压力和室温条件下 自由吸入水的质量(mw1)与岩样干质量(ms)之比,用 百分数表示
m w1 Wa 100% mw2
VVb dWa nb 100% dWa V w
式中:Cd 和Cw 分别为干燥岩石和水的比热容,x1 和x2分别为岩石干重和水重。
2018/5/27 岩石力学
第三节 岩石的热学性质
二、岩石的导热系数
岩石传导热量的能力,称为热传导性,常用导热系
数来表示。
dT Q kA dt dx
研究表明,岩石的比热容(C)与导热系数(k) 间存在如下关系:
岩 岩
大 理 岩 板 岩
2018/5/27
岩石力学
岩石的物理性质
孔隙度:岩石中孔隙体积与岩石总体积之比 (多用
百分数表示)。 裂隙率:岩石中各种节理、裂隙的体积与岩石总体 积之比称裂隙率。 孔隙度与裂隙率含义相同,孔隙度多用于松散土、 石,裂隙率多用于结晶连接的坚硬岩石。 一般岩石的孔隙度在0.1-0.35之间
2018/5/27 岩石力学
例题:
岩石的饱和密度为2.65g/cm3,干密度为
2.49g/cm3,请计算岩石的孔隙比和颗粒
密度
2018/5/27
岩石力学
2018/5/27
岩石力学
五、岩石的水理性质
岩石在水溶液作用下表现出来的性质,称为 水理性质。主要有: 1.吸水性 2.软化性 3.抗冻性 4.透水性
过程中的能量转换与守恒服从热力学原理。在以上
几种热交换方式中,以热传导传热最为普遍控制着 几乎整个地壳岩石的传热状态,对流传热主要在地 下水渗流带内进行。辐射传热仅发生在地表面。
第2章 岩石的物理力学性质
目 录
1、岩石的物理性质 2、岩石的强度特性 3、岩石的变形特性 4、岩体结构面的力学性质 5、岩体的力学性质 6、工程岩体的分类 7、岩石力学性质的时间效应
2.1 岩石的物理性质
岩石由固体、液体和气体三相介质组成, 其物理性质是指因岩石三相组成部分的相 对比例关系不同所表现出来的物理状态。
(2)变角板剪切试验(图) P (cos f sin ) A P (sin f cos ) A
此法的主要缺点是a角不能太大,也不能太小。
4 岩石的三轴压缩强度(Triaxial compressive strength)
岩石试件在三向压应力作用下能抵抗的最大轴向压力。
体积变形模量:平均正应力与单位体积变形之比
e V e 1 2 3 V K
切变模量:弹性或准弹性的切变模量
E G 2(1 )
岩块的变形模量和泊松比受岩石矿物组 成、结构构造、风化程度、空隙性、含水率、 微结构面及其与荷载方向的关系等多种因素 的影响,变化很大(图)。
f c tan
大量研究表明:当压力不大时(小于 10MPa),直线形强度包络线能够满足工程 要求,是目前应用最为广泛的强度理论。
(2)二次抛物线形莫尔强度准则(图) 软弱至中等硬度完整岩石,如泥灰岩、 砂岩、泥岩等岩石的强度包络线近似于二次 抛物线。
n( t )
VD D / D 100%
(2)岩石的侧向约束膨胀率
VHP H1 / H 100%
(3)膨胀压力
6 岩石的透水性 达西定律
Vx kix
岩石的渗透系数一般都很小,新鲜致 密岩石的渗透系数一般均小于10-7cm/s。裂 隙发育时,渗透系数一般比新鲜岩石大4~ 6个数量级。
1岩石力学-岩石物理力学性质
d
s
A h
式中,γd为岩石的干密度(g/cm3);gs为被测岩样在 105℃一110℃的温度下烘干24 小时的质量(g);A为被测 岩样的平均断面积(cm2);h为被测岩样平均高度(cm)。
38
一、岩石的质量指标 岩石密度测定方法二:水中称重法 首先称量不规则岩样的质量(gs),再浸入水 中称其质量(gw) ,根据阿基米德原理计算出 不规则岩样的体积(V),即可计算出岩样密 度(γ)。 遇水崩解、溶解和干缩湿胀的岩石不能用此 法测其密度。
岩石力学
胶 结 连 结
二、岩石的常见结构类型
岩石中的微结构面,是指存在于矿物颗粒内 部或矿物颗粒及矿物集合体之间微小的弱面及 空隙。包括矿物的解理、晶格缺陷、晶粒边界、 粒间空隙、微裂隙等。 岩石中的微结构面一般是很小的,通常需在 显微镜下观察才能见到,但它们对岩石工程性 质的影响却是相当大的。 有些专家认为缺陷是影响岩石力学性质的决 定性因素。
岩石力学
岩 浆 岩
三、岩石的地质成因分类
沉积岩是由风化剥蚀作用或火山作用形成的物 质,在原地或被外力搬运,在适当条件下沉积下 来,经胶结和成岩作用而形成的,其矿物成分主 要是粘土矿物、碳酸盐和残余的石英长石等。
沉 积 岩
岩石力学
三、岩石的地质成因分类
岩石力学
三、岩石的地质成因分类
沉积岩具有层理构造,岩性 一般具有明显的各向异性。 沉 积 岩
变 质 岩
岩石力学
三、岩石的地质成因分类
3、区域变质岩 这类变质岩分布范围较广,岩石厚度较大, 变质程度较为均一,最常见的有片麻岩、片岩、 千枚岩、板岩、石英岩和大理岩,混合岩是介 于片麻岩与岩浆岩之间的一种岩石。
变 质 岩
岩石力学
岩石的物理性质
作业
岩石的物理性质
密度:是指岩(矿)石的致密程度,通常以单位体积物质的质量来表示,单位是:g/cm3或kg/m3。
决定岩石密度的主要因素有:岩石中各种矿物成分及其含量,岩石的孔隙度及孔隙中的充填物,岩石所受的压力。
通常情况下,只有其中某一种或二种因素起主导作用。
磁性:由于岩石由矿物组成,所以岩石的磁性强弱与矿物的磁性有直接关系。
而矿物磁性特征为抗磁性矿物的磁化率都很小,在磁力勘探中通常视为无磁性的;顺磁性矿物的磁化率要比抗磁性矿物大得多,约两个数量级。
电阻率:电流通过每边长度为1m的立方体均匀物质时所遇到的电阻值。
岩石的电阻率越小,它的导电性越好,岩石的电阻率越大,其导电性越差。
岩(矿)石的电阻率变化除了与其矿物成分、含量、矿物颗粒结构、构造有关外,很大程度上取决于它们的孔隙度或裂隙度及其中所含水分的多少。
速度:地震波速度既与岩石的弹性性质相关,又是反映岩石物理性质的重要参数。
影响因素为孔隙度及孔隙填充物性质,密度,埋藏深度,构造历史和地质年代,温度。
岩石的物理性质与性质分析
岩石的物理性质与性质分析岩石是地壳中主要的固体物质,由矿物粒子和胶结物质组成。
岩石的物理性质是指岩石在外部作用下所表现出的性质,包括密度、硬度、磁性、导电性等。
岩石的性质分析是对岩石物理性质的具体研究,通过对岩石的性质分析,可以更好地了解岩石的组成和结构,为勘探、开采和利用岩石资源提供参考。
1. 密度分析岩石的密度是指单位体积岩石的质量,通常以g/cm³或kg/m³为单位。
密度是岩石的一个重要物理性质,可以通过密度的测定来判断岩石的成分和结构。
常见的岩石密度范围在2.4-3.0g/cm³之间,不同种类的岩石其密度也会有所差异。
例如,花岗岩的密度较高,大理石的密度较低,通过密度分析可以区分不同种类的岩石。
2. 硬度分析岩石的硬度是指岩石抵抗外力破坏的能力,通常以莫氏硬度来表示。
莫氏硬度是一个用来标定矿物硬度的量值,取值范围从1到10,硬度越大表示矿物的抗压能力越强。
常见的岩石硬度在2-7之间,硬度较高的岩石如石英、玄武岩等在建筑和工程领域中有重要的应用。
通过硬度分析可以进行岩石分类和评价。
3. 磁性分析岩石的磁性是指岩石在外磁场作用下表现出的性质,包括磁化强度、剩磁、磁化率等。
岩石的磁性与岩石的矿物成分密切相关,一些含铁矿物的岩石具有较强的磁性。
通过磁性分析可以对岩石中的矿物组成和结构进行识别和研究,为地质勘探和矿产资源调查提供基础数据。
4. 导电性分析岩石的导电性是指岩石导电能力的强弱,不同类型的岩石具有不同的导电性。
一些含水的岩石、矿石等具有较好的导电性,通过导电性分析可以进行矿石探测和地下水勘探。
导电性分析还可以用于岩石的工程评价和建筑设计,对岩石的稳定性和耐久性进行评估。
综上所述,岩石的物理性质与性质分析对于岩石资源的开发利用具有重要的意义。
通过对岩石的密度、硬度、磁性和导电性等方面的分析,可以更加深入地了解岩石的成分和结构,为岩石资源的综合利用提供科学依据。
岩石相关物理性能
岩石相关物理性能
1.岩石种类
火成岩:硅酸盐岩浆上升到地壳上部形成,主要:玄武岩,安山岩,辉长岩,闪长岩,花岗岩,呈酸性,由各向同性,破碎后不
易产生针片状颗粒。
沉积岩:沉积物质在低温低压下形成,主要:砾岩,砂岩,粉砂岩,泥岩,页岩,石灰岩,白云石,石膏,呈碱性,由各向异性,
破碎后易产生针片状颗粒。
变质岩:岩石(火成岩)在地下受高温高压或强烈剪切而碎裂或重结晶形成,主要有:角闪岩,石英岩,大理石,板岩,片麻岩等。
由各向异性,破碎后而产生针片状颗粒。
2.岩石的强度
说明:
①很软:泥岩,板岩,滑石,白云石,页岩。
软:砂岩,大理石,方解石,石灰岩,凝灰岩。
中硬:石英岩,氟石,磷灰岩,硬砂岩,花岗岩。
硬:正长时,闪长石,花岗岩,铁矿石。
很硬:玄武岩,安山岩,硬砾石。
②普石系数=(1/100)×抗压强度。
是岩石的坚固性系数。
③莫式硬度,Mols 代表性岩石是:
3.典型物料的密度和堆比重:
4.磨蚀性
4.1 岩石的平均SiO2含量表:
4.2邦德叶片测定值:
4.3干湿磨机钢耗对比:
5.岩石爆破后粒级分布表
6.破碎机排料中大于排料口的过大颗粒含量β%和最大相对粒度Z:
说明:Z:最大排料粒度与排放口之比。
短头圆锥:闭路取小值,开路取大值。
反击式的排放口以第二级为准,主轴转速以V=32m/秒为准。
岩石物理、化学性质及其分类
碎胀系数k也称为松散系数,一般为k=1.3~1.6, 在挤压爆破和深孔天井掘进中,k值非常重要。
表1-2 几种岩石的碎胀系数
岩石名称 砂、砾石 砂质粘土 中硬岩石 碎胀系数k 1.05~1.20 1.20~1.25 1.30~1.50
坚硬岩石 1.50~2.50
4、岩石的波阻抗
ρc为波阻抗,表示岩石对应力波传播 的阻尼作用,一般ρc越大,凿爆越困难;
岩石结构致密,坚硬,强度大,无大 的地质构造弱面,则ρc大,日本关于岩 石的分级多采用ρc指标(见表1-3)
视频1
材料名称
钢 铜 花岗岩 玄武岩 辉绿岩 辉长岩 石灰岩 白云岩 砂岩 板岩 石英岩
表1-3 几种材料的波阻抗
密度(g/cm3) 纵波速度(m/s) 波阻抗(kg/cm2.s)
7.8 8.4~8.9 2.6~3.0 2.7~2.86 2.85~3.05 2.9~3.1 2.3~2.8 2.3~2.8 2.1~2.9 2.3~2.7 2.65~2.9
第一章 岩石性质及其分类
主要内容
1.1 岩石的物理性质 1.2 岩石的力学性质 1.3 岩石的分级
第一节 岩石的物理性质
1 岩石的孔隙度η η为岩石中孔隙总体积V0与岩石的总体积V之比, 用百分率表示。
V0 V10% 0
2 密度ρ和容重γ 密度ρ:不包括孔隙在内的岩石密度。(g/cm3)
MVV 0
等级 坚固性程度
典型的岩石
f值
最坚固、细致和有韧性的石英岩、玄武岩及其Ⅰ最坚固 它坚固岩石20
很坚固花岗岩、石英斑岩、硅质片岩、较坚固
Ⅱ 很坚固 的砂岩和石灰岩
15
致密花岗岩、很坚固砂岩和石灰岩,石英质矿
Ⅲ
岩石的温压关系
岩石的温压关系一、岩石的物理特性与温度压力条件1.岩石的物理特性:–密度–弹性模量–热膨胀系数–热导率–热容量2.温度压力条件对岩石的影响:–岩石的体积变化–岩石的弹性变形性质–岩石的热传导性质二、岩石的体积变化与温度压力关系1.岩石的体积变化规律:–岩石在温度升高时体积膨胀,温度降低时体积收缩–岩石在压力增大时体积收缩,压力减小时体积膨胀2.热膨胀系数与压力的关系:–岩石的热膨胀系数受温度和压力的共同影响–温度升高和压力增大都会导致岩石的热膨胀系数增大三、岩石的弹性变形与温度压力关系1.岩石的弹性模量与温度压力的关系:–岩石的弹性模量受温度和压力的共同影响–温度升高和压力增大都会导致岩石的弹性模量减小2.岩石的弹性模量与体积变化的关系:–岩石的弹性模量与体积变化呈反比关系–岩石体积变化大时,弹性模量较小;体积变化小时,弹性模量较大四、岩石的热传导性质与温度压力关系1.岩石的热传导性质与温度压力的关系:–岩石的热导率受温度和压力的共同影响–温度升高和压力增大都会导致岩石的热导率增大2.岩石的热传导性质与体积变化的关系:–岩石的热导率与体积变化呈正比关系–岩石体积变化大时,热导率较大;体积变化小时,热导率较小五、岩石的温压关系在地质学中的应用1.岩石的温压关系对岩石成因和演化的研究具有重要意义:–可通过岩石温度和压力条件的分析,推断岩石的形成历史和变质程度–可通过岩石温度和压力条件的变化,研究地壳的抬升和沉降过程2.岩石的温压关系在矿产资源勘探中的应用:–挖掘矿物资源需要了解岩石的温度和压力条件–通过温度和压力条件的分析,可判断矿产资源形成的可能性和分布模式3.岩石的温压关系在地震学中的应用:–地震波在不同温度和压力条件下传播的速度不同,可用于地震波的特征分析和震源定位4.岩石的温压关系在岩土工程中的应用:–岩石在温度和压力条件下的物理特性影响着岩土工程的稳定性和安全性–通过对岩石温压关系的研究,可以预测岩土工程中的变形和破坏现象六、总结在地球内部高温高压的环境中,岩石的物理特性会受到温度和压力的共同影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SCIENCE CHINAEarth Sciences© Science China Press and Springer-Verlag Berlin Heidelberg 2011 *Corresponding author (email: tangxiam@)• RESEARCH PAPER •September 2011 Vol.54 No.9: 1441–1452doi: 10.1007/s11430-011-4245-7A unified theory for elastic wave propagation through porousmedia containing cracks—An extension of Biot’sporoelastic wave theoryTANG XiaoMing *College of Geosciences and Technology, China University of Petroleum (East), Qingdao 266555, ChinaReceived November 25, 2010; accepted March 3, 2011; published online July 25, 2011Rocks in earth’s crust usually contain both pores and cracks. This phenomenon significantly affects the propagation of elastic waves in earth. This study describes a unified elastic wave theory for porous rock media containing cracks. The new theory extends the classic Biot’s poroelastic wave theory to include the effects of cracks. The effect of cracks on rock’s elastic prop-erty is introduced using a crack-dependent dry bulk modulus. Another important frequency-dependent effect is the “squirt flow” phenomenon in the cracked porous rock. The analytical results of the new theory demonstrate not only reduction of elas-tic moduli due to cracks but also significant elastic wave attenuation and dispersion due to squirt flow. The theory shows that the effects of cracks are controlled by two most important parameters of a cracked solid: crack density and aspect ratio. An appealing feature of the new theory is its maintenance of the main characteristics of Biot’s theory, predicting the characteristics of Biot’s slow wave and the effects of permeability on elastic wave propagation. As an application example, the theory cor-rectly simulates the change of elastic wave velocity with gas saturation in a field data set. Compared to Biot theory, the new theory has a broader application scope in the measurement of rock properties of earth’s shallow crust using seismic/acoustic waves.poroelasticity, wave propagation, cracked medium, rockphysicsCitation: Tang X M. A unified theory for elastic wave propagation through porous media containing cracks—An extension of Biot’s poroelastic wave theory.Sci China Earth Sci, 2011, 54: 1441–1452, doi: 10.1007/s11430-011-4245-7The formulation of the theory for elastic wave propagation in porous media has long been an important topic of geo-physics. A fundamental phenomenon is the universal pre- sence of pores and cracks in rocks that consist of the earth’s shallow crust (Figure 1). Compared to pores, cracks usually have a much smaller aspect ratio, i.e., crack thickness is much smaller than its lateral size. The presence of both pores and cracks in rocks makes it quite complicated to de-scribe the elastic properties of the rock media. Neither the poroelastic wave mechanics represented by Biot theory nor the cracked medium elasticity theory based on O’Connell and Budiansky work can adequately model the elastic wave response of such media. The quest for a unified elastic wave theory for the porous rock containing cracks is an important subject in this branch of geophysics.In the 1950s and 1960s, researchers like Eshelby [1] and Walsh [2] began to study the effects of cracks on the elastic properties of media containing cracks. Afterward, O’Connell and Budiansky [3–7] published a series of papers on this subject. They pointed out an additional effect of flu-id-saturated cracked media, i.e., a crack with its thickness being much smaller than its lateral dimension can deform easily under external forces. The expulsion of the fluid from cracks produces a local fluid flow called “squirt flow”, re-1442Tang X M. Sci China Earth SciSeptember (2011) Vol.54 No.9Figure 1Pores and cracks seen from a thin section of a sandstone rock. sulting in the viscoelastic behavior of the cracked medium. On the other hand, Biot [8–10] formulated his well known poroelastic wave theory for porous media. Assuming homogeneous distribution of pores in a medium, the theory mainly considers viscous coupling of pore fluid with solid matrix and analyzes the dynamic response of the fluid- sat-urated porous medium to external wave excitations. The main contributions of Biot theory are the prediction of a slow wave in porous media and the relationship between medium permeability and elastic wave propagation. For this reason, Biot theory is widely used in applications related to elastic wave exploration of earth’s shallow crust (e.g., acoustic logging, see Tang and Cheng [11], and seismic data interpretation, etc.). However, the theory has been shown to be inadequate in describing the behavior of real rocks in various seismic/acoustic exploration application problems. For example, Dvorkin and Nur [12] point out that the theory significantly under-predicts the elastic wave dis-persion and attenuation measured in real rocks. The main cause of this discrepancy resides in the assumption of ho-mogeneity of the pore distribution. This assumption over-looks the “squirt flow” effect resulting from local fluid movement at the pore scale.Various theories have been developed to describe and model the heterogeneous pore distribution and the associat-ed local fluid flow. White [13], Johnson [14], and Carcione et al. [15] model the local flow using a heterogeneous pore-fluid distribution. Hudson [16–18] and Kuster and Toksöz [19] use elastic wave scattering theory to describe the effects of heterogeneity within a rock. Mavko and Nur [20] and Dvorkin and Nur [12] develop the “squirt flow” theories to describe the local fluid flow. The latter theory is often called the BISQ theory. A typical category of theoret-ical work is the theory of double-porosity models, as de-veloped by Pride and Berryman [21, 22], Berryman and Wang [23], and Berryman [24]. In a double-porosity me-dium, the local flow results from the pressure difference between the two pore systems of different structures. Ba [25, 26] uses Biot theory to analyze the elastic wave propagation effects of the double-porosity system. The double-porosity model needs to consider the elastic interaction between the two pore systems and the local flow in the model is gov-erned by parameters such as characteristic relaxation fre-quency and fluid transport coefficient, etc. The present study will discuss a more specific “double-porosity” system: the porous medium containing cracks. This is also a subject of significant practical importance. In this medium, the elastic interaction between cracks and pores is handled by a pore-crack consistency approach, whereas the associated local flow is described by the squirt flow between cracks and pores. Under this approach, the characteristic relaxation frequency and fluid transport parameters are described by two important parameters of a cracked medium: crack den-sity and aspect ratio.The physical picture of “squirting” flow in a cracked po-rous medium is quite straightforward to perceive. Compared to pores, the flat- or narrow-shaped cracks can easily con-tract and expand under external wave excitation, squeezing the fluid into neighboring pores and generating squirt flow. For years, researchers in this field have been seeking a uni-fied elastic wave theory in order to describe the elastic property and wave propagation characteristics of the cracked porous medium. Although the work of O’Connell and Budiansky [3–7] (hereafter referred as OB theory) re-lates the medium’s elastic property to cracks and predicts the viscoelastic property of the medium caused by squirt flow, their theory does not contain the effects of permeabil-ity and the related slow wave propagation. Thomsen [27] formulates a theory to relate OB theory to Biot theory and calls it the Biot-consistent theory. The theory describes the effects of fluid in the pore-crack system under the frame-work of Biot theory. Although the theory discusses the low-frequency scenario of the pore-crack system, corre-sponding to the low-frequency limit of the Biot theory, the formulation of the theory can be extended to the high-frequency regime of the Biot theory to obtain an elas-tic wave theory for the full frequency range. In the exten-sion of the theoretical formulation to the high-frequency regime, the effects of squirt flow between cracks and pores become prominent. As pointed by Mavko and Jizba [28], the squirt flow occurring at the pore-crack scale is strongly frequency-dependent. At low frequencies, the fluid ex-change between pores and cracks has sufficient time to complete. At high frequencies, this exchange may not have enough time to take place, resulting in “locking” the fluid in the narrow space of cracks. Dvorkin and Nur [12] (i.e., the BISQ model, hereafter referred as DN theory) propose a unified theory to relate Biot theory and squirt flow effects in order to model the significant elastic wave attenuation and dispersion measured in real rocks. However, the DN theory, as will be pointed out later, does not include the two most important parameters of the cracked medium: crack density and aspect ratio. More importantly, the theory does not cor-Tang X M. Sci China Earth Sci September (2011) Vol.54 No.91443rectly model the propagation characteristic of Biot’s slow wave, which is the fundamental property of Biot theory. In this regard, DN theory cannot be regarded as the unified elastic wave theory for the porous medium containing cracks.This study presents a detailed analysis of the squirt flow effect between cracks and pores and relates this effect to the important parameters of a cracked medium. The incorpora-tion of the cracked medium parameters into Biot formula-tion results in a unified elastic wave theory for the cracked porous medium. The new theory not only maintains the main characteristics of the original theories, but also signif-icantly enhances the capability of modeling and predicting elastic wave propagation in such a medium. Thus the new theory has a broader application scope in the measurement of rock property in earth’s shallow crust using elas-tic/acoustic waves.1 Generalization of Biot theory to porous me-dia containing cracksBefore carrying out our theoretical analyses, let us firstsummarize the main results of Biot theory for use in the later theoretical development. In Biot’s theory, three types of wave can propagate in a porous medium. These are fast compressional, shear, and slow compressional waves.The fast compressional wave and shear wave are mainly related to the solid matrix, although they are also affected by pore fluid. The main contribution of Biot theory is the prediction of the presence of the slow compressional wave. The slow wave is mainly borne in the pore fluid, although it is also affected by the motion of the porous matrix. Using the notations of Tang and Cheng [11], we write out the equations for calculating the wavenumber of the three Biot waves:p p s k k k ±== (1) In the subscripts for the wavenumbers p and s represent compressional and shear waves, respectively, and the sym-bols + and − represent fast and slow compressional waves,respectively. Other symbols in the wavenumber expressionsare given below:0200021,2(4/3/),()(),.βμαβααρραρθω±⎡=⎣=−++==−+=d p s f s s f b b c b K k c b b b b (2) In eq. (2), ω is angular frequency, K and K d are respec-tively the saturated and dry bulk moduli of the medium, and μ is the shear modulus. The remaining three parameters are given below:(1),1,().s f d s f s K K K K ρρϕρϕαβϕαϕ=−+=−=+− (3) In eq. (3), ϕ is porosity, ρf and K f are density and bulk modulus of pore fluid, respectively, and ρs and K s are re-spectively density and bulk modulus of the solid grain. The following two parameters are related to pore fluid flow:22ˆ,(),f f i ρρρωθθκωηω=+= (4)where a frequency-dependent permeability parameter, called dynamic permeability, as derived by Johnson et al. [29], is given by1/200(),1/()/()2κκωτκρωηϕτκρωηϕ=⎡⎤−−⎢⎥⎣⎦f f i iin which κ0 is the static Darcy permeability, τ is tortuosity,and η is fluid viscosity. The simple functional form of the dynamic permeability can easily characterize the low- and high-frequency regimes of the Biot theory. At low frequen-cies, 0()κωκ→ and the Biot slow compressional wave motion is characterized by a viscous fluid flow. Above the Biot’s critical frequency 0/,c f ωηϕτρκ= ()κω→/f i ηϕτρω the Biot slow wave is characterized as a prop-agational wave.The relative motion between pore fluid and porous ma-trix due to permeability will cause certain attenuation anddispersion for the fast and slow compressional waves andthe shear wave. The dispersion and attenuation are respec-tively calculated using:{}{}{}1Re ,2Im Re ,v k Q k k ω−== (5) where Q is quality factor, Re{k }and Im{k }denote taking thereal and imaginary part of the wavenumber k , respectively,k can be the wavenumber of any wave in eq. (1), fast or slow compressional, or shear wave, and v is the phase ve-locity of the corresponding wave. For the fast compression-al and shear waves, the attenuation and dispersion caused by pore fluid flow is usually quite small compared to thosemeasured in real rocks (see Dvorkin and Nur [12]).The slow compressional wave can exhibit significant at-tenuation and dispersion. In the low-frequency condition,the slow wave motion is actually the diffusive viscous fluid1444Tang X M. Sci China Earth Sci September (2011) Vol.54 No.9flow described by Darcy’s law, whereas the fast compres-sional and slow waves are governed by Gassmann’s theory. The wave velocities are given below:p s v v +== (6) where the bulk modulus of the saturated porous medium isgiven by the Gassmann equation [27]:2(),d s f K K K K ααϕϕ⎡⎤=+−+⎣⎦ (7) whereas the shear modulus μ is the same for dry and satu-rated conditions. Because Biot theory reduces to Gassmanntheory in the low-frequency limit, the theory is sometimes called Biot-Gassmann theory. It follows from the above equations that the elastic property of the Biot theory is gov-erned by five fundamental parameters: K s , ϕ, K f , μ, and K d . Here the dry modulus K d is introduced as an independentparameter into the Biot theory. Because of this property, thevalue of K d can be properly adjusted to suit various applica-tions of the Biot theory. For example, Brie et al. [30] adjust this parameter to effectively model the change of fast com-pressional wave velocity with pore fluid saturation. For the same reason, Thomsen [27] introduces the effects of cracks into his Biot-consistent theory by using a crack-dependent K d to calculate the fluid-saturated bulk modulus of eq. (7) for the cracked porous medium. The cracked medium elasticity theory of OB [5, 6] pro-vides the relationship between elastic parameters and crack density and porosity (definitions given in the appendix) for penny-shaped cracks embedded in a porous solid. Using therelationship in the Biot-consistent theory [27], K d can beexpressed as0(1)2,3(12)B d B K νμν+=− (8)where μ0 is dry shear modulus for the cracked porous solid.01,1(45)2,15(1)(1)(5)32,45(2)ps B B B B B B B B B B b b B ϕμμεννννν⎛⎞=−−⎜⎟−⎝⎠−=−−−=− where ε is crack density, ϕp is porosity of the pore spacewithout cracks (definition given in eq. (A-12) of the appen-dix), μs is shear modulus of solid grain, and v B is Poisson’s ratio of the cracked porous solid under dry condition, which must be solved in connection with the formulation of Biot theory (see Thomsen [27]). By substitution of K d of eq. (8), as found using the approach of the Biot-consistent theory, into the Biot equations (1) through (4), one can calculate theelastic property of the porous solid in the presence of cracks. However, to extend the calculation into the frequency re-gime using the Biot equations, one must consider another effect. This is the “squirt flow” effect induced by the elasticwave propagation through the cracked porous medium. Thefollowing discussions will be focused on this subject. Let us first review the result of DN theory [12], which will be compared with our result to be obtained. The squirt flow model of the DN theory results in modifying the β parameter in eq. (3) to become11102()1,()J J ξββξξ−−⎡⎤→−⎢⎥⎣⎦ (9) whereξ= DN theory introduces a parameter R , called squirt flow length. Other parameters in the above formula are defined ineqs. (3) and (4); J n (n =0, 1) is the first kind Bessel function of order n .Let us now consider the fluid-saturated porous rock model with cracks (Figure 2). This model is an abstraction of the real rock shown in Figure 1. Assume that the cracks are randomly oriented in the 3D space. Apply an external pressure P to the model. When P is incremented by a small amount δP (which may result from the disturbance of apassing elastic wave), fluid volume V f of the pores and cracks in rock will be compressed, giving rise to a change in fluid pressure δP f . The two pressure increments are relatedby (see Chen [31])Figure 2 Model for analyzing squirt flow between crack and pore. A crack is modeled as fluid-filled penny-shaped space in the cylindrical co-ordinates (r , z ). An external pressure change δP induces pore pressure change δP p and crack pressure change δP c . The pressure-induced crack expansion and contraction generate squirt flow.Tang X M. Sci China Earth Sci September (2011) Vol.54 No.9144511,11d f d sK KP P K K δδ−=− (10)where K is the bulk modulus of the fluid-saturated cracked porous rock to be determined. The change in the fluid vol-ume can be decomposed into two contributions: one due to pores and the other due to cracks: .f p c V V V Δ=Δ+Δ (11)We now analyze each term in the above equation. Let usfirst consider the term on the left hand side. In the deriva-tion of Gassmann equation (e.g., Thomsen [27]), there is noassumption about the shape of the fluid-saturated part of the rock. The fluid volume may shape like round pores, narrow cracks, or consist of both cracks and pores. Following the derivation of Gassmann equation (e.g., Chen [31]), this term is related to the rock porosity and dry bulk modulus, and the grain modulus, as111(),fd sf f f s V K K P P P V K δδδϕΔ−=−+(12)where the dry modulus K d can be calculated using eq. (8). The use of this equation accommodates the effects of cracks on the dry modulus. The first term on the right side of eq. (11) is the compression of pore fluid volume, which can beexpressed in terms of the pore fluid pressure change and the fluid bulk modulus:.p ppfV P V K δΔ=(13) The second term on the right side of eq. (11) is related to squirt flow due to cracks. Modeling the fluid motion along the narrow space inside a crack as the flow of an incom-pressible viscous fluid, one can easily deduce that the vol-ume compression of the crack fluid by the external pressure change δP should equal to the amount of fluid squeezed out from the crack into the neighboring pores. By denoting the crack fluid volume change by q and substituting eqs. (12) and (13) into eq. (11), the latter equation, after division by V f δP f , becomes11111.p p d s f s f f f f f P V K K P q P K K P V P V δδϕδδδ⎛⎞−−+=+⎜⎟⎜⎟⎝⎠(14) According to the model of Figure 2, one can see that crackvolume is much smaller than the pore volume, such that the total fluid volume is basically the pore fluid volume, i.e., V f ~V p . For the same reason, the crack fluid volume squeezed into pores is also small, to the extent not to signif-icantly change the pore pressure, such that δP f ~δP p . (Note this condition holds exactly at low frequencies. Using the analysis result of the appendix (eq. (A-11)), it can be shown that c p P P δδ→ in the low-frequency limit, and thus bothδP c and δP p should be equal to δP f ). Based on the above analysis, the first term at the right side of eq. (14) reduces to the compressibility of fluid, 1/K f . The analysis for the se-cond term, which relates to the squirt flow due to cracks, is quite lengthy and involved and is therefore described indetail in the appendix. With the result from the appendix and the relationship between δP and δP f , as given in eq.(10), one can use eq. (14) to obtain the bulk modulus for thefluid-saturated porous rock with cracks. Following the der-ivation of Gassmann eq. (e.g., Chen [31]), the bulk modulus can be written in a form analogous to eq. (7):2()//().d s f K K K K S ααϕϕω⎡⎤=+−++⎣⎦ (15)Compared with the Gassmann result in eq. (7), eq. (15) has an additional term S (ω) due to the contribution from squirt flow, whose functional form is given below:[]118(1)()π()()3114(1) 11().3νωεζζμνζμγ⎡⎤−−=−⎢⎥−⎣⎦−⎧⎫+−⎨⎬⎩⎭d s d fK K S f f K K K f (16) In eq. (16) the frequency variation factor f and its argu-ment ζ are respectively given by102()(),()J f J ζζζζ=ζ=(17) where γ is crack aspect ratio. Note K in eq. (16) is the same as the bulk modulus K in eq. (15). This is rather inconven-ient as eq. (15) becomes an implicit function for K . This inconvenience can be overcome by a first-order approxima-tion in which K is computed using eq. (7) without squirt flow effect. For the same approximation, μ is taken as the dry modulus of eq. (8) and the Poisson’s ratio ν can be computed either for the dry rock case or for the Biot- consistent case given in eq. (8). How K , μ, and ν are evalu-ated for eq. (16) will not significantly change the K value of eq. (15), because the squirt flow term in eq. (16) is con-trolled primarily by two most important fundamental pa-rameters of a cracked medium: crack density ε and aspect ratio γ, as will be discussed in more detail below.Our result shows that: 1) The magnitude of squirt flow effect is directly proportional to crack density. This effect vanishes in the absence of cracks corresponding to ε=0. 2) The S (ω) function due to squirt flow is a complex quantity; thus the bulk modulus K of eq. (15) is also a complex quan-tity. This means that the cracked porous medium system is a dissipative system, which will cause attenuation and disper-sion in an elastic wave passing through the medium. 3)1446Tang X M. Sci China Earth Sci September (2011) Vol.54 No.9Squirt flow varies with frequency following the variation ofthe frequency factor f . At low frequencies (0ω→), 1,f → meaning that the squirting effect attains its full strength because there is sufficient time to squeeze fluid out of carks. At high frequencies (ω→∞),0,f → mean-ing that fluid is locked in the crack because there is no suf-ficient time for the flow movement to take place. The tran-sition from the low- to high-frequency characteristics is controlled by the crack aspect ratio γ. In other words, γ de-termines the fluid relaxation time of the squirt flow.Based on the physical behavior of the squirting mecha-nism, i.e., low-frequency squirting and high-frequency locking of fluid in cracks, Mavko and Jizba [28] show that the dispersion of shear modulus can be derived from the dispersion of bulk modulus. A shear stress applied to the volume element in Figure 2 will produce a normal stress to the crack surface, which in turn will squeeze the crack to generate squirt flow. Assume that the cracks are randomly oriented in the 3D space. Averaging the orientation for the 3D space results in0011411,15K K μμ⎛⎞−=−⎜⎟⎝⎠(18) where the factor 4/15 is the result of the orientation averag-ing, μ and K are respectively the shear and bulk moduliwhen fluid is locked in the crack, which corresponds to ourhigh-frequency scenario; μ0 and K 0 are respectively theshear and bulk moduli when fluid is squeezed out or relaxedfrom the crack, which corresponds to our low-frequencyscenario. The value of μ0 and K 0 can be calculated usingGassmann equation. According to the result of eq. (A-11),c p P P δδ= at low frequencies, which is exactly the pres-sure equilibrium condition required by Gassmann’s theory [27, 31]. We can therefore calculate K 0 using eq. (7), and μ0 using the dry modulus of eq. (8). With this selection of K 0and μ0 and calculating the frequency dispersion of K usingeq. (15), the shear modulus calculated from eq. (18) natu-rally becomes a frequency-dependent modulus that contains the squirt flow effect.By substitution of K and μ from eqs. (15) and (18) into the Biot formulation represented by eq. (1) through eq. (4), and by calculating the dry bulk and shear moduli using eq. (8), we obtain a unified elastic wave theory for the cracked porous medium. We use the following numerical examples to illustrate the important wave propagation characteristics of the new theory.2 Wave attenuation and dispersion characteris-tics of cracked porous mediumIn this section, we calculate the wave attenuation and dis-persion characteristics for porous rock containing cracks using the above described theory and method. The similari-ty and difference between the new theory and DN theory [12] will also be discussed. Table 1 lists the fundamental parameters of the new theory. Compared with Biot theory, the new theory has been added with two important parame-ters of a cracked medium: crack density and aspect ratio. Figures 3 through 5 show the calculation results for the fast compressional, shear, and slow compressonal waves,with the upper and lower figure corresponding to dispersion and attenuation, respectively. The calculated frequency range is from 1 to 107 Hz, plotted on logarithmic scale. The Figure 3(a) shows a clear dispersion effect (solid curve) for the fast compressional wave. For the parameter values used(see Table 1), the amount of dispersion is about 7%. Theshear wave shows a smaller dispersion (Figure 4(a)), mainlybecause of the factor of 4/15 of eq. (18). In fact, the disper-sion effect of both the fast compressional and shear wavescontains the contribution of two mechanisms: the squirtflow effect discussed by the current study, and the globalBiot flow. To demonstrate these two mechanisms, the at-tenuation (dashed curves) due to each mechanism is respec-tively plotted in Figures 3(b) and 4(b). In the calculation of the squirt flow effect using the new theory, medium perme-ability κ0 is set to zero, whereas in the calculation of the Biot flow effect, crack density ε is set to zero. ComparingTable 1 Values of fundamental parameters used in calculating the cracked porous medium elastic-wave theory for Figures 3–7Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 K s (GPa) 37.9 37.9 37.9 37.9 37.9 μs (GPa) 32.6 32.6 32.6 20.1 20.1 ρs (kg m −3) 2650 2650 2650 2650 2650 K f (GPa) 2.25 2.25 2.25 0.1–2.25 0.1–2.25 ρf (kg m −3)1000 1000 1000 1000 1000 ϕp 0.25 0.25 0.25 0.1–0.35 0.1–0.4 κ0 (mD) 0,1000 0, 1000 1000 1000 1000 η (cp) 1, 101, 102, 1031 1 1 1 τ 2.4 2.4 2.4 2.4 2.4 ε 0, 0.15 0, 0.15 0.15 0.15 0 γ0.0010.0010.0010.001–Tang X M. Sci China Earth Sci September (2011) Vol.54 No.9 1447Figure 3Dispersion (a) and attenuation (b) of fast compressional wave in a cracked porous rock. The attenuation (dispersion) includes the squirt- and Biot-mechanisms (dashed curves in (b)). Changing fluid viscosity (or crack aspect ratio) changes the location of fast-varying region in the dispersion curve (dashed curve family in (a)).the two attenuation curves with the total attenuation, one can easily conclude that the total attenuation is almost the sum of the two individual contributions. For the fast com-pressional wave, the attenuation due to Biot flow is much smaller than that due to the squirt flow, which shows that the Biot effect alone is generally inadequate to explain the substantial attenuation and dispersion observed in real rocks, and other effects, like the squirt flow effect under discussion, must be used. For shear wave, the squirt flow effect is about the same order as that of the Biot flow, due to the factor of 4/15 in eq. (18).Let us now discuss the propagation characteristics of slow compressional wave in the presence of squirt flow mechanism. The excitation and propagation of the slow wave in porous media is one of the key results of Biot theo-ry. We compare the slow wave characteristics of the new theory with those of the DN theory and elaborate why the latter theory cannot be regarded as the unified theory for the squirt flow at the local scale and Biot flow on the global scale.We consider the DN theory for the geometry of penny-Figure 4 Dispersion (a) and attenuation (b) of shear wave in a crackedporous rock. The attenuation (dispersion) includes the squirt- and Bi-ot-mechanisms (dashed curves in (b)).shaped cracks. For a single crack of thickness h, fluid-flow-related parameters such as permeability, porosity, etc.can be expressed as21,1,.12fhKκϕβ===The squirt flow length R in DN theory should now be thecrack radius. By using the above parameter expressions andthe definition of crack aspect ratio (eq. (A-12)), the fre-quency variation factor of DN theory in eq. (9) becomes thesame factor as in eq. (17):1112()1.()JJζββζζ−−⎡⎤→−⎢⎣⎦(19)Substituting the above modification of parameter β intothe Biot theory formulas, as given by eqs. (1)–(4), one cancalculate the attenuation and dispersion of the DN theoryfor the crack scenario.Figure 5 shows the comparison of dispersion and at-tenuation of slow compressional wave for the different the-ories. The new theory shows characteristics consistent。