高层建筑结构设计D值法及侧移计算
第五章多层框架内力和侧移计算简介
120
100(80)50
2、结构的抗震等级 地震作用下,钢筋混凝土结构的地震反应有下列特点:
(1)、地震作用越大,房屋的抗震要求越高; (2)、结构的抗震能力主要取决于主要抗侧力构件的性 能,结构形式不同,抗震要求也不同。 (3)、房屋越高,地震反应越大,抗震要求越高。
抗震等级是确定结构构件抗震计算和抗震措施的标准。 根据设防烈度、房屋高度、建筑类别、结构类型及构件在 结构中的重要程度确定,共分四个等级,一级最高。
9
≤ 25
一 一
≤ 50
一 一
注:①.建筑场地为Ⅰ类时,除6度外可按表内降低一度所对应的 抗震等级采取抗震构造措施,但相应的计算要求不应降低;
②.接近或等于高度分界时,应允许结合房屋不规则程度及场 地、地基条件确定抗震等级。
3、防震缝与抗撞墙布置
➢高层建筑避免采用不规则的建筑结构方案,尽量 不设防震缝。
(c) min 见下表
抗震等级
类别
一
二
三
四
中柱和边柱
1.0
4)框架梁下部纵向钢筋在端节点的锚固要求与中间 节点相同。
3 框架柱纵向钢筋在顶层节点的锚固 (1)框架柱纵筋在中间节点的锚固
梁高足够时
梁高不够时
板厚>80mm时
(2)框架柱纵筋在顶层端节点的锚固
三、箍筋
1.在框架节点内应设置水平箍筋,箍筋应符合柱箍 筋的构造规定,但间距不宜大于250mm。
2.对四边均有梁与之相连的中间节点,节点内可只 设置沿周边的矩形箍筋,不必设置复合箍筋。
2)框架-抗震墙结构房屋的防震缝宽度可采用
框架规定数值的50%,且不宜小于70mm。
3)防震缝两侧结构类型不同时,按需要较 宽防震缝的结构类型考虑和按低的房屋高 度计算缝宽。
框架结构内力与位移计算
《高层建筑结构与抗震》辅导材料四框架结构内力与位移计算学习目标1、熟悉框架结构在竖向荷载和水平荷载作用下的弯矩图形、剪力图形和轴力图形;2、熟悉框架结构内力与位移计算的简化假定及计算简图的确定;3、掌握竖向荷载作用下框架内力的计算方法——分层法;4、掌握水平荷载作用下框架内力的计算方法——反弯点法和D值法,掌握框架结构的侧移计算方法。
学习重点1、竖向荷载作用下框架结构的内力计算;2、水平荷载作用下框架结构的内力及侧移计算。
框架在结构力学中称为刚架,刚架的内力和位移计算方法很多,可分为精确算法和近似算法。
精确法是采用较少的计算假定,较为接近实际情况地考虑建筑结构的内力、位移和外荷载的关系,一般需建立大型的代数方程组,并用电子计算机求解;近似算法对建筑结构引入较多的假定,进行简化计算。
由于近似计算简单、易于掌握,又能反映刚架受力和变形的基本特点,因此近似的计算方法仍为工程师们所常用。
本章内容主要介绍框架结构在荷载作用下内力与位移的近似计算方法。
其中分层法用于框架结构在竖向荷载作用下的内力计算,反弯点法和D值法用于框架结构在水平荷载作用下的内力计算。
既然是近似计算,就需要熟悉框架结构的计算简图和各种计算方法的简化假定。
一、框架结构计算简图的确定一般情况下,框架结构是一个空间受力体系,可以按照第四章所述的平面结构假定的简化原则,忽略结构纵向和横向之间的空间联系,忽略各构件的抗扭作用,将框架结构简化为沿横方向和纵方向的平面框架,承受竖向荷载和水平荷载,进行内力和位移计算。
结构设计时一般取中间有代表性的一榀横向框架进行分析,若作用于纵向框架上的荷载各不相同,则必要时应分别进行计算。
框架结构的节点一般总是三向受力的,但当按平面框架进行结构分析时,则节点也相应地简化。
在常见的现浇钢筋混凝土结构中,梁和柱内的纵向受力钢筋都将穿过节点或锚入节点区,这时节点应简化为刚接节点;对于现浇钢筋混凝土柱与基础的连接形式,一般也设计成固定支座,即为刚性连接。
高层建筑结构设计2
(2)按抗弯刚度分配各柱剪力
(3)查表得出各柱的反弯点高度,由各层端集中力得出弯矩大小。
C.水平荷载下的侧移计算
(1)杆件弯曲变形 –剪切型变形
(2)柱轴向变形的侧移
按下列步骤进行: 第一步,各层分别单独地进行力矩分配,传递,再分配……直至平 衡。 第二步,层与层之间进行传递 。
第三步,重复第一步。
为了简化计算,分层计算法作了两个补充假定: (1)在竖向荷线作 用下,刚架的侧移忽略术计; (2)每层粱上的荷载对其它层的梁的 影响不计。
二.水平荷载下的内ቤተ መጻሕፍቲ ባይዱ计算
第三章 框架结构内力与位移计算 • 分层总和法 • 反弯点法 • D值法
一.竖向荷载作用下的近似计算-分层总和法
计算时,假定上、下柱 的远端是固定的。实际上, 除底层柱底是 固定的以外, 其它柱都是弹性支承。为了 反映这个特点,减少误 差, 可以将上层各柱线刚度乘以 0.9加以修正,并将各柱的 传递系 数修正为1/3。 分层计算结果.结点上 的弯矩可能不平衡,误差 不会很大,如果需要更精确,将结点弯矩再进行分配。
A.反弯点法
反弯点法的主要工作有两个: (1)每层以上的水平荷载按某一比例分配给该层的各柱 (2)确定反弯点高度y。
B.D值法
反弯点法在考虑柱侧移刚度d时,假设结点转角为0,亦即横梁的线 刚度假设为无 穷大。对于层数较多的框架,由于柱轴力大,柱截面 也随着增大,梁柱相对线刚度比较 接近,甚至有时柱的级刚度反而 比梁大,这样,上述假没将产生较大误差。另外,反弯 点法计算反 弯点高度y时,假设柱上下结点转角相等,这样误差也较大,特别 在最上和 最下数层。日本武藤清在分析多层框架的受力特点和变形 特点的基础上,对框架在水平 荷载作用下的计算.提出了修正柱的 侧移刚度和反弯点刚度的办法,修正后的柱侧 移刚度用D表示,故 称为D值法。
结构计算-D值法--混凝土、抗震,高层适用
第六讲水平荷载作用下框架内力的计算——D值法主要内容:D值法内容分解:1)两种计算方法的比较,引出较精确的D值法;2)具体计算步骤作用在框架上的水平荷载主要有风荷载和地震作用,它们均可简化成作用在框架节点上的水平集中力。
由于水平荷载均可简化为水平集中力的形式,所以高层多跨框架在水平荷载作用下的弯矩图通常如图1所示。
各杆的弯矩图均为直线,且均有一弯矩为零的点,称为反弯点。
该点弯矩为零,但有剪力,如图1中所示的。
如果能求出各柱的剪力及其反弯点位置,则各柱端弯矩就可算出,进而根据节点力矩平衡可算出梁端弯矩。
因此必须确定各柱间剪力的分配比和确定各柱的反弯点的位置一、反弯点法回顾反弯点法的适用条件为梁的线刚度与柱的线刚度之比大于3,其计算过程如下:(1)反弯点位置的确定由于反弯点法假定梁的线刚度无限大,则柱两端产生相对水平位移时,柱两端无任何转角,且弯矩相等,反弯点在柱中点处。
因此反弯点法假定:对于上部各层柱,反弯点在柱中点;对于底层柱,由于柱脚为固定端,转角为零,但柱上端转角不为零,且上端弯矩较小,反弯点上移,故取反弯点在距固定端2/3高度处。
(2)柱的侧移刚度反弯点法中用侧移刚度d表示框架柱两端有相对单位侧移时柱中产生的剪力,它与柱两端的约束情况有关。
由于反弯点法中梁的刚度非常大,可近似认为节点转角为零,则根据两端无转角但有单位水平位移时杆件的杆端剪力方程,最后得(1)式中,V为柱中剪力,为柱层间位移,h为层高。
(3)同一楼层各柱剪力的分配根据力的平衡条件、变形协调条件和柱侧移刚度的定义,可以得出第j层第i根柱的剪力为:(2)式中,为第j层各柱的剪力分配系数,m为第j层柱子总数,为第j层以上所有水平荷载的总和,即第j层由外荷载引起的总剪力。
这里,需要特别强调的是,与第j层所受到的水平荷载是有所区别的。
由式(2)可以看出,在同一楼层内,各柱按侧移刚度的比例分配楼层剪力。
(4)柱端弯矩的计算由于前面已经求出了每一层中各柱的反弯点高度和柱中剪力,那么柱端弯矩可按下式计算:(3)式中,为第j层第i根柱的反弯点高度,为第j层的柱高。
高层建筑结构设计思考题答案-(2)
第二章2.1钢筋混凝土房屋建筑和钢结构房屋建筑各有哪些抗侧力结构体系?钢筋混凝土房屋建筑和钢结构房屋建筑各有哪些抗侧力结构体系?每种结构体系举1~2例。
答:钢筋混凝土房屋建筑的抗侧力结构体系有:框架结构(如主体18层、局部22层的北京长城饭店);框架剪力墙结构(如26层的上海宾馆);剪力墙结构(包括全部落地剪力墙和部分框支剪力墙);筒体结构[如芝加哥Dewitt-Chestnut公寓大厦(框筒),芝加哥John Hancock大厦(桁架筒),北京中国国际贸易大厦(筒中筒)];框架核心筒结构(如广州中信大厦);板柱-剪力墙结构。
钢结构房屋建筑的抗侧力体系有:框架结构(如北京的长富宫);框架-支撑(抗震墙板)结构(如京广中心主楼);筒体结构[芝加哥西尔斯大厦(束筒)];巨型结构(如香港中银大厦)。
2.2框架结构、剪力墙结构和框架----剪力墙结构在侧向力作用下的水平位移曲线各有什么特点?答:(1)框架结构在侧向力作用下,其侧移由两部分组成:梁和柱的弯曲变形产生的侧移,侧移曲线呈剪切型,自下而上层间位移减小;柱的轴向变形产生的侧移,侧移曲线为弯曲型,自下而上层间位移增大。
第一部分是主要的,所以框架在侧向力作用下的水平位移曲线以剪切型为主。
(2)剪力墙结构在侧向力作用下,其水平位移曲线呈弯曲型,即层间位移由下至上逐渐增大。
(3)框架-剪力墙在侧向力作用下,其水平位移曲线呈弯剪型, 层间位移上下趋于均匀。
2.3框架结构和框筒结构的结构构件平面布置有什么区别?答:(1)框架结构是平面结构,主要由与水平力方向平行的框架抵抗层剪力及倾覆力矩,必须在两个正交的主轴方向设置框架,以抵抗各个方向的侧向力。
抗震设计的框架结构不宜采用单跨框架。
框筒结是由密柱深梁组成的空间结构,沿四周布置的框架都参与抵抗水平力,框筒结构的四榀框架位于建筑物的周边,形成抗侧、抗扭刚度及承载力都很大的外筒。
2.5中心支撑钢框架和偏心支撑钢框架的支撑斜杆是如何布置的?偏心支撑钢框架有哪些类型?为什么偏心支撑钢框架的抗震性能比中心支撑框架好?答:中心支撑框架的支撑斜杆的轴线交汇于框架梁柱轴线的交点。
分层法D值法
第十四章 多层框架结构
2、框架弹性侧移限值
结构顶点总侧移 u / H [u / H ]
楼层层间相对侧移 u / h [u / h]
侧移限值见《高层建筑混凝土结构技术规程》表4.6.3
框架结构: u / h 1/ 550
14. 3 计算方法
V jk
i jk
m
VFj
i jk
k 1
对于底层柱
柱顶:M
t c1k
V1k
h1 3
柱底
:
M
b c1k
V1k
2h1 3
对于上部各层柱
M
t cjk
Mห้องสมุดไป่ตู้
b cjk
V jk
hj 2
14. 3 计算方法
第十四章 多层框架结构
由假定3 (节点平衡条件)可求出梁端弯矩
M
l b
ibl ibl ibr
(
k 1
12i jk
V jk
i jk
m
V h
2 j
Fj m
VFj
i jk
12i jk
h
2 j
k 1
k 1
14. 3 计算方法
第十四章 多层框架结构
D值法关键在于求、K,详见表13-2:P.165
14. 3 计算方法
第十四章 多层框架结构
3、修正后的柱反弯点高度 各柱反弯点的位置取决于该柱上下端转角的比值。 若柱上下端转角相同,反弯点则在柱高中点; 若柱上下端转角不同,则反弯点偏向转角大的一端,即偏向约 束刚度较小的一端。 影响柱两端转角大小的因素:侧向外荷载形式;梁柱线刚度比; 结构总层数及该柱所在层数;柱上下横梁线刚度比;上下层层 高变化。
高层结构设计第5章 框架结构设计(新规范)
2014-11-16
30
计算方法 1、柱的抗侧移刚度D值——修正抗侧刚度的计算 水平荷载作用下,框架不仅有侧移,且各结点有转角,设 杆端有相对位移 ,转角 1 、 2 ,转角位移方程为:
12ic 6ic V 2 ( 1 2 ) h h
2014-11-16
31
令
D
V
(D值的物理意义同d相同——单位位移下柱的剪力) D值计算假定: (1)各层层高相等; (2)各层梁柱节点转角相等; (3)各层层间位移相等
2014-11-16
32
i1
θ3
3
i2
ic
i1
θ2
h
取中间节点i为隔离体, 由平衡条件 M 0 可得
2
i2 h
(4 4 2 2)ic (4 2)i1 (4 2)i2 (6 6)ic
2014-11-16
40
<c2>上下层高度变化时的反弯点高度比修正值y3 令下层层高/本层层高=h上/h= 3 ——y3 3 >1——y3为负值,反弯点下移 3 <1——y3为正值,反弯点上移 说明:底层柱不考虑y2修正 柱反弯点高度比:
y yn y1 y2 y3
2014-11-16
2014-11-16 19
弯矩图
2014-11-16
20
二、 水平荷载作用下内力近似计算方法— —反弯点法
1、反弯点法的基本假定 水平荷载:风力、地震作用 条件:梁的线刚度与柱的线刚度比≥3 假定: (1) 梁的刚度无限大; (2) 忽略柱的轴向变形; (3) 假定同一楼层中各柱端的侧移相等,节点转角为0 (4) 假定上层柱子的反弯点在中点 (5) 底层柱子的反弯点在距底端2h/3
多高层房屋结构设计.
二、框架结构的计算简图
(一)计算单元的选取
➢多层框架结构实际上由纵、横
框架组成的空间结构,为了简化
计算,常忽略纵、横向空间联系,
忽略各构件的抗扭作用,分别按
纵向和横向平面框架进行计算
(如图1.11)。
➢横向中间各榀框架,由于间距
和各自抗侧刚度相同,作用的各
荷载相同,常取一榀横向框架作
为计算单元。但有差异时,应分
3) 风荷载 风荷载的计算方法与单层厂房相同。垂直于建筑物表面上的风
荷载标准值按下式计算:
k zsz0
按上式计算的风载,再按节点负载面积换算为节点集中力。
编辑课件
多高层房屋结构设计
4) 水平地震作用 水平地震作用计算方法有:底部剪力法、振型分解反应谱法、时程分析法。 《建筑抗震设计规范》GB50011-2001规定:高度不超过40m、以剪力变形为
根据楼盖的布置方式及竖向荷载传递途径,承重框架的布置有以下三 种(如图1.9) : ➢ 横向框架承重 ➢ 纵向框架承重 ➢ 纵横向框架混合承重
编辑课件
多高层房屋结构设计
三、变形缝布置
➢非地震区建筑物变形缝有伸缩缝和沉降缝,在地震区还需设置防震缝; ➢设置原则:力争不设,尽量少设,必要时一定要设,并应作到一缝多用; ➢在非地震区的沉降缝可兼作伸缩缝,仅设防震缝时,基础可不分开,但在 基础处应加强连接构造 。
➢ 框架结构是高次超静定结构。一般不考虑 填充墙抗侧作用。(但注意刚性填充填)
➢ 框架结构按施工方法不同,可分为:全现 浇式、装配式和装配整体式三种结构型式。
➢ 框架结构按承重结构不同,可分为全框架 和内框架两种。
编辑课件
多高层房屋结构设计
1.1.2 多层框架结构布置
高层建筑结构设计答案分析题
一、单选题1.(4分)当时,按( )计算。
∙ A. 整体小开口墙∙ B. 整片墙∙ C. 联肢墙∙ D. 壁式框架答案 C解析2.(4分)当( ),为大偏压剪力墙。
∙ A.∙ B.∙ C.∙ D.答案 A解析3.(4分)整体工作系数愈小,说明剪力墙整体性( )。
∙ A. 强∙ B. 弱∙ C. 与没有关系∙ D. 没有变化答案 B解析4.(4分)下列说法正确的是:( )∙ A. 无限长梁中梁一端的挠度始终不为零∙ B. 当任意荷载作用点距近梁端的距离,同时距较远端的距离时,则对该荷载的作用而言,此梁属半无限长梁;∙ C. 当荷载作用点距基础梁两端的距离均小于时,则对该荷载的作用而言,此梁称为有限长梁;∙ D. 对柔度较大的梁,可直接按有限长梁进行简化计算。
答案 B解析5.(4分)已经计算完毕的框架结构,后来又加上一些算力墙,是否更安全可靠?( )∙ A. 更安全∙ B. 下部楼层的框架可能不安全∙ C. 不安全∙ D. 顶部楼层的框架可能不安全答案 D解析6.(4分)采用底部剪力法计算地震作用的高层建筑结构是( )。
∙ A. 的建筑结构∙ B. 以剪切变形为主的建筑结构∙ C. 、以弯曲变形为主且沿竖向质量和刚度分布较均匀的建筑结构∙ D. 、以剪切变形为主且沿竖向质量和刚度分布较均匀的建筑结构答案 D解析7.(4分)框架结构与剪力墙结构相比,下述概念那一个是正确的。
( )∙ A. 框架结构变形大、延性好、抗侧力小,因此考虑经济合理,其建造高度比剪力墙结构低∙ B. 框架结构延性好,抗震性能好,只要加大柱承载能力,建造更高的框架结构是可能的,也是合理的∙ C. 剪力墙结构延性小,因此建造高度也受到限制(可比框架高度大)∙ D. 框架结构必定是延性结构,剪力墙结构是脆性或低延性结构答案 A解析8.(4分)剪力墙高宽比H/B<1.5,墙体易发生( )。
∙ A. 弯曲破坏∙ B. 弯剪破坏∙ C. 剪切破坏∙ D. 弯压破坏答案 C解析9.(4分)在同一地区的下列地点建造相同设计的高层建筑,所受风力最大的是( )。
高层建筑结构设计 课后习题解答(部分)
高层建筑结构课程习题解答土木工程学院二0一二年秋Chap11、高层建筑定义JGJ3-2010《高层建筑混凝土结构技术规程》将10层及10层以上或高度超过28m的住宅建筑结构和房屋高度大于24m的其他民用建筑,划为高层民用建筑。
1)层数大于10层;2)高度大于28m;3)水平荷载为主要设计因素;4)侧移成为控制指标;5)轴向变形和剪切变形不可忽略;2、建筑的功能建筑结构是建筑中的主要承重骨架。
其功能为在规定的设计基准期内,在承受其上的各种荷载和作用下,完成预期的承载力、正常使用、耐久性以及突发事件中的整体稳定功能。
3、高层按结构体系分类结构体系是指结构抵抗外部作用构件的组成方式。
从结构体系上来分,常用的高层建筑结构的抗侧力体系主要有:框架结构、剪力墙结构、框架-剪力墙结构、筒体结构、悬挂结构及巨型框架结构等。
Chap 21、为什么活荷载的不考虑不利布置?计算高层建筑结构在竖向荷载作用下的内力时,一般不考虑楼面及屋面竖向活荷载的不利布置,而是按满布考虑进行计算的。
其一,在高层建筑中各种活荷载占总竖向荷载的比例很小,尤其对于住宅、旅馆和办公楼等,活荷载一般在1.5~2.5kN/㎡范围内,只占全部竖向荷载的10%~20%,因此活荷载不同的布置方式对结构内力产生的影响很小;其二,高层建筑结构是个复杂的空间结构体系,层数与跨数多,不利分布的情况复杂多样,计算工作量极大且计算费用上不经济,因此,为简化起见,在实际工程设计中,可以不考虑活荷载不利分布,按满布方式布置作内力计算后再将框架梁的跨中弯矩乘以1.1~1.3的放大系数。
2、高层建筑结构抵抗水平力的构件有哪几种?各种构件有哪些类型(1)有:梁、柱、支撑、墙和筒组成;(2)梁:钢梁、钢筋混凝土梁、钢骨(型钢)混凝土梁;柱:钢柱、钢筋混凝土柱、钢骨(型钢)混凝土柱;钢管混凝土柱等;支撑有:中心支撑和偏心支撑等;墙:实体墙、桁架剪力墙;钢骨混凝土剪力墙等;筒有:框筒、实腹筒、桁架筒、筒中筒、束筒等;3、如何确定高层建筑的结构方案(1)、结构体系的确定:按:高度、风荷载、地震作用;功能、场地特征;经济因素、体型等因素确定采用以下结构体系;(2)、构件的布置(3)、对构件截面进行初选;4、如何确定高层建筑的风荷载和地震作用;1、风荷载的确定:大多数建筑(300m 以下)可按荷载规范规定的方法计算;少数建筑(高度大、对风荷载敏感或有特殊情况者)还要通过风洞试验);规范规定的方法:0k z s z w βμμω=z β--基本风压;s μ--风载体型系数;z μ--风压高度变化系数;z β--z 高度处的风振系数;2、地震荷载分为:反应谱法和时程分析法;《抗震规范》要求在设计阶段按照反应谱方法计算地震作用,少数情况需要采用时程分析进行补充;5、减少高层建筑温差影响的措施是什么?减少温差影响的综合技术措施主要有:(1)采取合理的平面和立面设计,避免截面的突变。
建筑结构中竖向构件侧移的近似计算
0 前 言
当高墙上开了许多门洞和窗洞后ꎬ就成为由连杆连接的
建筑结构中ꎬ常有各种竖向体系ꎬ如框架、井筒、剪力墙
等ꎬ在结构的方案设计和初步设计阶段往往需要很快估算出
两个细长的墙肢———双肢墙ꎬ整个结构可看成一个宽的、支
承在基础上的悬臂梁ꎬ此时变形是很小的ꎮ 但如果连杆很
其总位移ꎬ为下一步的工作提供方便ꎮ 在其侧移计算时ꎬ需
qH 4
Δ=
8EI
3
(2)
bd
其中ꎬ对于高实心墙 1 - 1 轴 I =
( 见图 2 ( a) ) ꎻ对于
12
1
[b d
筒体 1 - 1 轴 I =
12 1 1
3
- b2d2
3
]( 见图 2( b) ) ꎮ
收稿日期:2019 - 05 - 20
作者简介:冯昆荣(1967 - ) ꎬ女ꎬ四川南部人ꎬ本科ꎬ工程硕士ꎬ教授ꎬ
图 5 刚架
在刚架中ꎬ梁上的不对称垂直荷载也会引起结构物的侧
向变形( 即侧移) ꎬ如图 6 所示刚架的变形ꎮ 但是在多层框架
中各楼层上的不对称荷载可能自己趋向平衡ꎬ所产生的侧移
通常可以忽略ꎮ
对于 40 层以上的高层建筑ꎬ因为柱子截面很大ꎬ所以弯
曲型变形起控制作用ꎻ对于 40 层左右或 40 层以下的建筑ꎬ
建筑结构中竖向构件侧移的近似计算
冯昆荣
( 绵阳职业技术学院ꎬ四川 绵阳 621000)
摘 要:高层竖向结构体系在荷载作用下ꎬ由于存在侧移ꎬ往
往给计算带来很大的困难ꎬ另外ꎬ在结构的方案设计和初步
设计阶段也需要很快估算出其总位移ꎮ 本文以建筑结构中
常见的五种竖向构件为例ꎬ讲述了其侧移的近似计算方法ꎬ
框架结构内力及位移计算
第一节 高层建筑结构计算的基本假定
高层建筑是一个复杂的空间结构,它不仅平面形状多变,立面体型也各种各样,而且结 构型式和结构体系均各不相同,高层建筑中,有框架、剪力墙和筒体等竖向抗侧力结构,又 有水平放置的楼板将它们连为整体;同时高层建筑的实际荷载也是很复杂的,钢筋混凝土结 构又会有开裂、屈服等现象,并不是弹性匀质材料。因此要对这种高次超静定、多种结构型 式组合在一起的空间结构进行精确的内力和位移计算是十分困难的,在设计计算时,就必须 作出一些简化假定,以便简化计算。
面形状复杂,抗侧力结构又斜向布置时,就需要经过计算才能确定主轴方向。
四、框架结构计算方法分类
框架在结构力学中称为刚架,刚架的内力和位移计算方法很多,通常有精确法(如力法
和位移法)、渐近法(如力矩分配法、迭代法和无剪力分配法)和近似法(分层法、反弯点
法和 D 值法)三种。
精确法计算假定少,较为接近实际状况,但需建立大型的代数方程组,一般均利用计算 机进行求解;渐近法通常是利用一般的数学运算,使解答逐步趋于正确值,渐近法的优点是: 运算简单,方法易于掌握,当计算精度达到应用要求时,即可停止计算,故渐近法兼有近似 法和精确法的功能,渐近法的缺点是在数值计算中,不能包含变量,故不能研究某些量改变 时对结构的影响;近似法对结构引入较多的假定,忽略了一些次要因素,进行简化计算,其 概念清楚、计算简单、易于掌握、精确度也足够。
V = 12ic δ h2
因此,柱的侧移刚度为:
d = V = 12ic δ h2
ic
=
EI h
图 14 柱剪力与水平位移的关系
上两式中:V 为柱剪力; δ 为柱层间位移; h 为层高; EI 为柱抗弯刚度; ic 为柱线刚度。 侧移刚度 d 的物理意义是柱上下两端相对有单位侧移时柱中产生的剪力。 设同层各柱剪力为V1,V2 ,L,Vi ,L, 根据层剪力平衡,有:
高层建筑结构设计D值法及侧移计算解析
h2
D1
h1
D
1
1 ( h1 )2 1 ( h2 )2
D1 h D2 h
柱的反弯点位置 :
每一根杆的反弯点位置都不相同, 反弯点高度系数按下式计算:
y = y0 + y1 + y2 + y3
式中各符号意义见表5-4~5-6。
h yh
框架弯矩图 :
反弯点位置确定以后,柱剪力、柱弯矩以及梁端弯矩 的计算与反弯点法相同。
框架的总变形应由这两部分变形组成。但由图3-32可见, 在层数不多的框架中,柱轴向变形引起的侧移很小,常常可 以忽略。
在近似计算中,只需计算由杆件弯曲引起的变形,即所谓 剪切型变形。在高度较大的框架中以剪切型为主,柱轴向力 加大,柱轴向变形引起的侧移不能忽略。一般来说,二者叠 加以后的侧移曲线仍以剪切型为主。
框架结构内力与位移计算
反弯点法
❖ 水平荷载作用下的内力计算方法 D值法 门架法
• 反弯点法பைடு நூலகம்
适用范围:横梁线刚度与柱线刚度之比不小于3。
P3
反弯点位置:
P2
反弯点处弯矩为零,
剪力不为零。
P1
l1
l2
H3 /2 H3 /2 H2 /2 H2 /2 H1 /3
2H1 /3
反弯点处剪力计算 :自上而下依次沿每层反弯点处取脱离体。
续表
续表
图示为3层框架结构的平面及剖面示意图。受横向水平力 作用时,全部5榀框架参与受力。并给出了楼层标高处的总 水平力及各杆线刚度相对值。计算框架结构内力并画弯矩图。
【解】计算各层柱D值。因为该框架是对称的,所以右边柱 与左边柱的D值是一样的。由图可知,每层有10根边柱和5根 中柱,所有柱刚度之和为ΣD。可计算每根柱分配到的剪力。 查表得反弯点高度比的值。全部计算过程均示于下图。
D值法
图12.2 框架体系的布置
(a) 横向布置;(b) 纵向布置;(c) 纵横双向布置
12.1.3 柱网尺寸及层高
(1) 工业厂房
一般采用6m柱距,跨度则随柱网的布置方式不同 分为内廊式和跨度组合式,见图12.3。 厂房的层高一般根据车间的工艺设备、管道布置 及通风采光等因素决定。常用的底层层高有4.2m、 4.5m、4.8m、5.4m、6.0m、7.2m和8.4m。 (2) 民用建筑 民用建筑类型较多,功能要求各有不同,柱网及 层高变化也较大,尺度一般较工业厂房为小。柱网和 层高通常按300mm进级。
沉降缝由于是从基础断开,缝两侧相邻框架的距 离可能较大,给使用带来不便,此时可利用挑梁或搁 置预制梁、板的方法进行建筑上的闭合处理,见图 12.4。
表12.1 钢筋混凝土框架结构伸缩缝最大间距(m) 环境条件
框架类别
装配式 现浇式
室内或土中 75 55
露天 50 35
图12.4 沉降缝做法
(a) 设挑梁(板);(b) 设预制板(梁)
图12.5 框架横梁截面形式
图12.6 框架连系梁截面形式
12.2.1.2 截面尺寸
(1) 框架梁
梁截面尺寸可参考受弯构件来初步确定。梁高hb 一般可取(1/10~1/18)lb(lb为梁的计算跨度),梁净跨 与截面高度之比不宜小于4。梁的宽度bb=(1/2~1/3)hb, 一般不宜小于200mm。
(2) 侧移刚度d的确定
侧移刚度d表示柱上下两端有单位侧移时在柱中 产生的剪力。根据假定(1),梁柱线刚度之比无穷 大,则各柱端转角为零,由结构力学的两端无转角 但有单位水平位移时杆件的杆端剪力方程,柱的侧 移刚度d可写成:
V 12ic d= 2 h EI ic h
高层建筑结构设计D值法及侧移计算
Midas
02
03
ETABS
专门用于桥梁、建筑和岩土工程 的结构分析软件,具有直观的用 户界面和强大的分析功能。
适用于高层建筑和复杂结构的分 析,尤其在抗震设计方面有很好 的表现。
软件实现方法与步骤
建立模型
根据高层建筑的结构特点,在软件中建立相应的三维模 型。
材料属性定义
为模型中的各个部分指定合适的材料属性,如弹性模量 、泊松比和剪切模量等。
侧移对高层建筑结构的影响
结构稳定性
侧移过大可能导致结构失稳,影响整体结构的稳定性。
承载能力
侧移会导致结构内部应力重分布,可能超出结构的承 载能力。
使用功能
过大的侧移可能导致建筑使用功能受限,如门窗开启 困难等。
侧移计算的步骤与方法
建立数学模型
根据计算简图建立数学模型, 包括对结构进行离散化、选择 合适的单元类型等。
绿色化设计
注重高层建筑的环保性能,采用 可再生能源、绿色建材等,降低 能耗和碳排放。
多学科融合
将高层建筑结构设计与其他学科 领域进行融合,如工程管理、环 境科学等,提高综合效益。
05
D值法及侧移计算的软件实 现
常用软件介绍
01
SAP2000
一款功能强大的结构分析软件, 适用于各种类型的结构分析和设 计。
边界条件和载荷设置
根据实际情况设置模型的边界条件,如固定、滑动或弹 性支撑,同时考虑各种载荷,如重力、风载和地震作用 。
D值法计算
利用D值法进行结构分析,计算出结构的内力和变形。
侧移计算
根据结构分析结果,计算出高层建筑在各种载荷作用下 的侧向位移。
结果评估与优化
根据计算结果对结构进行评估,找出薄弱环节并进行优 化设计。
高层建筑结构设计复习试题(含答案)
高层建筑结构设计复习试题(含答案)高层建筑是指10层及10层以上或房屋高度大于28m的建筑物。
房屋高度是指自室外地面至房屋主要屋面的高度。
框架结构是由XXX为主要构件组成的承受竖向和水平作用的结构。
剪力墙结构是由剪力墙组成的承受竖向和水平作用的结构。
框架—剪力墙结构是由框架和剪力墙共同承受竖向和水平作用的结构。
转换结构构件是完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而设置的结构构件,包括转换梁、转换桁架、转换板等。
结构转换层是不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。
剪重比是楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。
刚重比是结构的刚度和重力荷载之比。
是影响重力P-Δ效应的主要参数。
抗推刚度(D)是使柱子产生单位水平位移所施加的水平力。
结构刚度中心是各抗侧力结构刚度的中心。
主轴是抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。
剪切变形是下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。
框架结构的变形特征是呈剪切型的。
剪力滞后是在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。
由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。
延性结构是在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹塑性状态。
在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。
具有上述性能的结构,称为延性结构。
结构计算-D值法
主要内容:D 值法 内容分解:1) 两种计算方法的比较,引出较精确的 D 值法; 2) 具体计算步骤作用在框架上的水平荷载主要有风荷载和地震作用, 它们均可简化成作用在框架节点上的水平集中力。
由于水平荷载均可简化为水平集中力的形式, 所以高层多跨框架在水平荷载作用下 的弯矩图通常如图1所示。
各杆的弯矩图均为直线,且均有一弯矩为零的点,称为反弯 点。
该点弯矩为零,但有剪力,如 图1中所示的,。
如果能求出各柱的剪力及其反弯点 位置,则各柱端弯矩就可算出,进而根据节点力矩平衡可算出梁端弯矩。
因此必须确定 各柱间剪力的分配比和确定各柱的反弯点的位置一、反弯点法回顾反弯点法的适用条件为梁的线刚度 厂与柱的线刚度■之比大于3,其计算过程如下: (1) 反弯点位置的确定 由于反弯点法假定梁的线刚度无限大,则柱两端产生相 对水平位移时,柱两端无任何转角,且弯矩相等,反弯点在柱中点处。
因此反弯点法假 定:对于上部各层柱,反弯点在柱中点;对于底层柱,由于柱脚为固定端,转角为零, 但柱上端转角不为零,且上端弯矩较小,反弯点上移,故取反弯点在距固定端 2/3高度处。
(2) 柱的侧移刚度反弯点法中用侧移刚度 d 表示框架柱两端有相对单位侧移时 柱中产生的剪力,它与柱两端的约束情况有关。
由于反弯点法中梁的刚度非常大,可近似认为节点转角为零,则根据两端无转角但有单位水平位移时杆件的杆端剪力方程,最 后得,V 12i fd 三—匚歸占卅(1)式中,V 为柱中剪力,J 为柱层间位移,h 为层高(3)同一楼层各柱剪力的分配 根据力的平衡条件、变形协调条件和柱侧移刚度 的定义,可以得出第j 层第i 根柱的剪力为:式中,•为第j 层各柱的剪力分配系数,所有水平荷载的总和,即第j 层由外荷载引起的总剪力。
这里,需要特别强调的是,二亠‘ 与第j 层所承担的水平荷载是有所区别的。
由式(2)可以看出,在同一楼层内,各柱按侧移刚度的比例分配楼层剪力。
结构计算D值法范文
结构计算D值法范文
结构计算D值法的基本原理是以结构中的一些零件或材料的最弱截面
为考虑对象,计算其破坏荷载与弹性截面模量的比值。
由于加载方式和材
料截面形状的不同,D值也会有所差异。
因此,需要根据不同的加载方式
和槽口尺寸选择适当的计算方法。
计算D值的步骤如下:
1.确定截面类型和加载方式:首先需要确定所研究的结构截面类型,
如矩形、梁、柱等,并确定加载方式,如拉伸、压缩、弯曲等。
2.确定截面尺寸和材料性质:根据实际情况确定结构的截面尺寸和所
使用的材料性质,包括材料的弹性模量和屈服强度等参数。
3.计算截面二阶矩:使用截面尺寸计算出截面的二阶矩,即截面形心
距离截面中心距离的平方。
4.计算临界截面荷载:根据加载方式,使用相应的公式计算临界截面
荷载,即结构在该加载方式下即将破坏的荷载值。
5.计算D值:将临界截面荷载除以结构材料的弹性模量,得到D值。
以上是结构计算D值法的基本步骤。
要注意的是,由于结构中的零件
和材料的选择不同,计算D值的具体步骤可能有所不同。
此外,D值的计
算还需要根据具体的加载条件进行修正,如支承条件、边界条件等。
总之,结构计算D值法是一种常用的评估构件承载能力的方法,通过
计算破坏荷载与弹性截面模量的比值,可以确定结构的稳定性和破坏性能。
在实际工程设计中,可以根据不同的加载方式和材料选择适当的计算方法,并进行必要的修正和调整,确保最终的设计结果满足安全和可靠的要求。
高层建筑结构思考题
《高层建筑结构》课程思考题1.高层建筑结构体系主要有哪些?试述各体系的组成、主要优缺点、基本受力变形特点及适用范围。
答:主要结构体系有框架结构体系,剪力墙结构体系,框架-剪力墙结构体系,筒体结构体系。
①框架结构体系:结构全部由梁柱组成。
优点:建筑平面布置灵活,可以做成大空间,使用灵活,延性好,自重轻,节省材料。
缺点:框架结构的侧向刚度小,侧向变形大,框架结构使用高度有所限制。
框架结构在水平作用下的侧移由两部分组成:第一部分侧移由梁柱的弯矩变形产生,柱和梁都有反弯点,形成侧向变形。
框架下部的梁柱内力大,层间变形大,往上部去变形愈来愈小。
第二部分是由柱的轴向变形产生,柱的拉伸和压缩使结构出现侧移。
这些变形在柱的上部比较大,下部比较小,使结构呈现弯曲型变形。
框架结构体系适用于非抗震地区和层数较少的建筑,建筑高度不要太高,一般15-20层以下为宜。
②剪力墙结构体系:建筑物墙体作为沉重竖向荷载和水平荷载的结构,称为剪力墙结构体系。
优点:整体性好,刚度大,侧向变形较小,抗震效果好。
缺点:剪力墙的间距不能太大,平面布置不灵活,结构自重较大。
剪力墙是一个受弯矩为主的悬臂墙,侧向变形是弯曲型。
剪力墙结构体系在非地震区和地震区的高层建筑中都得到广泛使用,10-30层的住宅及旅馆也可以使用剪力墙结构体系。
③框架-剪力墙结构体系:把框架和剪力墙两种结构共同组合在一起形成的结构体系。
优点:兼有框架和剪力墙的优点,比框架结构的水平承载力和侧向刚度都有很大提高,比剪力墙结构布置灵活,提供较大的空间,有较大的刚度和较强的抗震能力。
缺点:由于剪力墙的存在,一定程度上限制了建筑平面布置的灵活性。
框架剪力墙中的剪力墙是抗侧力的主体,框架则是承受竖向荷载的主体。
框架本身在水平荷载下呈剪切型变形,剪力墙呈弯曲型变形。
两者通过楼板协同工作,共同抵抗水平荷载。
主要适用于25层以下的房屋,最高不宜超过30层;地震区的五层以上的工业厂房;这种体系用于旅馆、公寓、住宅等建筑最为适宜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i2
底层,下端铰支
i1
i2
ic
i4
ic
ic
i
i1 + i2 + i3 + i4 i= 2ic
i1 i2 i ic
i1 i2 i ic
c
c =
D'
i 2+i
0.5 i c 2i
c =
0.5i 1 + 2i
h
D
h'
D c
12 EI (h) 3
c c ( ) 2
框架的总变形应由这两部分变形组成。但由图3-32可见, 在层数不多的框架中,柱轴向变形引起的侧移很小,常常可 以忽略。 在近似计算中,只需计算由杆件弯曲引起的变形,即所谓 剪切型变形。在高度较大的框架中以剪切型为主,柱轴向力 加大,柱轴向变形引起的侧移不能忽略。一般来说,二者叠 加以后的侧移曲线仍以剪切型为主。
下图给出了柱反弯点位置和根据柱剪力及 反弯点位置求出的柱端弯矩、根据结点平衡 求出的梁端弯矩。根据梁端弯矩可进一步求 出梁剪力。
【例题】用D值法作图示框架的M图。
【解】(1) D值计算和剪力分配
多层多跨框架在水平荷载作用下侧移的近似计算
框架侧移主要是由水平荷载引起的。设计时需要分别对 层间位移及顶点侧移加以限制,因此需要计算层间位移及顶 点侧移。
3 3 3
P3 V31 l1 V32 l2 V33
H3 /2
X 0
V31 V32 V33 P3
V31 D31 3 V32 D32 3 V33 D33 3
D3i
D31 V31 D31 3 P3 D3j
j
12 EI
3 H 3i
D32 V32 D32 3 P3 D3j
h h
1
D
h
D D'
{D1
D2
h2 h1
1 h1 2 1 h2 2 ( ) ( ) D1 h D2 h
柱的反弯点位置 :
每一根杆的反弯点位置都不相同, 反弯点高度系数按下式计算:
y = y0 + y1 + y 2 + y3
yh h
式中各符号意义见表5-4~5-6。
框架弯矩图 :
反弯点位置确定以后,柱剪力、柱弯矩以及梁端弯矩 的计算与反弯点法相同。
j
P3 3 D31 D32 D3
V33 D33 3
D33 P3 D3j
j
仿照上述方法得 :
P3 P2 V21 V22 V23
V21 V22
D21 ( P2 P3 ) D2j
j
D22 ( P2 P3 ) D2j
j
V23
D23 ( P2 P3 ) D2j
j
P3 P2 P1 V 11 V 12 V 13
V11 V12
D11 ( P1 P2 P3 ) D1j
j
D12 ( P1 P2 P3 ) D1j
j
D13 V13 ( P1 P2 P3 ) D1j
j
各柱弯矩 :
柱端弯矩=反弯点处剪力×反弯点至柱端距离
梁端弯矩 :
边节点和角节点处
M c2
M c1
Mb
M c1
Mb
M b M c1 M c2
M c2
M b2
中间节点
M b1
M b1 M b2
ib1 ( M c1 M c2 ) ib1 ib2
M c1
ib 2 ( M c1 M c2 ) ib1 ib2
• D值法
框架柱的抗侧刚度:
=1 D0 h 6 EI ___ h2 D1 =1 6 EI ___ h2 =1 M
M
D0 0
D c D1 c
D1
12 EI h3
12 EI h3
D0 D D1
柱抗侧刚度修正系数, 按下表计算
一般层 柱的部位及 固定情况
i1
i3
i2
底层,下端固定
续表
续表
图示为3层框架结构的平面及剖面示意图。受横向水平力 作用时,全部5榀框架参与受力。并给出了楼层标高处的总 水平力及各杆线刚度相对值。计算框架结构内力并画弯矩图。
【解】计算各层柱D值。因为该框架是对称的,所以右边柱 与左边柱的D值是一样的。由图可知,每层有10根边柱和5根 中柱,所有柱刚度之和为ΣD。可计算每根柱分配到的剪力。 查表得反弯点高度比的值。全部计算过程均示于下图。
任意水平荷载q(z)作用下由柱轴向变形产生的第j层处的 侧移 。把图3-40所示框架连续化,根据单位荷载法,有
框架结构内力与位移计算
反弯点法
水平荷载作用下的内力计算方法
D值法 门架法
• 反弯点法
适用范围:横梁线刚度与柱线刚度之比不小于3。
P3 P2 P1 H3 /2 H3 /2 H2 /2 H2 /2 H1 /3 2H1 /3 l1 l2
反弯点位置:
反弯点处弯矩为零, 剪力不为零。
反弯点处剪力计算 :自上而下依次沿每层反弯点处取脱离体。
梁柱弯曲变形产生的侧移
1、用D值计算侧移
各层楼板标高处侧移绝对值是该层以下各层层间侧移之和。 顶点侧移即所有层((n层)层间侧移之总和。
2、柱轴向变形产生的侧移
对于很高的高层框架,水平荷载产生的柱轴力较大,柱 轴向变形产生的侧移也较大,不容忽视。
其中M(x)为上部水平荷载对坐标z处的力矩总和;B为两边 柱轴线间的距离。