高二数学数列的经典例题
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学数列的经典例题
例题一:等差数列的通项公式
已知等差数列{an} 的首项a1 = 1,公差 d = 2,求第n 项的通项公式。
解:根据等差数列的通项公式,我们有:
an = a1 + (n - 1)d
将已知条件代入公式,得:
an = 1 + (n - 1) * 2
化简得:
an = 2n - 1
例题二:等比数列的求和公式
已知等比数列{bn} 的首项b1 = 2,公比q = 3,求前n 项和Sn。
解:根据等比数列的求和公式,我们有:
Sn = b1 * (1 - q^n) / (1 - q)
将已知条件代入公式,得:
Sn = 2 * (1 - 3^n) / (1 - 3)
化简得:
Sn = (3^n - 1)
例题三:数列的综合应用
已知数列{cn} 满足c1 = 1,且对任意的n ∈ N*,都有cn+1 = 2cn + 1,求数列{cn + 1} 的前n 项和Tn。
解:首先,我们将给定的递推关系式进行变形:
cn+1 + 1 = 2(cn + 1)
这说明数列{cn + 1} 是一个等比数列,其首项为c1 + 1 = 2,公比为2。
然后,我们利用等比数列的求和公式来求{cn + 1} 的前n 项和Tn:
Tn = (c1 + 1) * (1 - 2^n) / (1 - 2)
代入已知条件,得:
Tn = 2 * (2^n - 1)
化简得:
Tn = 2^(n+1) - 2。