园林废弃物堆肥效果研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

园林废弃物堆肥效果研究
魏佳吉㊀刘兴和㊀朱兴盛㊀王向斌㊀胡立宁㊀刘文婷
(甘肃华运环境建设工程股份有限公司ꎬ兰州730070)
[摘㊀要]㊀探究在不同处理下园林废弃物堆肥的分解程度ꎬ为园林废弃物的快速降解提供有效途径ꎮ堆体设CK(园林废弃物)㊁T1(羊粪+园林废弃物+菌剂)㊁T2(鸡粪+园林废弃物+菌剂)三个处理ꎮ常规监测堆体温度ꎬ每隔5d进行取样ꎬ对纤维素㊁半纤维素㊁木质素㊁有机质㊁全钾㊁全磷㊁全氮含量测定ꎮ温度结果表明ꎬ除对照处理最高温度只有48.8ħꎬ未达到国家高温期标准(55ħ)外ꎬ其他堆肥处理都进入高温发酵阶段ꎬ在第10d时T1温度达到最高值60.4ħꎬT2在第11d时温度达到最大值59.0ħꎮ在堆肥过程中C/N㊁有机质含量均呈递减趋势ꎬ最后基本保持不变ꎮ对照组的C/N比只有21ꎬ不能满足堆肥腐烂程度的要求ꎮ处理一和处理二的C/N分别分别下降了48%㊁46%ꎮ有机质含量降幅分别为45.77%㊁54.05%ꎮ堆肥后期全氮㊁全磷和全钾含量显著高于初始阶段ꎬ全氮分别增加了26.76%㊁28.04%㊁32.17%ꎮ全磷含量增长率分别为5%㊁6.67%㊁7.96%ꎮ全钾含量增幅分别为4.08%㊁7.07%㊁6.43%ꎮ纤维素㊁半纤维素和木质素随着堆肥时间的增加含量逐渐减少ꎬ最后趋于稳定ꎮ各处理的纤维素降解率分别为22.31%㊁47.16%和48.51%ꎮ半纤维素降解率分别为18.46%㊁22.32%和23.88%ꎮ木质素降解率分别为12.40%㊁41.05%和40.08%ꎮ该试验对园林废弃物进行不同堆肥处理ꎬ发现添加畜禽粪便和腐熟菌剂可以很大程度提高堆体养分变化以及纤维素㊁木质素和半纤维素的降解ꎮ堆肥腐熟后的产品已达到无害化和资源化处理要求ꎬ为园林废弃物的资源化利用提供参考依据ꎮ
[关键词]㊀园林废弃物ꎻ菌剂ꎻ堆肥
中图分类号:F326.2㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1009-3303(2024)01-0025-05ResearchontheCompostingEffectofGardenWaste
WeiJiaji㊀LiuXinghe㊀ZhuXingsheng㊀WangXiangbin㊀HuLining㊀LiuWenting
(GansuHuayunEnvironmentalConstructionEngineeringcorporationꎬLanzhou730070ꎬChina)
Abstract:Toexplorethedecompositiondegreeofcompostofgardenwasteunderdifferenttreatmentsꎬandtoprovideaneffectivewayfortherapiddegradationofgardenwaste.Thepileistreatedwiththreetreatments:CK(gardenwaste)ꎬT1(sheepmanure+gardenwaste+Microbialinoculant)ꎬandT2(chickenmanure+gardenwaste+Microbialinoculant).Thetemperatureofthereactorwasrou ̄tinelymonitoredꎬandsamplesweretakenevery5daystodeterminethecontentsofcelluloseꎬhemicelluloseꎬligninꎬorganicmatterꎬtotalpotassiumꎬtotalphosphorusandtotalnitrogen.Thetemperatureresultsshowedthatexceptforthecontroltreatmentꎬthemaximumtemperaturewasonly48.8ʎCꎬwhichdidnotreachthenationalhightemperatureperiodstandard(55ʎC)ꎬothercomposttreatmentsen ̄teredthehigh-temperaturefermentationstageꎬandtheT1temperaturereachedthehighestvalueof60.4ʎCatthe10thdꎬandthetem ̄peratureofT2reachedthemaximumvalueof59.0ʎCatthe11thd.InthecompostingprocessꎬtheC/Nandorganicmattercontentsshowedadecreasingtrendꎬandfinallyremainedbasicallyunchanged.TheC/Nratioofthecontrolgroupwasonly21ꎬwhichcouldnotmeettherequirementsofcompostdecay.TheC/NofTreatment1andTreatment2decreasedby48%and46%ꎬrespectively.Thede ̄creaseinorganicmattercontentwas45.77%and54.05%.Thecontentsoftotalnitrogenꎬtotalphosphorusandtotalpotassiuminthelaterstageofcompostingweresignificantlyhigherthanthoseintheinitialstageꎬandtotalnitrogenincreasedby26.76%ꎬ28.04%and32.17%.Thegrowthratesoftotalphosphoruscontentwere5%ꎬ6.67%and7.96%.Thetotalpotassiumcontentincreasedby4.08%ꎬ7.07%and6.43%.Thecontentofcelluloseꎬhemicelluloseandligningraduallydecreaseswiththeincreaseofcompostingtimeandfi ̄nallystabilizes.Thedegradationratesofcelluloseineachtreatmentwere22.31%ꎬ47.16%and48.51%ꎬrespectively.Thedegradationratesofhemicellulosewere18.46%ꎬ22.32%and23.88%.Thedegradationratesofligninwere12.40%ꎬ41.05%and40.08%ꎬre ̄spectively.Inthisexperimentꎬdifferentcompostingtreatmentswerecarriedoutongardenwasteꎬanditwasfoundthattheadditionoflivestockandpoultrymanureanddecayfungicouldgreatlyimprovethenutrientchangeofthereactorandthedegradationofcelluloseꎬligninandhemicellulose.Thecompostandrottenproductshavemettherequirementsofharmlessandresourcetreatmentꎬprovidingareferencefortheresourceutilizationofgardenwaste.
Keywords:Gardenwasteꎻfungicidesꎻcompost
园林废弃物(Gardenwaste)ꎬ又称园林垃圾或绿色垃圾ꎬ主要指城市绿地或郊区林地中绿化植物自然或养护过程中所产生的乔灌木修剪物(间伐物)㊁草坪修剪物㊁杂草㊁落叶㊁枝条㊁花园和花坛内废弃草花等废弃物[1]ꎮ随着国家对景观建设的需求越来越高ꎬ城市绿地面积的不断扩张ꎬ随之而来的园林垃圾也在日益增多ꎮ对其进行资源化利用ꎬ不仅可以降低园林绿化废弃物对环境造成的污染ꎬ还可以降低土地资源的浪费ꎬ节约能源ꎬ降低温室气体排放ꎬ在推动绿色经济发展㊁推进生态文明建
收稿日期:2023-10-07
设等方面ꎬ都有着十分重要的意义和影响ꎮ如何对这些资源进行合理的处理利用ꎬ在世界范围内都是一个亟待解决的问题ꎬ也是未来研究的重点[2]ꎮ在日常生活中ꎬ园林绿化废弃物的处理方式主要是以生物堆肥为主要内容ꎬ并且已经得到了广泛的应用[3-4]ꎮ堆肥能够将有机废弃物分解成肥料㊁种植基质等资源化物质ꎬ从而达到对有机废物进行再生利用的目的[5]ꎮ
园林废弃物的资源化与再生利用ꎬ其中一个最大的困难在于它的木质素和纤维素含量较高ꎬ难以被微生物降解与利用[6-7]ꎮ在自然界有机物堆腐过程中是多种微生物的综合结果ꎬ纤维素的降解仅靠一种微生物是无法实现的[8]ꎮ目前已有学者开始对园林废弃物分解规律和机理进行研究ꎬ结果表明ꎬ在堆体中添加微生物制剂ꎬ可加速木质纤维素的降解ꎬ同时也被视为一种能够加快堆肥速度的有效方法[9]ꎮ李文玉[10]在园林废弃物堆沤中添加不同微生物菌剂ꎬ发现添加微生物制剂可以有效地加快发酵腐熟过程ꎬ缩短堆肥腐熟时间ꎮ本试验通过探究在不同畜禽粪便和菌剂的处理下ꎬ对堆肥发酵产物进行效果评价ꎬ测定产物理化性质㊁腐熟程度等ꎮ研究目的是为了提高园林废弃物堆肥利用率ꎬ并将其作为种植基质㊁有机肥料或其它资源化利用ꎮ同时明确添加外源性菌系是否能够显著缩短园林废弃物堆肥发酵时间ꎬ以及木质纤维素含量是否有显著变化ꎬ为园林废弃物的快速降解提供有效途径ꎮ
1㊀材料与方法
1.1㊀试验处理
CK:园林废弃物(粉粹+未粉碎)堆放ꎮ
T1:羊粪+园林废弃物+菌剂混合堆肥
羊粪:1tꎻ园林废弃物(粉碎+未粉碎):20kgꎻ菌剂添加量:1%10kg(复合菌系制作的固体菌剂)T2:鸡粪+园林废弃物+菌剂混合堆肥
鸡粪:1tꎻ园林废弃物(粉碎+未粉碎):20kgꎻ菌剂添加量:1%10kg(复合菌系制作的固体菌剂)
表1㊀堆肥原料的基本理化性质
样品含水量/%灰分/%全氮/(g/kg)废弃物干32.97ʃ0.2949.64ʃ1.350.43ʃ0.09
废弃物湿60.45ʃ0.9829.44ʃ1.680.25ʃ0.031.2㊀试验设计
1.2.1㊀测定指标
堆体温度测量选用刺入式温度计ꎬ每天早上九时和下午四时测量堆内温度ꎬ并将其平均ꎬ堆体的深度选择30~40cmꎮ堆肥过程中ꎬ每隔5d对各处理堆体取样ꎬ进行C/Nꎬ有机质[11]㊁全磷㊁全钾[12]㊁全氮[13]㊁木质素㊁纤维素和半纤维素[14]含量测定ꎮ1.2.2㊀数据分析
对实验结果采用Excel2016㊁SPSS26.0等统计软件进行统计分析ꎮ
2㊀结果与分析
2.1㊀堆肥过程中温度的变化
通过对堆体温度测量以及对腐熟情况的观察ꎬ由图1可知ꎬ除对照处理最高温度仅达到48.8ħꎬ未达到国家高温期标准(55ħ)外ꎬ其他堆肥处理都进入高温发酵阶段ꎬ并且高温期持续了9~14dꎬ达到堆肥的腐熟要求ꎮ处理一在0~3d为升温期ꎬ高温期为4~14dꎬ在第10d温度达到最高值60.4ħꎮ处理二在0~5d后堆体温度上升ꎬ进入高温阶段ꎬ持续9d后开始下降ꎬ在第11d温度达到最大59.0ħꎮ在堆肥后期ꎬ随着易降解有机质被消耗殆尽ꎬ微生物代谢能力显著下降ꎬ在28d后两个处理温度均低于40ħꎬ堆体温度趋近于室温ꎬ堆肥进程趋于平稳ꎮ堆体颜色变黑变深ꎬ臭味消散虫蝇数量减少ꎬ枝条大部分变软变柔并发霉出现白色和青色真菌

图1㊀
不同堆肥处理温度的变化
图2㊀不同堆肥处理C/N比的变化2.2㊀堆肥过程中各养分含量的变化
2.2.1㊀C/N比的动态变化
C/N是衡量堆肥腐熟度的主要指标ꎬ通常认为
当C/N小于20时ꎬ堆肥即表示其已经腐烂ꎮ由图2可知ꎬC/N随着堆肥时间的增加ꎬ均呈逐渐递减趋势ꎬ最终趋于稳定ꎮ对照处理在堆肥周期结束时ꎬC/N仅为21不能满足堆肥腐烂程度的要求ꎮ处理一和处理二的C/N分别从最初的25和28下降到堆肥结束时的13㊁15ꎬ分别下降了48%㊁46%ꎮ这主要是由于在堆肥的升温阶段ꎬ微生物的活性增强ꎬ加速了有机物的分解ꎬ因此碳含量的下降速度高于氮的损失ꎬ所以总C/N呈下降趋势ꎮ
2.2.2㊀有机质含量的动态变化在堆肥过程中ꎬ不稳定的有机质被微生物分
解ꎬ将其转变为成CO2ꎬH2Oꎬ矿物质和稳定性较好的腐殖酸等物质ꎮ从图3可知ꎬ在整个堆肥过程中ꎬ除了对照组之外ꎬ处理一和处理二中的有机质含量都呈现出了显著的降低趋势ꎬ降幅分别为45.77%㊁
54.05%ꎮ在不同的堆肥条件下ꎬ各处理的降解率初期都呈现出急剧下降ꎬ而在后期趋势变得较缓

图3㊀
不同堆肥处理有机质含量的变化
图4㊀不同堆肥处理全氮含量的变化
2.2.3㊀全氮含量的动态变化
在园林废弃物堆肥腐熟的过程中ꎬ在堆肥腐化
过程中ꎬ氮含量的变化对最终产品的品质有很大影响ꎮ在堆肥过程中ꎬ氮素的转化是非常复杂的ꎬ它主要包含了氮素的固定和氮素的释放两个部分ꎮ由图4可知ꎬ本试验中ꎬ堆肥后期全氮的含量显著高于初期ꎬ而且从整体上看ꎬ全氮含量呈现出递增趋势ꎬ分别增加了26.76%㊁28.04%㊁32.17%ꎮ在堆肥
过程中ꎬ两个处理的全氮含量变化趋势相似ꎬ升温期均出现快速增长趋势ꎬ高温期含量变化稍有差异ꎬ而在腐熟期又逐渐趋于一致ꎮ
2.2.4㊀全磷含量的动态变化在堆肥过程中ꎬ微生物通过对挥发性有机物进
行分解㊁转化以及NH3的挥发ꎬ从而使堆肥的重量和体积降低ꎬ同时还会集中营养养分ꎬ从而提高了其质量浓度ꎬ并且有机物分解速度越快ꎬ营养物质的质量浓度也会增加得更快ꎮ由图5可知ꎬ随着堆置时间的延长ꎬ处理一和处理二的变化趋势相似ꎬ在堆肥升温期ꎬ全磷含量缓慢地增加ꎬ而腐熟发酵后ꎬ由于有机物大量的分解ꎬ因此微生物对磷的吸附和固定作用也得到增强ꎬ导致全磷含量降低ꎬ各处理全磷的增长率分别为
5%㊁6.67%㊁7.96%ꎮ
图5㊀不同堆肥处理全磷含量的变化
2.2.5㊀全钾含量的动态变化
堆肥生产是一种极为复杂的生化反应ꎬ同时伴
随钾的释放和固定ꎬ全钾含量对堆肥产品质量有直接的影响ꎮ图6可以看出ꎬ随着堆肥的持续腐熟发酵ꎬ各处理全钾含量均逐渐增加ꎬ其增长幅度分别为4.08%㊁7.07%㊁6.43%ꎬ且处理一和处理二的全钾含量显著高于对照处理

图6㊀不同堆肥处理全钾含量的变化
2.3㊀堆肥过程中纤维素、半纤维素和木质素含量的
变化
由于园林废弃物中含有较高的木质纤维素等物质ꎬ因此ꎬ研究其在堆肥中的含量变化ꎬ能够更好
地反映堆肥的腐化程度ꎮ如图7可知ꎬ在堆肥发酵过程中ꎬ纤维素㊁半纤维素和木质素的含量均随着时间的增加而逐渐降低ꎬ最终趋于稳定ꎮ各处理的纤维素降解率分别为22.31%㊁47.16%和48.51%ꎮ
半纤维素降解率分别为18.46%㊁22.32%和23.88%ꎮ木质素降解率分别为12.40%㊁41.05%和40.08%ꎮ这表明添加畜禽粪便和菌剂均加速了木质纤维素的降解

图7㊀不同堆肥处理纤维素ꎬ半纤维素和木质素含量的变化
3㊀讨论
现有的研究大多集中在单一的发酵腐化过程ꎬ缺乏对不同类型园林垃圾特性与腐化指数之间内在联系的深入了解ꎬ是制约其发酵技术升级的关键因素ꎮ堆肥腐熟过程是各种理化及生物因素结合在一起相互作用产生的结果[15]ꎮ在堆肥过程中ꎬ微生物㊁温度㊁C/N㊁有机质含量㊁氧气等因素相互作用影响ꎬ最后使堆肥腐熟化[16]ꎮ王瑞莹等[17]发现在园林废弃物堆肥化过程中ꎬ堆体内温度呈现先升后降ꎬ在翻堆后再上升继而再下降的趋势ꎮ有机质含量逐渐下降ꎬ但趋势不大ꎮ全氮含量逐渐上升ꎮ宋良红等[18]研究表明在腐熟过程中ꎬ加入羊粪可使堆体中的纤维素和木质素降解速率加快ꎬ有机质含量降低ꎬ同时堆肥产物中氮㊁磷㊁钾等营养元素含量增加ꎮ加入微生物菌剂可以在某种程度上加快堆肥过程[10]ꎬ这与本试验添加羊粪鸡粪和菌剂后养分含量变化基本一致ꎮ在堆肥过程中ꎬ微生物的活动
是影响有机质降解的主要因素ꎬ它不仅可以让堆肥升温ꎬ并且能够产生大量可被植物所利用的氮㊁磷㊁钾等有机化合物ꎬ还能够生成新高分子腐殖质ꎬ从而提升土壤的肥力[19-20]ꎮ付冰妍等[21]通过研究发现ꎬ将芽孢杆菌B01添加在园林废弃物堆肥中ꎬ木质素和纤维素的降解速率显著提高ꎬ并腐殖酸的含量显著增加ꎮ目前ꎬ在对园林绿化废弃物堆肥化处理中ꎬ所使用的菌剂主要是用于农业废弃物堆肥化处理的菌剂ꎬ还没有专门针对园林废弃物的组成成分所进行研发ꎬ因此研发或筛选针对园林废弃物组成成分的微生物菌剂产品ꎬ加快堆肥过程ꎬ改善堆肥品质ꎬ是非常有必要的ꎮ虽然目前堆肥技术已经比较成熟ꎬ但是因为原料ꎬ技术ꎬ经济ꎬ土地面积ꎬ气候等诸多因素ꎬ不同区域采用不同的堆肥方法ꎮ近年来ꎬ一些学者提出了一些改进措施ꎬ以提高堆肥的利用率ꎮZhang等[22]将甜菜渣和废纸用作膨胀材料ꎬ对园林废弃物进行堆肥处理ꎬ发现膨胀材料对堆肥过程中的曝气效果进行了优化ꎬ并抑制了堆
体厌氧环境的形成ꎬ从而实现了在堆肥腐熟过程中NO2的有效降低ꎮTong等[23]采用合适的控制方式及通风方式ꎬ提高体系含氧量ꎬ能有效地加快堆肥过程中有机物的降解ꎮ
4㊀结论
本试验采取了不同堆肥方式对园林废弃物进行了处理ꎬ除对照处理最高温度只有48.8ħꎬ未达到国家高温期标准(55ħ)外ꎬ其他堆肥处理都进入高温发酵阶段ꎮ处理一和处理二的C/N分别分别下降了48%㊁46%ꎻ有机质含量降幅分别为45.77%㊁54.05%ꎻ全氮分别增加了28.04%㊁32.17%ꎻ全磷含量增长率分别6.67%㊁7.96%ꎻ全钾含量增幅分别为7.07%㊁6.43%ꎻ纤维素降解率分别为47.16%和48.51%ꎻ半纤维素降解率分别为22.32%和23.88%ꎻ木质素降解率分别为41.05%和40.08%ꎮ试验发现添加畜禽粪便和菌剂可以很大程度提高堆养分变化以及木质素ꎬ半纤维素和纤维素的降解ꎬ为园林废弃物的快速降解资源化利用提供有效途径ꎮ
参考文献
[1]周丽.城市园林绿化植物废弃物资源化利用现状[J].江苏林业科技ꎬ2016ꎬ43(4):49-52.
[2]李成ꎬ康霄ꎬ刘军ꎬ等.园林绿化废弃物资源化利用研究进展[J].山东林业科技ꎬ2023ꎬ53(4):123-127. [3]AltieriRꎬEspositoA.Evaluationofthefertilizingeffectofolivemillwastecompostinshort-termcrops[J].InternationalBiodeterioration&Biodegradationꎬ2010ꎬ64(2):124-128. [4]ZhangLꎬSunXꎬTianYꎬetal.CompostedGreenWasteasaSubstituteforPeatinGrowthMedia:EffectsonGrowthandNutritionofCalatheainsignis[J].PLOSONEꎬ2013ꎬ8(10):78-121.
[5]ThevenotMꎬDoussetS.CompostEffectonDiuronRetentionandTransportinStructuredVineyardSoils[J].Pedosphereꎬ2015ꎬ25(1):25-36.
[6]周肖红.绿化废弃物堆肥化处理模式和技术环节的探讨[J].中国园林ꎬ2009ꎬ25(4):7-11.
[7]张家齐.园林废弃物堆腐微生物过程及纤维素降解菌筛选研究[D].中国林业科学研究院ꎬ2012. [8]宋颖琪ꎬ刘睿倩ꎬ杨谦ꎬ等.纤维素降解菌的筛选及其降解特性的研究[J].哈尔滨工业大学学报ꎬ2002ꎬ34(2):
197-200.
[9]付冰妍ꎬ孙向阳ꎬ余克非ꎬ等.降解园林废弃物专用固体复合菌的构建及其堆肥效应研究[J].环境科学研究ꎬ2021ꎬ34(5):1231-1237.
[10]李文玉ꎬ栾亚宁ꎬ孙向阳ꎬ等.接种外源微生物菌剂对园林废弃物堆肥腐熟的影响[J].生态学杂志ꎬ2014ꎬ33(10):2670-2677.
[11]田华.有机肥原料中有机质含量测定方法的研究[J].
中小企业管理与科技(下旬刊)ꎬ2011(10):313. [12]鲍士旦.土壤农化分析.3版[M].中国农业出版社ꎬ2000.
[13]黎冬容ꎬ张世庆ꎬ甘世端ꎬ等.全自动凯氏定氮仪测定土壤全氮含量[J].南方国土资源ꎬ2015(8):38-39. [14]张崇玉ꎬ张桂国ꎬ王保哲ꎬ等.饲料中的酸性洗涤纤维和木质素含量的快速测定[J].山东畜牧兽医ꎬ2014ꎬ35(8):8-9.
[15]胡永恒ꎬ张程ꎬ万华琴ꎬ等.不同园林废弃物堆肥过程中化学性状变化及其对发芽指数(GI)的影响[J/OL].
南京林业大学学报(自然科学版):1-9[2023-09-27]. [16]李婷ꎬ蒋朵ꎬ卢映菲ꎬ等.园林废弃物高效降解菌的分离㊁筛选及鉴定[J].现代农业科技ꎬ2022(5):125-128ꎬ135.
[17]王瑞莹ꎬ周童ꎬ万可ꎬ等.不同类型园林废弃物堆肥过程中理化性质的动态变化[J].天津农业科学ꎬ2017ꎬ23(11):96-99.
[18]宋良红ꎬ王珂ꎬ李小康ꎬ等.三种单一类型园林废弃物集约化制肥效果研究[J].湖北农业科学ꎬ2021ꎬ60(12):31-35.
[19]梁金凤ꎬ于跃跃ꎬ文方芳ꎬ等.添加腐熟菌剂对园林绿色废弃物堆肥化效果的影响[J].中国土壤与肥料ꎬ2013(6):97-100ꎬ104.
[20]李国学ꎬ李玉春ꎬ李彦富.固体废物堆肥化及堆肥添加剂研究进展[J].农业环境科学学报ꎬ2003ꎬ22(2):5. [21]付冰妍ꎬ孙向阳ꎬ余克非ꎬ等.芽孢杆菌B01固态发酵及其对园林废弃物堆肥的影响[J].环境科学研究ꎬ2021ꎬ34(2):450-457.
[22]ZhangLꎬSunX.Influenceofsugarbeetpulpandpaperwasteasbulkingagentsonphysicalꎬchemicalꎬandmicro ̄bialpropertiesduringgreenwastecomposting[J].Biore ̄sourceTechnologyꎬ2018(267):182.
[23]TongBꎬWangXꎬWangSꎬetal.Transformationofnitrogenandcarbonduringcompostingofmanurelitterwithdifferentmethods[J].BioresourceTechnologyꎬ2019(293):122046.。

相关文档
最新文档