2022年中考数学总复习考点培优 第三章函数第4节第1课时 二次函数的图象与性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础过关
能力提升
特色题型
-7-
第1课时 二次函数的图象与性质
8.(2021·四川乐山)已知关于x的一元二次方程x2+x-m=0. (1)若方程有两个不相等的实数根,求m的取值范围; (2)二次函数y=x2+x-m的部分图象如图所示,求一元二次方 程x2+x-m=0的解.
基础过关
能力提升
特色题型
-8-
能能力力提提升升
特色题型
-18-
第1课时 二次函数的图象与性质
(2)设 AB 所在的直线的函数表达式为 y=kx+b.
第1课时 二次函数的图象与 性质
第1课时 二次函数的图象与性质
1.(2021·安庆模拟)二次函数y=-(x+2)2+1的顶点坐标是( B )
A.(-2,-1) B.(-2,1)
C.(2,-1)
D.(2,1)
2.下列对二次函数y=x2-x的图象的描述,正确的是( C )
A.开口向下
B.对称轴是y轴
C.经过原点
基础过关
能能力力提提升升
特色题型
-13-
第1课时 二次函数的图象与性质
【解析】∵某定弦抛物线的对称轴为直线x=1, ∴该定弦抛物线经过点(0,0),(2,0),可求得该抛物线的表达式为 y=x(x-2)=(x-1)2-1.将此抛物线向左平移2个单位长度, 再向下平移3个单位长度,得到新抛物线的表达式为 y=(x-1+2)2-1-3=(x+1)2-4. 当x=-3时,y=(x+1)2-4=0, ∴得到的新抛物线经过点(-3,0).
基础过关
能能力力提提升升
特色题型
-11-
第1课时 二次函数的图象与性质
【解析】∵二次函数y=ax2-bx的图象开口向上,∴a>0. ∵对称轴在y轴右侧,∴b>0,∴a+b>0, ∴一次函数y=(a+b)x+b的图象不经过第四象限.
基础过关
能能力力提提升升
特色题型
-12-
第1课时 二次函数的图象与性质
10.若抛物线y=x2+ax+b与x轴的两个交点间的距离为2,称此 抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线 x=1,将此抛物线向左平移2个单位长度,再向下平移3个单位 长度,得到的抛物线经过下列哪个点( B ) A.(-3,-6) B.(-3,0) C.(-3,-5) D.(-3,-1)
第1课时 二次函数的图象与性质
解:(1)∵一元二次方程 x2+x-m=0 有两个不相等的实数根,
∴Δ=1+4m>0,解得 m>-1,
4
∴m 的取值范围为 m>-1.
4
基础过关
能力提升
特色题型
-9-
第1课时 二次函数的图象与性质
(2)∵二次函数 y=x2+x-m 图象的对称轴为直线 x=-1,
2
∴抛物线与 x 轴的两个交点关于直线 x=-1对称.
D.在对称轴右侧部分的图象是下降的
基础过关
能力提升
特色题型
-2-
第1课时 二次函数的图象与性质
3.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值 范围为( B ) A.m>1 B.m>0 C.m>-1 D.-1<m<0
基础过关
能力提升
特色题型
-3-
第1课时 二次函数的图象与性质
基础过关
能能力力提提升升
特色题型
-17-
第1课时 二次函数的图象与性质
解:(1)∵抛物线 y=-1 x2+bx+c 经过点 A(3 3,0)和点 B(0,3),
3
∴ -9+3 3b+c=0, 解得 b= 2 3,c=3,
c=3,
3
∴抛物线的函数表达式为 y=-1 x2+ 2 3x+3.
3
3
基础过关
a
四象限,只有 D 项符合条件.
基础过关
能力提升
特色题型
-6-
第1课时 二次函数的图象与性质
6.(2021·黑龙江牡丹江)将抛物线y=x2-2x+3向左平移2个单 位长度,所得抛物线为 y=(x+1)2+2(或y=x2+2x+3) . 7.(2021·哈尔滨)二次函数y=-3x2-2的最大值为 -2 .
2
由图可知抛物线与 x 轴的一个交点为(1,0),
∴另一个交点为(-2,0),
∴一元二次方程 x2+x-m=0 的解为 x1=1,x2=-2.
基础过关
能力提升
特色题型
-10-
第1课时 二次函数的图象与性质
9.如图,二次函数y=ax2-bx的图象开口向上,且经过第二象限 的点A.若点A的横坐标为-1,则一次函数y=(a+b)x+b的图象 不经过( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
4
抛物线与两坐标轴共有两个交点. 综上所述,a 的值为 1 或 3 或 3.
4
基础过关
能能力力提提升升
特色题型
-16-
第1课时 二次函数的图象与性质
12.抛物线 y=-1x2+bx+c 经过点 A(3 3,0)和点 B(0,3),且这个抛
3
物线的对称轴为直线 l,顶点为 C. (1)求抛物线的函数表达式; (2)连接 AB,AC,BC,求△ABC 的面积.
4.(2021·芜湖模拟)小明准备画一个二次函数的图象,他首先列表
(如下表),但在填写函数值时,不小心把其中一个蘸上了墨水(表中
),那么这个被蘸上了墨水的函数值是( D )
x … -1 0
1
2
3

y…
3
4
3
0

A.-1 B.3
C.4 D.0
基础过关
能力提升
特色题型
-4-
第课时 二次函数的图象与性质
5.二次函数y=ax2+4x+2的图象和一次函数y=ax-a(a≠0)的 图象可能在同一平面直角坐标系中的是( D )
基础过关
能力提升
特色题型
-5-
第1课时 二次函数的图象与性质
【解析】当 a>0 时,二次函数的图象开口向上,对称轴为-2 <0,
a
一次函数的图象经过第一、三、四象限;当 a<0 时,二次函数的 图象开口向下,对称轴为- 2>0,一次函数的图象经过第一、二、
基础过关
能能力力提提升升
特色题型
-14-
第1课时 二次函数的图象与性质
11.已知函数y=(a-1)x2-2ax+a-3的图象与两坐标轴共有
两个交点,则a的值为
1 或 3 或3
4
.
基础过关
能能力力提提升升
特色题型
-15-
第1课时 二次函数的图象与性质
【解析】当 a-1=0,即 a=1 时,成立;当 a-1≠0 时,若 a-3=0, 即 a=3 时,抛物线表达式为 y=2x2-6x,抛物线经过原点且抛物 线与 x 轴有两个交点;若抛物线的顶点在 x 轴上, 即 Δ=(-2a)2-4(a-1)(a-3)=0,解得 a=3 ,
相关文档
最新文档