600分专题 统计与概率
高中数学-概率与统计专题
概率与统计专题一:二项分布一、必备秘籍一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (01p <<),用X 表示事件A 发生的次数,则X 的分布列为()(1)k k n k n P X k C p p -==-(0,1,2,k n =)如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从二项分布(binomial distribution ),记作(,)X B n p 。
二、例题讲解1.(2021·全国高三其他模拟)羽毛球是一项隔着球网,使用长柄网状球拍击打用羽毛和软木刷制作而成的一种小型球类的室内运动项目.羽毛球比赛的计分规则:采用21分制,即双方分数先达21分者胜,3局2胜.每回合中,取胜的一方加1分.每局中一方先得21分且领先至少2分即算该局获胜,否则继续比赛;若双方打成29平后,一方领先1分,即算该局取胜.某次羽毛球比赛中,甲选手在每回合中得分的概率为34,乙选手在每回合中得分的概率为14.(1)在一局比赛中,若甲、乙两名选手的得分均为18,求在经过4回合比赛甲获胜的概率;(2)在一局比赛中,记前4回合比赛甲选手得分为X,求X的分布列及数学期望()E X.2.(2021·青铜峡市高级中学高三开学考试(理))设甲、乙两位同学上学期间,.假定甲、乙两位同学到校情况互不影响,且任每天7:30之前到校的概率均为23一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的每周五天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)记“上学期间的某周的五天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多3天”为事件M,求事件M发生的概率. 3.(2020·全国高三专题练习(理))一名学生每天骑车上学,从他家到学校的途中有5个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1.3(1)设X为这名学生在途中遇到红灯的次数,求X的分布列、期望、方差;(2)设Y为这名学生在首次停车前经过的路口数,求Y的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.实战练习1.(2021·湖北武汉·)在一次国际大型体育运动会上,某运动员报名参加了其中3个项目的比赛.已知该运动员在这3个项目中,每个项目能打破世,那么在本次运动会上:界纪录的概率都是23(1)求该运动员至少能打破2项世界纪录的概率;(2)若该运动员能打破世界纪录的项目数为X ,求X 的分布列及期望.2.(2021·渝中·重庆巴蜀中学高三开学考试)某医院为筛查某病毒,需要检验血液是不是阳性,现有)(n n N *∈份血液样本,为了优化检验方法,现在做了以下两种检验方式:实验一:逐份检验,则需要检验n 次.实验二:混合检验,将其中m (n *∈N 且2m ≥)份血液样本分别取样混合在一起检验.若检验结果为阴性,这m 份血液样本全为阴性,因而这m 份血液样本只要检验一次就够了;若检验结果为阳性,为了明确这m 份血液样本究竟哪几份为阳性,就要对这m 份血液样本再逐份检验,此时这m 份血液样本的检验次数总共为1m +.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为)(01p p <<.现取其中k (k *∈N 且2k ≥)份血液样本,记釆用逐份检验方式,需要检验的这k 份样本的总次数为1ξ,釆用混合检验方式,需要检验的这k 份样本的总次数为2ξ.(1)若每份样本检验结果是阳性的概率为15P =,以该样本的阳性概率估计全市的血液阳性概率,从全市人民中随机抽取3名市民,(血液不混合)记抽取到的这3名市民血液成阳性的市民个数为X ,求X 的分布列及数学期望(2)若每份样本检验结果是阳性的概率为1p =总次数2ξ的期望值比逐份检验的总次数1ξ的期望值更少,求k 的最大值.(ln 4 1.386≈,ln5 1.609≈,ln 6 1.792≈)3.(2021·全国高三其他模拟(理))新冠疫情这特殊的时期,规定居民出行或出席公共场合均需佩戴口罩,现将A 地区居民20000人一周的口罩使用量统计如表所示,其中1个人一周的口罩使用为6个以及6个上的有14000人.(1)求m 、n 的值;(2)用样本估计总体,将频率视为概率,若从A 地区的所有居民中随机抽取4人,记一周使用口罩数量(单位:个)在范围[)6,8的人数为X ,求X 的分布列及数学期望.4.(2021·新沂市第一中学高三其他模拟)市教育部门为研究高中学生的身体素质与课外体育锻炼时间的关系,对该市某校200名高中学生的课外体育锻炼平均每天锻炼的时间进行了调查,数据如下表:将学生日均课外体育锻炼时间在[40,60]内的学生评价为“课外体育达标”.(1)请根据上述表格中的统计数据填写下面22⨯列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关;(2)从上述课外体育不达标的学生中,按性别用分层抽样的方法抽取10名学生,再从这10名学生中随机抽取3人了解他们锻炼时间偏少的原因,记所抽取的3人中男生的人数为随机变量X,求X的分布列和数学期望;(3)将上述调查所得到的频率视为概率来估计全市的情况,现在从该市所有高中学生中抽取4名学生,求其中恰好有2名学生课外体育达标的概率. 5.(2021·陕西汉中·高三月考(理))树木根部半径与树木的高度呈正相关,即树木根部越粗,树木的高度也就越高.某块山地上种植了A树木,某农科所为了研究A树木的根部半径与树木的高度之间的关系,从这些地块中用简单随机抽样的方法抽取6棵A树木,调查得到A树木根部半径x(单位:米)与A树木高度y(单位:米)的相关数据如表所示:(1)求y关于x的线性回归方程;(2)对(1)中得到的回归方程进行残差分析,若某A树木的残差为零,则认为该树木“长势标准”,以此频率来估计概率,则在此片树木中随机抽取80棵,记这80棵树木中“长势标准”的树木数量为X,求随机变量X的数学期望与方差.参考公式:回归直线方程为y bx a=+,其中()()()1122211,n ni i i ii in ni ii ix y nxy x x y yb a y bxx nx x x====---===---∑∑∑∑6.(2021·四川成都·双流中学高三三模(理))从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图.(1)求a 的值并估计该市中学生中的全体男生的平均身高(假设同组中的每个数据用该组区间的中点值代替);(2)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取3人,用X 表示身高在180cm 以上的男生人数,求随机变量X 的分布列和数学期望()E X .7.(2021·安徽安庆一中高三三模(理))安庆市某学校高三年级开学之初增加晚自习,晚饭在校食堂就餐人数增多,为了缓解就餐压力,学校在原有一个餐厅的基础上增加了一个餐厅,分别记做餐厅甲和餐厅乙,经过一周左右统计调研分析:前一天选择餐厅甲就餐第二天选择餐厅甲就餐的概率是25%、选择餐厅乙就餐的概率为75%,前一天选择餐厅乙就餐第二天选择餐厅乙就餐的概率是50%、选择餐厅甲就餐的概率也为50%,如此往复.假设学生第一天选择餐厅甲就餐的概率是23,择餐厅乙就餐的概率是13,记某同学第n 天选择甲餐厅就餐的概率为n P . (1)记某班级的3位同学第二天选择餐厅甲的人数为X ,求X 的分布列,并求E (X );(2)请写出1n P +与(*)n P n N ∈的递推关系;(3)求数列{}n P 的通项公式并帮助学校解决以下问题:为提高学生服务意识和团队合作精神,学校每天从20个班级中每班抽调一名学生志愿者为全体学生提供就餐服务工作,根据上述数据,如何合理分配到餐厅甲和餐厅乙志愿者人数?请说明理由.8.(2021·湖北恩施·高三其他模拟)目前某市居民使用天然气实行阶梯价格制度,从该市随机抽取10户调查同一年的天然气使用情况,得到统计表如下:(1)现要在这10户家庭中任意抽取3户,求抽到的年用气量超过228立方米而不超过348立方米的用户数的分布列与数学期望;(2)若以表中抽到的10户作为样本估计全市居民的年用气情况,现从全市居民中抽取10户,其中恰有k 户年用气量不超过228立方米的概率为()P k ,求使()P k 取到最大值时,k 的值.概率与统计专题二: 超几何分布一般地,假设一批产品共有N 件,其中有M 件次品.从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为2,r其中n ,N ,M N *∈,M N ≤,n N ≤,max{0,}m n N M =-+,min{,}r n M =,则称随机变量X 服从超几何分布.1.公式 C C ()C kn k M N M n NP X k --== 中个字母的含义N —总体中的个体总数M —总体中的特殊个体总数(如次品总数)n —样本容量k —样本中的特殊个体数(如次品数)注意:(1)“由较明显的两部分组成”:如“男生、女生”,“正品、次品”;(2) 不放回抽样;(3) 注意分布列的表达式中,各个字母的含义及随机变量的取值范围。
中考数学专题冲刺《统计与概率》练习题含答案
专题八统计与概率【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:S甲=17,S乙=25,下列说法正确的是()A.甲同学四次数学测试成绩的平均数是89分B.甲同学四次数学测试成绩的中位数是90分C.乙同学四次数学测试成绩的众数是80分D.乙同学四次数学测试成绩较稳定答案:B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A .样本容量是200B .D 等所在扇形的圆心角为15°C .样本中C 等所占百分比是10%D .估计全校学生成绩为A 等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示: 候选人 甲 乙 丙 丁测试成绩 (百分制) 面试 86 92 90 83笔试 90 83 83 92如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B )A .甲B .乙C .丙D .丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A .①②③B .①②C .①③D .②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是35.三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S甲,S乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。
人教版高中数学高三复习《概率与统计专题》
2 x 27,s 35.
s表示10株甲树苗高度的方差,是描述树苗高度 离散程度的量. s越小,表示长得越整齐, s越大,表示长得越参差不齐.
17
考点3 线性相关分析
例3 某农科所对冬季昼夜温差大小与某反季节大豆新品 种发芽量之间的关系进行分析研究,他们分别记录了12 月1日至12月5日的每天昼夜温差与实验室每天每100颗种 子中的发芽数,得到如下资料:
作出散点图后,发现散点在一条直线附近,经计算得到 一些数据:
26
10
x 24.5,y 171.5, (xi x)( yi y) 557.5, i 1 10
(xi x )2 82.5.
i 1
刑侦人员在某案发现场发现一对裸脚印,量得每 个脚印长是26.5 cm,请你估计案发嫌疑人的身高
专题 概率与 统计
考点1 三种抽样方法与概率分布直方图
例1 1有一个容量为200的样本,其频率分
布直方图如图所示,根据样本的频率分布直方图估计,
样本数据落在区间10,12内的频数为( )
A.18
B.36
C.54
D.72
2
2 某高校甲、乙、丙、丁四个专业分别有
150、150、400、300名学生,为了解学生的就业倾向,用分 层抽样的方法从该校这四个专业共抽取40名学生进行调 查,应在丙专业抽取的学生人数为 ________.
600
7
解析 :成绩小于60分的频率为0.002 0.006 0.01210
0.2,所以30000.2 600.
8
考点2 茎叶图与特征数
例2某赛季,甲、乙两名篮球运动员都 参加了7场比赛,他们所有比赛得分的情况用如图所示 的茎叶图表示:
1 求甲、乙两名运动员得分的中位数; 2 你认为哪位运动员的成绩更稳定? 3 如果从甲、乙两位运动员的7场得
中考数学专题训练—统计与概率综合
2019年中考数学专题训练—统计与概率综合1.某学校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动.校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如图不完整的统计图.请根据统计图完成下列问题:参加本次调查有名学生,根据调查数据分析,全校约有名学生参加了音乐社团;请你补全条形统计图.2.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对该年级学生在2019年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2019年全年阅读中外名著的总本数.3.为了掌握某次数学模拟考试卷的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:请将频数分布直方图补充完整;若老师找到第五组中一个学生的语文、数学、英语三科成绩,如表.老师将语文、数学、英语成绩按照3:5:2的比例给出这位同学的综合分数.求此同学的综合分数.4.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b 班征集到作品 件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率. 科目 语文 数学 英语 得分 120 146 1405.2019年3月20日上午8时,重庆国际马拉松赛在南滨路鸣枪开赛,来自30个国家和地区的3万多名跑者朝着快乐奔跑,最终埃塞俄比亚选手夺得男子组冠军,而女子全程前三名则由中国选手包揽.某校课外活动小组为了调查该校学生对“马拉松”喜爱的情况,随机对该校学生进行了调查,调查的结果分为“非常喜欢”、“比较喜欢”、“基本喜欢”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制成了两幅不完整的统计图,请解答下列总量:请你补全两种统计图并估算该校600名学生中“非常喜欢”马拉松的人数.6.双福育才中学为积极响应学校提出的“实现伟大育才梦,建设美丽双福”的号召,面向全校学生开展征文活动,校学生会对七年级各班一周内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)图中投稿篇数为2所对应的扇形的圆心角度数为,并将该条形统计图补充完整.(2)求学校七年级各班在这一周内投稿的平均篇数.(3)若全校共有72个班,请估计全校征文投稿不低于6篇的班级有多少个?7.重庆市巴川中学是全国啦啦操基地,每届学生对啦啦操技巧的掌握都将得到传承,初2019级的同学们本周正在认真学习啦啦操,为庆“六一”表演积极做准备.学校艺体处为了解同学们跳啦啦操的热情和喜爱情况,组织大队委对本年级学生进行随机抽样调查.大队委文艺副部长小王对抽样的同学们对啦啦操的喜爱程度分为四类:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢,并将自己的调查结果绘制成如图的统计图,请你结合图中所给信息解答下列问题:请将条形统计图补充完整;初2019级共有学生2400人,请你用小王的调查结果估计该年级“非常喜欢”和“比较喜欢”跳啦啦操的人数之和有多少人?8.学校教务处为了了解学生下午参加体育活动的情况,采用随机抽样的方式进行问卷调查,调查结果分为“篮球”、“足球”、“乒乓球”、“跳绳”“体育舞蹈”、“其他”六类,分别用A、B、C、D、E、F表示.根据调查结果绘制了如图所示两幅不完整的统计图.结合图中所给出的信息,请补全条形统计图,并根据抽样调查估计全校3600名学生中选择跳绳和体育舞蹈的总人数.9.2019年春节联欢晚会分为A(语言类)、B(歌舞类)、C(魔术类)、D(杂技类)四类节目.为了了解某养老院老人对这几类节目的喜好程度,民政部门在该养老院随机抽取部分老人进行了问卷调查,规定每位老人只能选一类自己最喜欢的节目,并制成了以下两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)补全条形统计图;(2)已知该养老院共有230位老人,请你估计该养老院喜欢语言类节目的老人大约有多少人?10.为丰富我校学生的课余生活,增强学生的综合能力,学校计划在下学年新开设A:国际象棋社;B:皮影社;C:话剧社;D:手语社这四个社团;为了解学生喜欢哪一个社团,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图,请结合图中信息解答下列问题:求样本中喜欢C社团的人数在扇形统计图中的圆心角的度数,并把条形统计图补充完整.11.随着一部在重庆取景拍摄的电影《火锅英雄》在山城的热播,山城人民又掀起了一股去吃洞子老火锅的热潮.某餐饮公司为了大力宣传和推广该公司的企业文化,准备举办一个火锅美食节.为此,公司派出了若干业务员到几个社区作随机调查,了解市民对火锅的喜爱程度.业务员小王将“喜爱程度”按A、B、C、D进行分类,并将自己的调查结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:“喜爱程度”条形统计图“喜爱程度”扇形统计图(说明:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢)(1)请把条形统计图补充完整;(2)扇形统计图中A类所在的扇形的圆心角度数是;(3)若小王调查的社区大概有5000人,请你用小王的调查结果估计“非常喜欢”和“比较喜欢”的人数之和.12.电视节目“了不起的挑战”播出后深受中小学生的喜爱,小刚想知道我校学生最喜欢哪位明星,于是在我校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的明星),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有人.并将两幅统计图补充完整.(2)若小刚所在学校有3500名学生,请根据图中信息,估计全校喜欢“阮经天”的人数.13.数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.14.自1939年创办以来,重庆育才中学一直坚守文化底线,不断挑战自我极限,在沧桑文化中愈加根深叶茂.在今年,即将推出的本部改造计划不仅是文化审美层面的颠覆尝试,也是学校发展的巨大工程,其中三种style的民国大门各具特色,A磅礴大气,B清爽简约,C典雅古朴款,为调查民意学校让教职工进行投票呈现了四种结果,喜欢A款、喜欢B款、喜欢C款、都可以,现调查结果如下:(1)如图,喜欢C款的占20%,喜欢B款的占15%,则调查总人数为,扇形统计图中认为“都可以”的所占圆心角为度;根据题中信息补全条形统计图.(2)我们学校共有600名教职工,请根据上图估算喜欢A款的有多少人?15.重庆市某超市举行盛大的周年庆庆祝活动,推出“感恩顾客,回馈真情”抽奖活动,活动规定,凡购买商品价值不低于200元的顾客,都能参与一次抽奖活动,奖励的等级分为下列五等:A等级:奖励现金50元,B等级:奖励现金30元;C等级:奖励现金10元;D等级:奖励现金6元;E等级:呵呵,恭喜发财,下次再来(没有奖励)!超市根据部分顾客的抽奖情况,对抽奖结果进行分析,绘制了下列两幅不完整的统计图:根据提供的信息,求扇形统计图中“D等级”所对应的圆心角度数,并求出顾客抽一次奖的平均收益,并补全条形统计图.16.小明参加班委竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是五位评委对小明“演讲答辩”的评分条形统计图及全班50位同学民主测评票数统计表,已知小明“演讲答辩”得分是95分(1)请补全条形统计图;(2)小明的民主测评得分是;(3)请求出小明的综合得分.17.在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.18.食品安全关系千家万户,春节期间,食监部门对某超市的甲、乙两种品牌的菜籽油进行了抽检,共随机抽取了36桶油进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,已知乙种品牌的菜籽油全部合格,统计人员将数据处理后制成了如下的扇形统计图及折线统计图,其中扇形统计图表示甲种品牌菜籽油检测的结果,折线统计图表示甲、乙两种品牌菜籽油检测的结果.(1)甲、乙两种品牌的菜籽油各被抽取了多少桶进行检测?(2)甲、乙两种品牌的菜籽油检测结果中“优秀”各有多少桶?19.近年来,“小组合作学习”成为我区推动课堂教学活动改革,打造高效课堂的重要举措.某中学为了了解“小组合作学习”实施后学生的学习兴趣,随机调查了部分学生,并根据调查结果绘制成如图图表:(1)求调查的学生中学习兴趣“高”的人数的百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充完整;(3)已知该校有750人,请根据调查情况估计全校学习兴趣“极高”的人数是多少?20.某中学上学期开展了以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制如图所示的不完整的统计图,请你根据图中提供的信息补全条形统计图并估计该中学1500名学生中最喜爱律师职业的学生有多少名?21.“六一”儿童节前夕,某县××局准备给留守儿童赠送一批学习用品,先对某小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名、7名、8名、10名、12名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有个班级;各班留守儿童人数的中位数是;并补全条形统计图;(2)若该镇所有小学共有65个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.22.《中国足球改革总体方案》提出足球要进校园,为了解某校学生对校园足球喜爱的情况,随机对该校部分学生进行了调查,将调查结果分为“很喜欢”、“较喜欢”、“一般”、“不喜欢”四个等级,并根据调查结果绘制成了如下两幅不完整的统计图;(1)一共调查了名学生,请补全条形统计图;(2)在此次调查活动中,选择“一般”的学生中只有两人来自初三年级,现在要从选择“一般”的同学中随机抽取两人来谈谈各自对校园足球的感想,请用画树状图或列表法求选中的两人刚好都来自初三年级的概率.23.中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;C类所占百分比为;(2)将图1补充完整;(3)现有6名学生,其中A类三名,B类三名,张华在A类,王雨在B类,从A、B中各选1名学生,请用列表法或树状图法求张华、王雨至少有一个被抽到的概率.24.创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).25.某区教委对部分学校的七年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层次,A 级:对学习很感兴趣,B级:对学习比较感兴趣,C级:对学习不敢兴趣)并将调查结果绘制成图1和图2的统计图(不完整)根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生,图2中C级扇形的圆心角是度.并将图1补充完整.(2)已知A级中有4名数奥尖子学生,其中有2名男生,2名女生,B级中有3名体育尖子学生,其中有2名男生,1名女生,从这4名数奥尖子学生和3名体育尖子生中各选出1名学生,参加学校的“特长学生经验交流会”.利用”树状图“或者”列表”法求所选出的2名学生恰好是一名男生和一名女生的概率.26.我校学生社团下学年将新增四个社团:A.开心农场、B.小小书吧、C.宏帆传媒、D.学生大使团.为了了解学生对四个社团的喜欢情况,学生会干部随机抽取了部分学生进行调查,并将调查结果绘制成下列的统计图,请结合图中的信息解答下列问题:(1)在这次调查中,共调查了多少名学生?(2)请计算扇形统计图中B的圆心角;并将条形统计图补充完整;(3)为了了解学生喜欢“宏帆传媒”社团的原因,调查到喜欢“宏帆传媒”社团的5个学生中有2个初一的,3个初二的,现在这5个学生中任抽取2名学生参加座谈,请用树状图或列表的方法,求刚好抽到同一年级学生的概率.27.某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其它类(记为D).根据调查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生进行了归类,并制作了如下两幅统计图.请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为人,扇形统计图中D类所对应扇形的圆心角为度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.28.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.29.经国家体育总局、重庆市××局批准,国家级青少年体育俱乐部-重庆巴蜀青少年体育俱乐部-于2019年12月20日成立.体育老师吴老师为了了解七年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如下两幅不完整的统计图(说明:每位学生只选一种自己喜欢的一种球类),请根据这两幅图形解答下列问题:(1)将两个不完整的统计图补充完整;(2)七(一)班在本次调查中有3名女生和2名男生喜欢篮球,现从这5名学生中任意抽取2名学生当篮球队的队长,请用列表法或画树状图的方法求出刚好抽到一男一女的概率.30.某公司××部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若B馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若抽出的两次数字之积为偶数则小明获得门票,反之小华获得门票.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.。
2020小升初数学专题训练《统计与概率》(通用含详解)
专题训练《统计与概率》一、单选题(共10题;共24分)1.某地要反映出1999年至2002年降水量的上升和下降的情况,应绘制()统计图.A. 条形B. 扇形C. 折线2.小华应选择()表示有、良、及格参加的人数与班级人数的关系。
A. 折线统计图B. 扇形统计图C. 条形统计图3.爸爸把家庭每月各种支出情况绘制成扇形统计图,是为了()。
A. 能直观地看出每项支出的多少B. 能看出每项支出的变化趋势C. 能直观地看出每项支出与月总支出的关系D. 形象、美观4.六年级一班有40名学生,选举班长的得票数为:小何20票,小赵10票,小邓6票,小李4票。
下面三幅图中,( )图准确地表示了这一结果。
A. B. C.5.玲玲生病了,医生要记录玲玲一天24小时的体温变化情况,用()统计图表示体温的变化情况比较直观.A. 条形B. 折线C. 扇形D. 三种都行6.投掷3次硬币,有2次正面朝上,1次反面朝上,那么投掷第4次反面朝上的可能性是()。
A. 1B.C.D.7.要统计我国几座名山主峰的海拔高度,最好选用()A. 条形统计图B. 折线统计图C. 扇形统计图8.六(1)班5位同学参加1分钟拍球比赛,他们所拍的个数各不相同,平均成绩是85个。
如果其中拍得最少的是80个,那么他们中拍得最多的人的成绩不超过( )个。
A. 90B. 95C. 99D. 1059.一条直线上有5个点,那么以其中任意两个点为端点的线段有()条.A. 4B. 6C. 10D. 1510.下面的资料各用哪种统计图比较合适?(1)统计学校各年级的学生人数用()A. 条形统计图B. 折线统计图C. 扇形统计图(2)反映某超市各种商品销售额的比例情况用()A. 条形统计图B. 折线统计图C. 扇形统计图(3)反映某城市2月~8月旅游人数的变化情况用()A. 条形统计图B. 折线统计图C. 扇形统计图二、判断题(共10题;共20分)11.下面是五年级一班上学期期末美术成绩记分单.从表中看出,得“中”的人数最多.()12.条形统计图可以直观地表示数量的多少()13.盒子里有红、黄、蓝、绿四种颜色的球各1个,小聪从盒子里只摸出1个球.小聪摸出的可能是红球.()14.从折线统计图中既能看出数量的多少,又能清楚地看出数量增减变化的情况。
高考数学复习专题——排列组合-概率与统计(教师版)
一、排列组合问题的解题策略一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑〞法解决,先将甲乙二人看作一个元素与其他五人进展排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑〞法解决,共有种排法。
二、不相临问题——选空插入法例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空〞法,所以甲、乙二人不相邻的排法总数应为:种 .评注:假设个人站成一排,其中个人不相邻,可用“插空〞法解决,共有种排法。
三、复杂问题——总体排除法在直接法考虑比拟难,或分类不清或多种时,可考虑用“排除法〞,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4. (1995年高考题) 1名教师和4名获奖学生排成一排照像留念,假设教师不排在两端,那么共有不同的排法种.解:先考虑特殊元素〔教师〕的排法,因教师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.〔2000年全国高考题〕乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进展分类讨论,最后总计。
初中数学统计与概率专题训练50题(含参考答案)
初中数学统计与概率专题训练50题含答案一、单选题1.已知五个数a b c d e 、、、、满足a b c d e <<<<,则下列四组数据中方差最大的一组是( ) A .a b c 、、B .b c d 、、C .c d e 、、D .a e 、c 、2.下列事件中是必然事件的是( ) A .某射击运动员射击一次,命中靶心 B .抛掷一枚硬币,落地后正面朝上 C .三角形内角和是360°D .当x 是实数时,x 2≥03.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是( )A .抽101次也可能没有抽到一等奖B .抽100次奖必有一次抽到一等奖C .抽一次也可能抽到一等奖D .抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖4.一个不透明的袋子中只装有4个黄球,它们除颜色外完全相同,从中随机摸出一个球.下列说法正确的是( )A .摸到红球的概率是14B .摸到红球是不可能事件C .摸到红球是随机事件D .摸到红球是必然事件5.小明同学在某学期德智体美劳的各项评价得分依次为10分、9分、8分、9分、9分,则小明同学五项评价的平均得分为( ) A .7分B .8分C .9分D .10分6.下列说法中,正确的是( ) A .雨后见彩虹是随机事件B .为了检查飞机飞行前的各项设备,应选择抽样调查C .将一枚硬币抛掷20次,一定有10次正面朝上D .气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s 2甲=3.4,s 2乙=4.3,则这两个城市年降水量最稳定的是乙城市 7.下列事件为必然事件的是( ) A .打开电视,正在播放广告 B .抛掷一枚硬币,正面向上C.挪一枚质地均匀的般子,向上一面的点数为7D.实心铁块放入水中会下沉8中,随意抽取一张纸片,上面写着最简二次根式的概率是()A.16B.13C.23D.129.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是()A.19,20,14B.19,20,20C.18.4,20,20D.18.4,25,20 10.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则0a<是不可能事件;16④的平方根是4±4=±;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A.1个B.2个C.3个D.4个11.经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰有一人直行,另一人左拐的概率为()A.19B.29C.13D.2312.下列调查中,调查方式选择正确的是()A.为了了解一批灯泡的使用寿命,选择抽样调查B.为了了解某公园全年的游客流量,选择全面调查C.为了了解某1000枚炮弹的杀伤半径,选择全面调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查13.下列事件是必然事件的是()A.若a是实数,则|a|≥0B.抛一枚硬币,正面朝上C.明天会下雨D.打开电视,正在播放新闻14.下列事件中,是随机事件的是()A.等边三角形都相似B.等腰直角三角形都相似C.矩形都相似D.正方形都相似15.在某市2021年青少年航空航天模型锦标赛中,各年龄组的参赛人数情况如下表所示:若小明所在年龄组的参赛人数占全体参赛人数的38%,则小明所在的年龄组是()A.13岁B.14岁C.15岁D.16岁16.在某市举办的垂钓比赛上,6名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,6,10,8,10.则这组数据的中位数是()A.8B.7C.6D.1017.在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表:则在这次活动中,该班同学捐款金额的众数是()A.20元B.30元C.35元D.100元18.如果一组数据a1,a2,a3…,a n方差是9,那么一组新数据a1+1,a2+1,a3+1…,a n+1的方差是()A.3B.9C.10D.8119.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4B.极差是2C.平均数是9D.众数是920.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁二、填空题21.某校要了解某班的数学教学质量,对该班的8名学生进行抽样测验,所得成绩如下:70,82,98,60,91,54,78,85,这个问题中的总体是______,个体是______,样本容量是______.22.专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压,高血脂,高血糖)现象必须引起重视,这个结论是通过___________(填“抽样调查”或“普查”)得到的.23.为了了解某市4万多名初中毕业生的中考数学成绩,任意抽取1000名学生的中考数学成绩进行统计分析,这个问题中,样本容量是______.24.夏季已到,气温渐高.要反映我市某一周每天的最高气温的变化趋势,根据你所学知识宜采用______________统计图.25.如果数据x1,x2,x3的平均数是5,那么数据x1+2,x2+2,x3+2的平均数为____.26.某十字路口有一个交通信号灯,红灯亮60秒,绿灯亮35秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为____________.27.一组数据2,4,x,﹣1的平均数为3,则x的值是___.28.在某项考核中,最终考核成绩(百分制)由研究性学习成绩与卷面成绩组成,其中研究性学习成绩占60%,卷面成绩占40%,小明的这两项成绩依次是90分和85分,则小明的最终考核成绩是___________分.29.一组数据a,b,c,d,e的方差是7,则a+2、b+2、c+2、d+2、e+2的方差是___.30.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是__.31.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,卷面成绩占60%,小明的这两项成绩(百分制)依次是90分,85分,则小明这学期的数学成绩是_________.32.有两个盒子,第一个盒子中装有3 个红球和4 个白球,第二个盒子中装有4 个红球和3 个白球,这些球除颜色外都相同,分别从中摸出1 个球,从第______个盒子中摸到白球的可能性大.33.为了了解某市初中生的视力情况,有关部门进行了抽样调查,数据如下表:若该市共有初中生15万人,则全市视力不良的初中生约有__________万人.34.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x(单位:千克)及方差s2(单位:千克2)如表所示:明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是__.35.右图是各年龄段人群收视某电视剧情况的条形统计图(统计时年龄只取整数).若某村观看此电视剧的观众人数为1400人,则其中50岁以上(含50岁)的观众约有__________人.36.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组~第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是________.37.一组数据:2,1,2,5,3,2的众数是___.38.某地区有一条长100千米,宽0.5千米的防护林.有关部门为统计该防护林的树林量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木数量如下(单位:棵):65 100,63 200,64 600,64 700,67 400.那么根据以上的数据估算这一防护林总共约有_____棵树.39.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.40.某地连续统计了10天日最高气温,并绘制成如图所示的扇形统计图.计算这10天日最高气温的平均值为_____℃.三、解答题41.为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为65g的鸡蛋,现有两个厂家提供货源,它们的价格相同,鸡蛋的品质相近,质检员分别从两厂的产品中抽样调查了20只鸡蛋,并将它们按质量(单位:克)分成四组(:6770A x ≤<,B :6457x ≤<,C :6164x ≤<,D :58661≤<,它们的质量(单位:g )如下:整理数据:甲厂:66,64,64,66,63,66,66,67,68,64,66,60,66,66,63,60,67,69,68,61;乙厂:65,66,67,67,68,67,66,61,64,65,69,61,62,64,63,64,60,69,65,67.甲厂鸡蛋质量频数统计表分析上述数据,得到下表:请你根据图表中的信息完成下列问题: (1)a =______;b =______;c =______;(2)如果只考虑出口鸡蛋规格,请结合表中的某个统计量,为外贸公司选购鸡蛋提供参考建议;(3)某外贸公司从甲厂采购了18000只鸡蛋,并将质量(单位:g)在6167≤<的鸡蛋x加工成优等品进行盒装售卖,已知一盒有18颗鸡蛋,每颗鸡蛋进价为0.6元,若将优等品鸡蛋全部售出,试求一盒优等品鸡蛋定价多少才能使该外贸公司这一批优等品鸡蛋的利润达到6630元?42.阅读材料,回答问题.材料:题1:假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部孵化成功后,求3只雏鸟中恰有2只雄鸟的概率,我们可以用“袋中摸球”的试验来模拟题1:在口袋中放两种不同颜色的小球,红球表示雌鸟,黄球表示雄鸟,3只雏鸟孵化小鸟.相当于从三个这样的口装中各随机换出一球.恰好有2个黄球.题2:一天晚上,小伟帮助妈妈清洗两套只有颜色不同的有盖茶杯.突然停电了.小伟只好把杯盖和茶杯随机地搭配在一起:求颜色搭配正确的概率.(1)设计一个“袋中模球”的试验模拟题2,请筒要说明你的方案;(2)请直接写出题2的概率的结果.43.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:(1)请你填写下表:(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些)③如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.44.为贯彻落实省教育厅提出的“三生教育”.在母亲节来临之际,某校团委组织了以“珍爱生命,学会生存,感恩父母”为主题的教育活动,在学校随机调查了50名同学平均每周在家做家务的时间,统计并制作了如下的频数分布表和扇形统计图:根据上述信息回答下列问题:(1)a= ,b= .(2)在扇形统计图中,B组所占圆心角的度数为.(3)全校共有2000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人.45.图℃、图℃反映是东方百货商场今年15~月份的商品销售额统计情况.来自商场财~月份的销售总额一共是370万元,观察图℃和图℃,解答下务部的报告表明,商场15面问题:(1)将图℃补充完整;(2)商场服装部5月份的销售额是多少万元?(3)李强观察图℃后认为,5月份服装部的销售额比4月份减少了.你同意他的看法吗?为什么?46.某公司为了了解员工每人所创年利润情况,公司从各部门抽取部分员工对每年所创年利润情况进行统计,并绘制如图所示的统计图.(1)求抽取员工总人数,并将图补充完整;(2)每人所创年利润的众数是________,每人所创年利润的中位数是________,平均数是________;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?47.重庆演艺集团决定今年3月中旬在八中开展“高雅艺术进学校”的宣传活动,活动有A、唱歌,B、舞蹈,C、绘画,D、演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在某年级学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:请结合统计图表,回答下列问题:a______,并将条形统计图补充完整;(1)本次抽查的学生共______人,(2)如果该年级学生有1000人,请估计该年级喜欢“唱歌”宣传方式的学生约有多少人?A B C D四项宣传方式中随机抽取两项进行展示,(3)学校采用抽签方式让每班在,,,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.48.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图.(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下;A 级成绩为优秀,B 级成绩为良好,C 级成绩为合格,D 级成绩为不合格)其中B 级成绩(单位:分)为:75,75,76,77,78,78,79,79,79,80,80,81,81,82,82,83,83,84,86,87,87,88,89 请你结合图中所给信息解答下列问题: (1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是______; (3)扇形统计图中A 级所在的扇形的圆心角度数是______; (4)九年级(1)班学生的体育测试成绩的中位数是______;(5)若该校九年级有500名学生,请你用此样本估计体育测试中达到良好及良好以上的学生人数约为多少人?49. “PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:15m<3030m<4545m<6060m<7575m<9090m<105根据图表中提供的信息解答下列问题:(1)统计表中的a= ,b= ,c= ;(2)在扇形统计图中,A类所对应的圆心角是度;(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?参考答案:1.D【分析】根据方差的性质判断即可.【详解】解:五个数a b c d e 、、、、满足a b c d e <<<<,由方差是反映一组数据的波动大小的一个量,方差越大、数据越不稳定可知,a c e ,,方差最大, 故选:D .【点睛】本题考查方差的性质.掌握方差越大、数据越不稳定是解答本题的关键. 2.D【分析】根据必然事件的概念的定义,即可求解.【详解】解:A 、某射击运动员射击一次,命中靶心,是随机事件,故本选项不符合题意;B 、抛掷一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;C 、三角形内角和是360°,是不可能事件,故本选项不符合题意;D 、当x 是实数时,x 2≥0,是必然事件,故本选项符合题意; 故选:D.【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键. 3.C【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖, 故选:C .【点睛】本题考查了概率的意义,理解概率的实际意义是本题的关键 4.B【分析】根据概率公式和必然事件、随机事件及不可能事件逐一判断即可得. 【详解】解:A .摸到红球的概率是0,此选项错误; B .摸到红球是不可能事件,此选项正确,C 、D 选项错误;【点睛】此题考查了概率的定义:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.C【分析】根据平均数的计算方法,五项总分除以5可得结果. 【详解】解:小明同学五项评价的平均得分为: 10989995++++=(分)故选:C .【点睛】本土题考查了求平均数;理解平均数的意义正确计算是解题的关键. 6.A【分析】根据必然事件、不可能事件、随机事件的概念,以及全面调查和抽样调查的区别,方差稳定性,判断即可.【详解】A .雨后见彩虹是随机事件,故本选项正确,符合题意B .为了检查飞机飞行前的各项设备,应选择全面调查,故本选项错误,不符合题意C .将一枚硬币抛掷20次,不一定有10次正面朝上,故本选项错误,不符合题意D .气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s 2甲=3.4,s 2乙=4.3,则这两个城市年降水量最稳定的是甲城市,故本选项错误,不符合题意 故选A【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,全面调查和抽样调查的区别,方差稳定性.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小越稳定. 7.D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可. 【详解】解:A 、打开电视,可以正在播放广告,也可以不在播放广告,不是必然事件,不符合题意;B 、抛掷一枚硬币,正面可以向上,反面也可以向上,不是必然事件,不符合题意;C 、挪一枚质地均匀的般子,向上一面的点数为7,这是不可能发生的,不是必然事件,不D、实心铁块放入水中会下沉,这是一定会发生的,是必然事件,符合题意;故选D.【点睛】本题主要考查必然事件,熟知必然事件的定义是解题的关键.8.B【分析】根据最简二次根式的定义先找出图片中的最简二次根式的个数,再根据概率公式进行计算,即可得出结论.【详解】解:==符合最简二次根式的定义,所以,随意抽取一张纸片,上面写着最简二次根式的概率是21 63 =,故选:B.【点睛】此题考查了概率的计算,掌握最简二次根式的定义是准确求出概率的关键.9.C【详解】解:由扇形统计图给出的数据可得销售20台的人数是:20×40%=8人,销售30台的人数是:20×15%=3人,销售12台的人数是:20×20%=4人,销售14台的人数是:20×25%=5人,所以这20位销售人员本月销售量的平均数是208+303+124+14520⨯⨯⨯⨯=18.4台;把这些数从小到大排列,最中间的数是第10、11个数的平均数,所以中位数是20;销售20台的人数最多,所以这组数据的众数是20.故选:C.【点睛】本题考查平均数;中位数;众数.10.B【详解】分析:根据无理数,平方根,众数,中位数,平均数的概念一一判断即可.详解:①“明天降雨的概率是50%”表示明天有50%的可能会下雨,故错误.②无理数无限不循环小数,故错误.③若a为实数,则0a<是不可能事件;正确.16④的平方根是4±,用式子表示是4=±;故错误.⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.正确.正确的有2个.故选B.点睛:考查无理数,平方根,众数,中位数,平均数的概念,熟记概念是解题的关键. 11.B【分析】画树状图展示所有9种等可能的结果数,找出恰有一人直行,另一人左拐的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中恰有一人直行,另一人左拐的结果数为2,所以恰有一人直行,另一人左拐的概率=29.故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法表示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.12.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,但所费人力、物力和时间较少分析解答即可.【详解】A.℃调查一批灯泡的使用寿命具有破坏性,℃选择抽样调查,正确;B.℃调查某公园全年的游客流量工作量大,℃选择抽样调查,故不正确;C.℃调查某1000枚炮弹的杀伤半径具有破坏性,℃选择抽样调查,故不正确;D.℃调查一批袋装食品是否有防腐剂具有破坏性,℃选择抽样调查,故不正确;故选A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.A【详解】试题分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.A、地球绕着太阳转是必然事件,故A符合题意;B、抛一枚硬币,正面朝上是随机事件,故B不符合题意;C、明天会下雨是随机事件,故C不符合题意;D、打开电视,正在播放新闻是随机事件,故D不符合题意.考点:随机事件14.C【分析】根据随机事件,必然事件的定义一一判断即可.【详解】等边三角形,等腰直角三角形,正方形都相似,是必然事件,矩形相似是随机事件,故选:C.【点睛】本题考查相似多边形的性质,随机事件,必然事件等知识,解题的关键是掌握随机事件的定义,属于中考常考题型.15.B【分析】根据各年龄组的参赛人数情况表,算出总人数,再算出14岁年龄组人数所占的百分比,即可得到答案.【详解】解:根据各年龄组的参赛人数情况表可知:总参赛人数为:5+19+12+14=50,19÷50=38%,则小明所在的年龄组是14岁.故选:B.【点睛】本题考查了频数与频率,解决本题的关键是掌握频数与频率的关系,理清频数分布表的数据.16.B【分析】根据中位数的定义先把这组数据从小到大重新排列,找出最中间的数即可.【详解】把这数从小到大排列为:4,5,6,8,10,10,最中间的数是6,8则这组数据的中位数是6+8=72;故选B.【点睛】此题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.17.A【分析】直接根据众数的概念求解可得.【详解】在这次活动中,该班同学捐款金额的众数是20元,故选:A.【点睛】本题主要考查众数,解题的关键是掌握一组数据中出现次数最多的数据叫做众数.18.B【详解】解:设一组数据a1,a2,a3…,an平均数为a,℃一组新数据a1+1,a2+1,a3+1…,an+1的平均数为a+1,℃一组数据a1,a2,a3…,an方差是9,℃1n[(a1-a)2+(a2-a)2+(a3-a)2+…(an-a)2)]=9,℃1n[(a1+1-a-1)2+(a2+1-a-1)2+(a3+1-a-1)2+…(an+1-a-1)2)]=1n[(a1-a)2+(a2-a)2+(a3-a)2+…(an-a)2)]=9故选B.19.A【详解】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],分别进行计算可得答案.详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9,众数为9,方差:S2=110[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故选A.点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.20.D【详解】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】℃==x x x x >乙丁甲丙,℃从乙和丁中选择一人参加比赛,℃22S S >乙丁,℃选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 21. 该班全体同学的数学成绩 该班每个学生的数学成绩; 8【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:某校要了解某班的数学教学质量,对该班的8名学生进行抽样测验,在这个问题中,总体是该班全体同学的数学成绩;个体是该班每个学生的数学成绩;样本是该班的8名学生的数学成绩,样本容量是8.故答案为:该班全体同学的数学成绩,该班每个学生的数学成绩,8.【点睛】本题考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 22.抽样调查【详解】由于普查得到的调查结果比较准确,但所费人力物力和时间较多,而抽样调查得到的调查结果比较近似,在这个调查中,个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查. 23.1000【分析】根据样本容量的定义(样本中个体的数目称为样本容量)即可得. 【详解】解:这个问题中,样本容量是1000, 故答案为:1000.【点睛】本题考查了样本容量,熟记样本容量的定义是解题关键,样本容量只是一个数字,不带单位.。
备考2021年中考数学复习专题:统计与概率_数据收集与处理_总体、个体、样本、容量,综合题专训及答案
请根据以上统计表(图)解答下列问题:试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:(1)求这次抽样调查的样本容量,并补全图①;(2019丹阳.中考模拟) 为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<6020.0460≤x<7060.1270≤x<80980≤x<900.3690≤x≤100150.30请根据所给信息,解答下列问题:(1) a等于多少,b等于多少;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在哪个分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该年级参加这次比赛的350名学生中成绩“优”等的约有多少人?4、(2017高港.中考模拟) 为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.5、(2017徐州.中考模拟) 为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:(1) A组的频数a比B组的频数b小24,样本容量,a为:(2) n为°,E组所占比例为 %:(3)补全频数分布直方图;(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有名.6、(2019秀洲.中考模拟) 国学经典进校园,传统文化润心灵,某校开设了“围棋入门”、“诗歌汉字”、“翰墨飘香”、“史学经典”四门拓展课(每位学生必须且只选其中一门).(1)学校对八年级部分学生进行选课调查,得到如图所示的统计图,请估计该校八年级420名学生选“诗歌汉字”的人数.(2) “翰墨飘香”书画社的甲、乙、丙三人的书法水平相当,学校决定从这三名同学中任选两名参加市书法比赛,求甲和乙被选中的概率.(要求列表或画树状图)7、(2016舟山.中考真卷) 为了落实省新课改精神,我是各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为了解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本进行统计,绘制了如图所示的统计图(部分信息未给出)根据图中信息,解答下列问题:(1)求被调查学生的总人数;(2)若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;(3)根据调查结果,请你给学校提一条合理化建议.8、(2018龙岩.中考模拟) “不忘初心,牢记使命.”全面建设小康社会到了攻坚克难阶段. 为了解2017年全国居民收支数据国家统计局组织实施了住户收支与生活状况调查,按季度发布.调查采用分层、多阶段、与人口规模大小成比例的概率抽样方法,在全国31个省(区、市)的1650个县(市、区)随机抽选16万个居民家庭作为调查户.已知2017年前三季度居民人均消费可支配收入平均数是2016年前三季度居民人均消费可支配收入平均数的115%,人均消费支出为11423元,根据下列两个统计图回答问题:(以下计算最终结果均保留整数)(1)求年度调查的样本容量及2017年前三季度居民人均消费可支配收入平均数(元);(2)求在2017年前三季度居民人均消费支出中用于医疗保健所占圆心角度数;(3)求在2017年前三季度居民人均消费支出中用于居住的金额.9、(2017襄城.中考模拟) 今年是襄阳“创建文明城市”工作的第二年,为了更好地做好“创建文明城市”工作,市教育局相关部门对某中学学生“创文”的知晓率,采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”,“比校了解”,“基本了解”,和“不了解”四个等级.小辉根据调查结果绘制了如图所示的统计图,请根据提供的信息回答问题:(1)本次调查中,样本容量是;(2)扇形统计图中“基本了解”部分所对应的圆心角的度数是;在该校2000名学生中随机提问一名学生,对“创文”不了解的概率估计值为;(3)请补全频数分布直方图.10、(2019梧州.中考模拟) 2019年4月23日是“第二十四个世界读书日”,我市某中学发起了“读好书”活动.为了解九年级学生阅读“艺术类、科普类、文学类、军事类“这四类书籍的情况,数学老师随机抽查了该年级学生课外阅读的数量,绘制了下面不完整的条形图和扇形图.(1)求本次抽查中阅读科普类书籍的人数,并补充完整条形图;(2)小明要从这四类书籍中任选两类来阅读,请你用列表法或树状图求小明刚好选择科普类和军事类书籍的概率.11、(2019海南.中考模拟) 某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?12、(2019乐山.中考真卷) 某校组织学生参加“安全知识竞赛”(满分为分),测试结束后,张老师从七年级名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有名男生,名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是;(3)若将不低于分的成绩定为优秀,请估计七年级名学生中成绩为优秀的学生人数大约是多少.13、(2019铜仁.中考模拟) (2019·松桃模拟) 如图是某校九年级学生为灾区捐款情况抽样调查的条形图和扇形统计图.(1)求抽样调查的人数;(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;(3)若该校九年级学生有1000人,据此样本估计九年级捐款总数为多少元?14、(2019大连.中考模拟) 某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),按测试成绩m(单位:分)分为A、B、C、D四个组别并绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:分组成绩人数A12≤m≤1510B9≤m≤1122C6≤m≤8D m≤53(1)在被调查的男生中,成绩等级为D的男生有人,成绩等级为A的男生人数占被调查男生人数的百分比为%;(2)本次抽取样本容量为,成绩等级为C的男生有人;(3)若该校九年级男生有300名,估计成绩少于9分的男生人数.15、(2019长春.中考模拟) 据《中国教育报》2004年5月24日报道:目前全国有近3万所中小学建设了校园网,该报为了了解这近3万所中小学校园网的建设情况,从中抽取了4600所学校,对这些学校校园网的建设情况进行问卷调查,并根据答卷绘制了如图的两个统计图:说明:统计图1的百分数= ×100%;统计图2的百分数= ×100%.根据上面的文字和统计图提供的信息回答下列问题:(1)在这个问题中,总体指什么?样本容量是什么?(2)估计:在全国已建设校园网的中小学中:①校园网建设时间在2003年以后(含2003年)的学校大约有多少所?②校园网建设资金投入在200万元以上(不含200万元)的学校大约有多少所?(3)所抽取的4600所学校中,校园网建设资金投入的中位数落在那个资金段内?(4)图中还提供了其他信息,例如:校园网建设资金投入在10~50万元的中小学的数量最多等,请再写出其他两条信息.备考2021中考数学复习专题:统计与概率_数据收集与处理_总体、个体、样本、样本容量,综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
中考数学统计与概率专题知识易错题50题-含参考答案
中考数学统计与概率专题知识易错题50题含答案一、单选题1.为了了解我市2021年中考数学学科各分数段成绩分布情况,从中抽取200名考生的中考数学成绩进行统计分析,在这个问题中,样本是指()A.200B.被抽取的200名考生的中考数学成绩C.被抽取的200名考生D.我市2021年中考数学成绩2.样本数据5,7,7,x的中位数与平均数相同,则x的值是()A.9B.5或9C.7或9D.53.在一只不透明的袋子里装有1个红球和100个白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到白球是()A.随机事件B.必然事件C.不可能事件D.以上事件都有可能4.下列调查中,最适合采用全面调查(普查)方式的是()A.对全国初中学生睡眠质量情况的调查;B.对2022年元宵节期间市场上“元宵”质量情况的调查;C.对春运期间乘车旅客携带危险品情况的调查;D.对母亲河——嘉玲江水质情况的调查.5.甲、乙、丙、丁四名同学进行体温测量,他们5天的平均体温都是36.5度,方差分别是2S甲=0.02,2S乙=0.04,2S丙=0.06,2S丁=0.08,则体温最稳定的是()A.甲B.乙C.丙D.丁6.下列说法正确的个数是()①为了了解一批灯泡的使用寿命,应采用全面调查的方式①一组数据5,6,7,6,8,10的众数和中位数都是6①已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是m≥0①23≥-≠-a a且A.1B.2C.3D.47.下面是某次小华的三科考试成绩,他的三科考试成绩的平均分是()A.88B.90C.91D.928.为了估计一片树林中的麻雀的数量,爱鸟人在这个林子里随机捕捉到了30只麻雀,分别在它们的脚上做上标记后,再放归树林.一周后,再次在这片林子里捕捉到了50只麻雀,发现其中3只脚上有标记,(不考虑其他因素)则这片林子中麻雀的数量大约为()A.300只B.500只C.1000只D.1500只9.如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A.15B.625C.25D.192510.下列说法正确的是()A.了解中央电视台新闻频道的收视率应采用全面调查B.了解岳池县初一年级学生的视力情况,现在我县城区甲、乙两所中学的初一年级随机地各抽取50名学生的视力情况C.反映岳池县6月份每天的最高气温的变化情况适合用折线统计图D.商家从一批粽子中抽取200个进行质量检测,200是总体11.以下调查中,最适合采用普查方式的是()A.调查某班级学生的身高情况B.调查全国中学生的视力状况C.调查山东省居民的网上购物状况D.调查一批电脑的使用寿命12.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.49B.13C.16D.1913.淘淘和丽丽是九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是()A.13B.19C.23D.2914.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下表:现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权比由3①5①2变成5①3①2,成绩变化情况是()A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩都增加15.某校举行防疫知识竞赛,甲、乙两班的参加人数及成绩(满分100分)的平均数、中位数、方差如下表所示,规定成绩大于或等于96分为优异.佳佳根据上述信息得出如下结论:①甲、乙两班学生成绩的平均水平相同;①甲班的成绩比乙班的成绩稳定;①乙班成绩优异的人数比甲班多;①佳佳得94分将排在甲班的前20名.其中正确的结论是()A.①①B.①①C.①①D.①①①16.某市为了分析全市1万名初中毕业生的数学毕业成绩,共随机抽取40本试卷,每本30份,则这个问题中()A.个体是每个学生B.样本是抽取的1200名学生的数学毕业成绩C.总体是40本试卷的数学毕业成绩D.样本是30名学生的数学毕业成绩17.下表是某同学周一至周五每天跳绳个数统计表:则表示“跳绳个数”这组数据的中位数和众数分别是()A.180,160B.170,160C.170,180D.160,20018.下列统计量中,能够刻画一组数据的离散程度的是()A.方差或标准差B.平均数或中位数C.众数或频率D.频数或众数19.甲乙二人做出拳(石头、剪刀、布)游戏,则甲赢的概率为()A.16B.13C.12D.1920.已知一组数据的方差为345,数据为:-1,0,3,5,x,那么x等于()A.-2或5.5B.2或-5.5C.4或11D.-4或-11二、填空题21.博物馆拟招聘一名优秀讲解员,张三的笔试、试讲、面试成绩分别为94分、90分、95分.综合成绩中笔试占50%、试讲占30%、面试占20%,那么张三最后的成绩为_____分.22.一组数据2,3,2,3,5的方差是__________.23.A,B,C三把外观一样的电子钥匙对应打开a,b,c三把电子锁.(1)任意取出一把钥匙,恰好可以打开a锁的概率是;(2)求随机取出A,B,C三把钥匙,一次性对应打开a,b,c三把电子锁的概率.24.掷一枚质地均匀的硬币,前9次都是反面朝上,则掷第10次时反面朝上的概率是_____.25.小华想了解光明小区500户家庭的教育费用支出情况,随机抽查了该小区的50户家庭并做了相关统计.在这次调查中,样本容量是_____.26.若一组数据2、2、3、1、5的极差是_________27.制作频数直方图的步骤:(1)确定所给数据的最大值、最小值,求出最大值与最小值的差;(2)将数据适当________;(3)统计每组中数据出现的________;(4)绘制频数直方图.28.一组数据:1,2,2,3,3,3,4,4,4,4的平均数等于_________.29.一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼_____尾.30.为做好疫情防控工作,学校南门设置了A,B两台体温快速检测设备,小成和小林随机进入学校,二人恰好均从设备A检测入校的概率是______.31.万州区九池乡盛产草莓,每年三四月正是草莓成熟的季节.某水果经销商为了更好地了解市场,分别对甲、乙、丙、丁四个市场四月份每天出售的草莓价格进行调查,通过计算发现这个月四个市场草莓的平均售价相同,方差分别为22228.1, 5.7,9.5, 6.4====s s s s,则该经销商四月份草莓价格最稳定的市场是甲乙丁丙__________.32.在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:59.569.579.599.59151289.599.5出现的频率为15%,则这一次抽样调查的容量是(1)已知最后一组()________.69.579.5的频数是________,频率是________.(2)第三小组()33.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色三角形区域的概率是_____.34.某鞋店一周内销售了某种品牌的男鞋60双,各种尺码的销售量统计如下:由此你能给这家鞋店提供的进货建议是________________________.35.有四张完全相同且不透明的的卡片,正面分别标有数字-1,-2,1,2,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为a ,放回后洗匀,再抽一张,卡片上的数字记为b ,则函数y ax =与函数by x=没有交点的概率是_______. 36.一个袋子里有6个黑球,x 个白球,它们除颜色外形状大小完全相同.随机从袋子中摸一个球是黑球的概率为13,则x =_____.37.班里有18名男生,15名女生,从中任意抽取a 人打扫卫生,若女生被抽到是必然事件,则a 的取值范围是_____.38.某校为了了解该校学生在家做家务的情况,随机调查了50名学生,得到他们在一周内做家务所用时间的情况如下表所示:这组数据的中位数是_____.39.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有________ 条鱼.40.我们把a 、b 、c 三个数的中位数记作,,Z a b c ,直线12y kx =+与函数22,1,1y Z x x x =-+-+的图象有且只有2个交点,则k 的值为______.三、解答题41.某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:17 18 16 13 24 15 27 26 18 19 22 17 16 19 32 30 16 15 16 28 15 32 23 17 14 15 27 27 16 19,对这30个数据按组距3进行分组,并整理和分析如下: 频数分布表:数据分析表:请根据以上信息解答下列问题:(1)上表中=a ,b = ,c = ,d = ;(2)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由;(3)若从第六组和第七组内随机选取两名营业员在表彰会上作为代表发言,请你直接写出这两名营业员在同一组内的概率.42.体育测试即将进入中考,某校随机抽取八年级50名男生进行立定跳远测试,并把测试成绩(单位:m )绘制成如下统计表和统计图.(每组数据含前一个边界值,不含后一个边界值)八年级50名男生立定跳远测试成绩的频数表(1)求a,b的值,并把频数直方图补充完整;(2)学生立定跳远成绩在1.85m(含1.85m)以上为合格,若该年级共有600名男生,试估计有多少名男生达到合格水平?43.东京奥运会10米跳台决赛在2021年8月5日下午15:00举行,来自广东湛江的14岁小女孩全红婵让全世界记住了她的名字.下表是7名裁判对全红婵第一跳的打分情况:(1)写出7名裁判打分的众数和中位数.(2)跳水比赛计分规则规定,在7个得分中去掉1个最高分和1个最低分,剩下5个得分的平均值为这一跳的完成分,根据“最后得分=难度系数×完成分×3”,那么全红婵第一跳的最后得分多少?44.如图,小强同学根据乐清市某天上午和下午各四个整点时间的气温绘制成的折线统计图.(1)根据图中信息分别求出上午和下午四个整点时间的平均气温.(2)请你根据所学统计学知识,从四个整点时间温度猜测,这天上午和下午的气温哪个更稳定,并说明理由.45.西宁教育局在局属各初中学校设立“自主学习日”.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表.针对以下六个项目(每人只能选一项):.课外阅读;.家务劳动;.体育锻炼;.学科学习;.社会实践;.其他项目进行调查.根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为____________,请补全条形统计图;(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动.请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.46.2021年底,西安突发新冠肺炎疫情、在各方共同努力下,取得了抗击疫情的阶段性胜利.日前,新一波新冠肺炎疫情又在中国香港地区蔓延,同时深圳、呼和浩特等多地也出现散发病例.做好新冠肺炎疫情防控时刻不能放松,对中学生来说抗击疫情的最好办法是强身健体,提高免疫力.某校为了解九年级学生周末在家体育锻炼的情况,在该校九年级随机抽收了18名男生和18名女生,对他们周末在家的锻炼时间进行了调查,并收集得到了如下数据(单位:分钟):【收集数据】男生:28,30,32,39,46,57,58,66,68,69,70,70,80,88,95,99,100,105;女生:29,35,36,48,55,56,62,69,69,72,73,78,88,88,90,98,99,109.【整理数据】【分析数据】两组数据的平均数、中位数、众数如表:根据以上信息解答下列问题:a______,b=______;(1)填空:m=______,=(2)如果该校九年级的男生有270人、女生有360人,估计该校九年级周末在家锻炼的时间在90分钟以上(不包含90分钟)同学的人数;(3)王老师看了表格数据后认为九年级的女生周末锻炼做得比男生好,请你结合统计数据,写出两条支持王老师观点的理由.47.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评.结果如下表所示:规定:演讲答辩得分按.......“.去掉一个最高分和一个最低分再算平均分..................”.的方法确定.....;. 民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分; 综合得分=演讲答辩得分×(1-a)+民主测评得分×a (0.5≤a≤0.8); (1) 当a=0.6时,甲的综合得分是多少?(2) 如果以综合得分来确定班长,试问:甲、乙两位同学哪一位当选为班长?并说明理由.48.为贯彻落实全市城乡“清爽行动”暨生活垃圾分类攻坚大会精神,积极创建垃圾分类示范单位,我校举行了一次“垃圾分类”模拟活动. 我们将常见的生活垃圾分为四类:可回收垃圾、厨余垃圾、有害垃圾、其他垃圾,且应分别投放于4种不同颜色的对应垃圾桶中. 若在这次模拟活动中,某位同学将两种不同类型的垃圾先后随意投放于2种不同颜色的垃圾桶.(1)请用列表或画树状图表示所有可能的结果数; (2)求这位同学将两种不同类型的垃圾都正确投放的概率.49.我校团委举办了一次“中国梦·我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达到6分及以上为合格,达到9分及以上为优秀. 这次大赛中甲、乙两组学生成绩分布的条形统计图如下.(1)补充完成下列的成绩统计分析表:(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏下!”观察上表,请说明小明是哪一组学生,并说明理由;(3)如果学校准备推荐其中一个组参加县级比赛,你推荐哪一组参加?请你从两个不同的角度说明推荐理由.50.甲、乙二人做如下的游戏;从编号为1到20的卡片中任意抽出一张.(1)若抽到的数字是奇数,则甲获胜,否则乙获胜,你认为这个游戏对甲、乙双方公平吗?请从概率的角度分析你的结论.(2)若抽到的数字是3的倍数,则甲获胜;若抽到的数字是5的倍数,则乙获胜,你认为这个游戏对甲、乙双方公平吗?参考答案:1.B【分析】根据样本的定义(从总体中抽取出的一部分个体叫做这个总体的一个样本)即可得.【详解】解:由题意可知,样本是指被抽取的200名考生的中考数学成绩,故选:B.【点睛】本题考查了样本,熟记样本的定义是解题关键.2.B【详解】试题分析:由题可知,从样本数据可观察到,中位数可能为7,也有可能是6.5或者6,(1)如果是7,则x=9,(2)如果是6.5,则x=7,不可能,舍去;(3)如果是6,则x=5,综上所诉,则有5或9 ,B正确.考点:统计相关数据点评:该题较为简单,但是容易考虑不全面,考查学生对平均数和中位数的理解和计算方法的掌握.3.A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:在一只不透明的袋子里装有1个红球和100个白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到白球是随机事件,故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.对全国初中学生睡眠质量情况的调查,适合采用抽样调查方式,不符合题意;B.对2022年元宵节期间市场上“元宵”质量情况的调查,适合采用抽样调查方式,不符合题意;C.对春运期间乘车旅客携带危险品情况的调查,适合采用全面调查方式,符合题意;D.对母亲河——嘉玲江水质情况的调查,适合采用抽样调查方式,不符合题意.故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.A【分析】根据方差越小,数据越稳定,比较方差的大小即可.【详解】解:他们5天的平均体温都是36.5度,方差分别是2S甲=0.02,2S乙=0.04,2S丙=0.06,2S丁=0.08,0.020.040.060.08<<<.∴甲体温最稳定.故选A【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.6.A【分析】根据全面调查的特征、众数、中位数的定义、一元二次方程根的情况、分式有意义的条件和二次根式有意义的条件逐一判断即可.【详解】解:①为了了解一批灯泡的使用寿命,调查具有破坏性,应采用抽样调查的方式,故错误;①一组数据5,6,7,6,8,10的众数是6,中位数是(6+7)÷2=6.5,故错误;①已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是m>0,故错误;①23≥-≠-a a且,故正确.综上:正确的有1个故选A.【点睛】此题考查的是调查方式的选择、求一组数据的众数、中位数、一元二次方程根的情况、分式有意义的条件和二次根式有意义的条件,掌握全面调查的特征、众数、中位数的定义、一元二次方程根的情况、分式有意义的条件和二次根式有意义的条件是解决此题的关键. 7.C【分析】根据“平均分=总分数÷科目数”计算即可解答. 【详解】解:()919488391++÷=(分), 故小华的三科考试成绩平均分式91分; 故选:C .【点睛】这个题目考查的是平均数的问题,根据题意正确计算即可. 8.B【分析】设这片林子中麻雀的数量为x 只,根据样本估计总体列式求解即可. 【详解】解:设这片林子中麻雀的数量为x 只, 由题意得:30:3:50x =, 解得:500x =,所以这片林子中麻雀的数量大约为500只, 故选:B .【点睛】本题主要考查了用样本估计总体,熟练掌握相关知识是解题的关键. 9.B【分析】根据题意画出树状图,然后由树状图求得所有可能的结果与两个指针同时指在偶数上的情况,再利用概率公式即可求得答案. 【详解】根据题意列树状图得:①共有25可能出现的情况,两个指针同时指在偶数上的情况有6种, ①两个指针同时指在偶数上的概率为:625, 故选B【点睛】本题考查了列表法与树状图法求概率的知识,概率=所求情况数与总情况数之比.熟练掌握列表法与树状图法及概率公式是解题关键.10.C【详解】A. ①了解中央电视台新闻频道的收视率,如果采用应采用全面调查,工作量很大,故不正确;B. ①从城区甲、乙两所中学的初一年级随机地各抽取50名学生,漏掉了农村中学的学生,不具代表性,故不正确;C. ①折线统计图能反应一个量的变化情况,①反映岳池县6月份每天的最高气温的变化情况适合用折线统计图正确;D. 商家从一批粽子中抽取200个进行质量检测,200是样本容量,故不正确;故选C.11.A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.调查某班级学生的身高情况,适合采用普查方式,故本选项符合题意B.调查全国中学生的视力状况,适合采用抽样调查,故本选项不合题意;C.调查山东省居民的网上购物状况,适合采用抽样调查,故本选项不合题意;D.调查一批电脑的使用寿命,适合采用抽样调查,故本选项不合题意.故选:A.【点睛】此题考查了普查和抽样调查的问题,解题的关键是掌握普查和抽样调查的定义以及区别.12.D【详解】解:列表如下由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是19.故选:D.13.B【分析】根据题意列表法求概率即可. 【详解】列表如下总共有9种等可能结果,他们两人都抽到物理实验的结果有1种 ①两人都抽到物理实验的概率是19故选B【点睛】本题考查了列表法或树状图法求概率,掌握列表法求概率是解题的关键.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比. 14.B【详解】创意权重没有改变,所以可以不计算.小明原先:700.3600.5⨯+⨯=51.现在: 700.5600.353⨯+⨯=. 小亮原先:900.3750.5⨯+⨯=63.5 .现在:900.5750.3⨯+⨯=67.5. 小丽原先:600.3840.5⨯+⨯=60.现在:600.5840.3⨯+⨯=55.2. 显然小亮增加最多, 故选B . 15.D【分析】根据平均数、中位数、方差的意义逐项分析判断即可.【详解】解:①甲、乙两班学生的平均成绩相等,故成绩的平均水平相同,故①正确; ①甲班的成绩的方差比乙班的大,故乙班的成绩稳定,故①不正确,①根据中位数可得乙班的中位数大于甲班的中位数,故乙班成绩优异的人数比甲班多,故①正确;①根据甲班的中位数为93,则①佳佳得94分将排在甲班的前20名,正确故选D【点睛】本题考查了平均数、中位数、方差的意义,掌握平均数、中位数、方差的意义是解题的关键.16.B【详解】A. 个体是每份试卷,C. 总体是一万名初中毕业生的数学毕业成绩;D. 样本是抽取的1200名学生的数学毕业成绩,故B正确17.B【分析】将这些数从小到大排列起来,找出中位数,众数即可.【详解】把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170,160出现了2次,出现的次数最多,则众数是160,故选:B.【点睛】本题考查众数和中位数的概念,能够找到一组数据的众数,中位数是解决本题的关键.18.A【详解】由于方差、标准差都能反映数据的波动大小,而中位数是一组数据按大小排序后最中间一个数(或中间两个数的平均数),平均数反应的是一组数据的平均量,众数是一组数据中出现次数最多的数,而频率和频数反应的是数据的比值和数目.故选A.19.B【分析】由题意列表格,根据概率公式进行求解即可.【详解】解:由题意知,列表法表示甲、乙可能的结果如下:共有9种可能,甲赢乙共有3种情况;①甲赢的概率为3193=故选B .【点睛】本题考查了列表法求概率.解题的关键在于正确的列表格. 20.A【分析】根据平均数和方差的公式列出关于x ,m 的方程求解.【详解】解:设数据的平均数为m ,则11(1035)(7)55m x x =-++++=+①,222222134(1)(0)(3)(5)()55s m m m m x m ⎡⎤=--+-+-+-+-=⎣⎦, 整理得22514210m m mx x --++=①,把①代入①,得:221115(7)14(7)2(7)10555x x x x x ⎡⎤+-⨯+-⨯+⋅++=⎢⎥⎣⎦,化简得227220x x --= 解得:x =-2或5.5. 故选A .【点睛】本题主要考查的是方差公式,平均数公式,以及一元二次方程的解法,方程思想在初中数学的学习中极为重要,也是中考中的热点,本题思考问题的角度独特,难度较大. 21.93【分析】根据加权平均数的定义列式计算即可.【详解】解:张三最后的成绩为:9450%9030%9520%93⨯+⨯+⨯=(分), 故答案为:93.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义. 22.1.2【详解】解:先求出平均数(2+3+2+3+5)÷5=3,再根据方差公式计算方差=22222[(23(33)(23)(33)(53)]5 1.2-+-+-+-+-÷=)即可23.(1)13;(2)16【详解】试题分析:1)直接利用概率公式求解即可;(2)根据题意列表后利用概率公式求概率即可.试题解析:(1)①3把钥匙中有1把打开a锁,①任意取出一把钥匙,恰好可以打开a锁的概率是13;(2)由题意可列表如下:由上表可知共有六种方法,故刚好A能开a锁,B能开b锁,C能开c 锁的概率为:16.考点:列表法与树状图法.24.12.【分析】投掷一枚硬币,是一个随机事件,可能出现的情况有两种:反面朝上或者反面朝下,而且机会相同.据此回答.【详解】解:第10次掷硬币,出现反面朝上的机会和朝下的机会相同,都为12;故答案为:12.【点睛】此题考查概率的意义,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.25.50【分析】根据样本容量:一个样本包括的个体数量叫做样本容量可得答案.。
高考数学大一轮复习专题12概率与统计课件理
①互斥事件研究的是两个(或多个) 事件之间的关系;②所研究的事件 是在一次试验中涉及的
8
9
10
600分基础 考点&考法
考点70 古典概型与几何概型
考法3 求古典概型的概率
考法4 几何概型的概率计算
11
考点70 古典概型与几何概型
(1)任何两个基本事件是互斥的; 1.基本事件的特点 (2)任何事件(除不可能事件)都 可以表示成基本事件的和.
1.频率与概率
2.互斥事件 与对立事件 3.互斥事件 与对立事件 的概率公式
考法1 频率估计概率
事件 A发生的频率 f n A nA n
随着试验次数的增多,它在A 的概率附近摆动幅度越来越小
概率是频率的稳定值
在试验次数足够的情况下
利用频率估计概率
6
考法2 求互斥事件、对立事件的概率
1.求简单的互斥事件、对立事件的概率
分析该事件是互斥还是对立,然后代入相应的概率公式
2.求复杂的互斥事件的概率的方法
直接法 将所求事件分解为彼此互斥的事件的和 利用公式分别计算这些事件的概率 运用互斥事件的概率求和公式计算概率 间接法 判断是否适合用间接法 计算对立事件的概率 运用公式P(A)=1-P(A)求解 把一个复杂事件分解为若干 个互斥或相互独立的既不重 复又不遗漏的简单事件是解 决问题的关键. 7
考法1 求离散型随机变量的分布列
一般步骤
【说明】求概率和分布列时,要注意离散型 随机变量分布列性质的应用,具体如下:
(1)利用“分布列中所有事件的概率和为1”
求某个事件的概率、求参数的值; (2)利用分布列求某些个事件的和的概率.
29
考法2 超几何分布的求解
中考数学专题训练:统计与概率(含答案)
中考数学专题训练:统计1. (2012福建)“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;请根据上述统计表和扇形提供的信息,完成下列问题: (1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?【答案】解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135;儿童玩具占得百分比是(90÷300)×100%=30%。
童装占得百分比1-30%-25%=45%。
补全统计表和统计图如下:(2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×85%=63.75,童装中合格的数量是135×80%=108,∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是8163.7510884.25%300++=。
2. (2012湖北) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率. 【答案】解:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人。
(2)喜爱C 粽的人数:600-180-60-240=120,频率:120÷600=20%; 喜爱A 粽的频率:180÷600=30%。
(名师整理)最新人教版数学中考冲刺压轴题《统计与概率》专题训练(含答案解析)
中考数学压轴题强化训练:统计与概率1、在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ). (1)请你用画树状图或列表的方法,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y=﹣2x的图象上的概率.2、某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B.C.D.E).3、在四个完全相同的小球上分别标上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,小明同学随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号;(1)请你用画树状图或列表的方法分别表示小明同学摸球的所有可能出现的结果。
(2)按照小明同学的摸球方法,把第一次取出的小球的数字作为点M的横坐标,把第二次取出的小球的数字作为点M的纵坐标,试求出点M(x,y)落在直线y=x上的概率是多少?4、《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m= ,n= ;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?5、某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图(1),图(2)),请回答下列问题:(1)这次被调查的学生共有_______人;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).图(1)项目人数/人108246C图(2)6、如图,转盘A 的三个扇形面积相等,分别标有数字1,2,3,转盘B 的四个扇形面积相等,分别标有数字1,2,3,4。
初中数学统计与概率专题训练50题含参考答案
初中数学统计与概率专题训练50题含答案一、单选题1.玉林市连续5天的最高气温(单位:℃)分别是:31,26,32,26,29,这组数据的众数是()A.31B.26C.32D.292.在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是()A.47B.48C.48.5D.493.数据-1,0,1,2,-2的中位数是()A.-1B.0C.1D.24.下列调查中,适宜采用普查的是()A.了解重庆市空气质量情况B.了解长江水流的污染情况C.了解重庆市居民的环保意识D.了解全班同学每周体育锻炼的时间5.如图是某微信群抢红包的结果,六个群成员抢到的金额分别为0.07,1.42,2.40,0.30,1.57,0.90,这些红包金额的中位数是()A.2.40B.0.30C.1.35D.1.166.一组数据5,7,8,10,12,12,44的众数和中位数分别是()A.44和10B.12和10C.10和12D.12和11 7.某校运动会4100m拉力赛中,甲乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲乙两名同学恰好抽中相邻赛道的概率为()A.116B.14C.12D.388.下列判定正确的是()A是最简二次根式B .方程210x += 不是一元二次方程C .已知甲、乙两组数据的平均数分别是=80x 甲,=90x 乙,方差分别是2=10S 甲,2=5S 乙,则甲组数据的波动较小D 2x 的值为5 9.下列事件中最适合使用普查方式收集数据的是( ) A .了解某品牌LED 灯的使用寿命 B .了解全市每年使用塑料袋的个数 C .了解某远程弹道导弹的飞行距离D .了解八年级(1)班学生的近视情况10.已知一组数据2,6,5,2,4,则这组数据的中位数是( ) A .2B .4C .5D .611.一组数据4,5,7,7,8,6的中位数和众数分别是( ) A .7,7B .7,6.5C .6.5,7D .5.5,712.同时抛掷两枚均匀的硬币,出现两个正面朝上的概率是( )A .15B .14C .13D .1213.某面粉厂准备确定面粉包装袋的规格,市场调查员小李随机选择三家超市进行调查,收集三家超市一周的面粉销售情况,并整理数据、做出如图所示的统计图,则该面粉厂应选择面粉包装袋的规格为( )A .2kg/包B .3kg/包C .4kg/包D .5kg/包14.下列说法正确的是( ) A .不可能事件发生的概率为1 B .随机事件发生的概率为13C .概率很小的事件不可能发生D .掷一枚质地均匀的硬币,正面朝上的概率为1215.下表是苏州10个市(区)今年某日最低气温(℃)的统计结果:则该日最低气温(℃)的中位数是( )A .15.5 B .14.5 C .15D .1616.2015年12月18日易车网报道,作为中国重要的汽车生产基地,重庆到2017年的汽车产量将会突破400万辆,某汽车厂将2015年9月~12月的汽车产量绘制成如图所示的条形统计图,则产量最低的月份的产量頕2015年9月~12月汽车总产量的( )A .19%B .20%C .23%D .28%17.已知一组数据﹣16,π ,123,,则无理数出现的频率是( )A .20%B .40%C .60%D .80%18.期末考试中出现了如下图所示的一道题,小明同学从中任选了两个选项(每一个选项被选中的机会均等),请问小明答对的概率是( )A .16B .12C .14D .11219.某中学数学兴趣小组12名成员的年龄情况如下表:则这个小组成员年龄的平均数、中位数和众数分别是( )A .15,16,14 B .13,15,13C .13,14,14D .14,14,1320.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,则两次摸出的卡片的数字之和等于4的概率( ) A .34B .12C .14D .1二、填空题21.一个样本的数据有1,2,3,3,3,5,5,8,8,9,9那么它的中位数是__________.22.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是_____.23.一个样本数据为1、7、2、5,那么这个样本的极差为_____.24.为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是______________.25.已知一组数据5,8,10,x ,7,9的众数是9,那么这组数据的方差是______. 26.小丽每周每天的睡眠时间如下(单位:h )8,9,7,9,7,8,8,则小丽该周每天的睡眠时间为_____h .27.已知第一组数据:12,14,16,18的方差为21s ;第二组数据:2022,2021,2020,2019的方差为22s ,则21s ,22s 的大小关系是21s ______22s (填“>”,“=”或“<”).28.在一个不透明的袋子里装有红球和白球共30个,这些球除颜色外其余都相同.小明通过多次试验发现,摸出白球的频率稳定在0.3左右,则袋子里可能有 _____个红球.29.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.甲的平均成绩__,乙的平均成绩__,公司将录取__. 30.已知数据1x , 2x ,, n x 的方差是 0.1 ,则 142x - , 242x - ,, 42n x - 的方差为________.31.体育测试前,甲、乙两名男同学进行跳远训练,两人在相同条件下每人跳10次,统计得两人的平均成绩均为2.43米,方差分别为20.03s =甲,20.1s =乙,则成绩比较稳定的是__________(填“甲”或“乙”).32.已知在一样本中,50个数据分别落在5个小组中,第1,2,3,4组数据的个数分别为3,7,13,17,那么第5小组的频率是______33.有一组数据:2,4,4,x ,5,5,6,其众数为4,则这组数据的平均数是________.34.如图,以正方形ABCD 的对角线交点O 为圆心画圆.直线EF 经过圆心O ,且EF℃BC .小明向ʘO 中投掷一个飞镖,则飞镖落在阴影部分的概率为_______.35.记“太阳从东方升起”为事件A ,则P (A )=_____.36.和睦社区一次歌唱比赛共500名选手参加,比赛分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表中的信息,可得比赛分数在80~90分数段的选手有________名.37.某班10位同学将平时积攒的零花钱捐献给贫困地区的失学儿童,每人捐款金额(单位:元)依次为5,6,10,8,12,6,9,7,6,8.这10名同学平均捐款_______元,捐款金额的中位数是______元,众数是______元38.若从1-,0,1三个数中随机选取一个数记为k ,再从2-,0,2个数中随机选取一个数记为b ,则k ,b 的取值使得y kx b =+是一次函数且它的图象不过第二象限的概率是___________.39.有一组数据:(),,,,a b c d e a b c d e <<<<.将这组数据改变为2,,,,2a b c d e -+.设这组数据改变前后的方差分别是2212,s s ,则21s 与22s 的大小关系是______________.三、解答题40.某农科所在相同条件下做某作物种子发芽率的试验,结果如下表所示:一般地,1000kg 种子中大约有多少是不能发芽的?41.如图所示,转盘被等分成六个扇形,并在上面一次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,求: (1)指针指向4的概率; (2)指针指向数字是奇数的概率; (3)指针指向数字不小于5的概率.42.为践行习总书记提出的“绿水青山就是金山银山”生态环境保护重要思想,让绿水青山成为梅州人民幸福的靠山.我市某中学举办了“生态文明知识竞赛",赛后整理参赛学生成绩,将学生成绩分为,,,A B C D 四个等级,并绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图1的条形统计图;(2)在图2扇形统计图中,m 的值为______________,表示“D 等级”的扇形的圆心角为__________度;(3)学校决定从本次竞赛获得A 等级的学生中,选出2名去参加全市知识竞赛,已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.43.为庆祝中国共产党建党100周年,某学校组织全校学生参加青少年党史知识竞赛,老师从全校学生中随机抽取了男、女同学各40名,并将数据进行整理分析,得到了如下信息:℃女生成绩形统计图和男生成绩频数分布直方图如图所示(数据分组为A 组:70x <,B 组:7080x ≤<,C 组:8090x ≤<,D 组:90100x ≤≤)℃女生C 组中全部15名学生的成绩为:86,87,81,83,89,84,85,87,86,89,82,88,89.85.89.℃两组数据的相关统计数据如下表(单位:分)(1)扇形统计图中A组学生对应的圆心角α的度数为______度,认真分析以上数据信息后填空:中位数b=______,众数c=______.(2)通过以上的数据分析你认为______(填“女生”或“男生”)知识竞赛成绩更好,并说明理由.(3)若成绩在90分(包含90分)以上为优秀,请你估计我校2400名学生此次知识竞赛中优秀的人数.44.某学校开展了主题为“我帮父母做家务”的实践活动,倡导学生心怀感恩、孝敬父母,在家多帮父母做家务.校学生会在七、八、九三个年级随机抽取了部分学生,就“平均每天帮父母做家务所用时长”进行了调查,过程如下:【收集数据】做家务所用时长t(分钟)级别:A:010t≥;t≤<;E:40 t≤<;B:1020t≤<;D:3040t≤<;C:2030通过调查得到的一组数据:D C C A D A B A D BB E D D E D BC C EE C B D E E D D E DB BC CD CE D D AB D DCD DE D C E【整理数据】抽样调查50名学生帮父母做家务所用时长人数统计表【描述数据】(1)补全条形统计图;(2)图2是根据该校初中各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,若该校七年级共有400名学生,请你估计全校学生中帮父母做家务所用时长不低于半小时(包含半小时)人数约为多少?(3)根据本次实践活动主题,假如你是学生会中的一员,请你给全校同学发出一条倡议.45.在一个不透明的口袋里装有颜色不同的黄、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复..下表是活动中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)(2)试估算口袋中白种颜色的球有多少只?(3)请你设计一个增(减)袋中白球或黄球球个数的方案,使得从袋中摸出一个球,这只球是黄球的概率大于是白球的概率.46.2014年阜宁县中小学积极开展体艺“2+1”活动,某校学生会准备调查八年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数:(1)确定调查方式时,甲同学说:“我到八年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到八年级每个班随机调查一定数量的同学”.请你指出哪位同学的调查方式最合理;(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:℃填空;a= ,b= , c= ,℃在扇形统计图中器乐类所对应扇形的圆心角的度数是;℃若该校八年级有学生560人,请你估计大约有多少学生参加武术类校本课程. 47.为了解九年级学生“居家学习”的自主学习能力,某校随机抽取该年级部分学生,对他们的自主学习能力进行了测评统计,(其中自主学习能力指数级别“1”级,代表自主学习能力很强;“2”级,代表自主学习能力较强;“3”级,代表自主学习能力一般;“4”级,代表自主学习能力较弱)请结合图中相关数据回答问题.(1)本次抽查的学生人数______人,并将条形统计图补充完整.(2)本次抽查学生“居家学习”自主学习能力指数级别的众数为______,中位数为______级.(3)根据上述统计结果,估计该校九年级850名学生自主学习能力较强及以上的学生有多少名?48.某中学利用班会课对全校学生进行了一次防疫知识测试活动,现从初二、初三两个年级各随机抽取了15名学生的测试成绩,得分用x表示(采取百分制,x为整数),共分成4组:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100,对得分进行整理分析,给出了下面部分信息:初二的测试成绩在C组中的数据为:80,86,88.初三的测试成绩:76,83,100,88,81,100,82,71,95,90,100,93,89,86,86.(1)a=,b=;(2)通过以上数据分析,你认为哪个年级学生对防疫知识的掌握更好?请写出一条理由;(3)若初二、初三共有3000名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?49.一名战士射击10次,每次命中的环数如下:8,6,7,8,9,10,6,5,4,7,计算这组数据的平均数和方差.参考答案:1.B【分析】根据众数的定义求解即可.【详解】解:26出现了2次,出现的次数最多,故这组数据的众数是26,故选:B.【点睛】本题主要考查众数的定义,熟练地掌握众数的定义是解决问题的关键,题目较简单.2.C【详解】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数.本题的8个数据已经按照从小到大的顺序排列了,其中间的两个数是48和49,它们的平均数是48.5.因此中位数是48.5.故选C.3.B【分析】根据中位数的定义求解即可.【详解】解:数据-2,1,0,1,2的中位数是0.故选:B.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.了解重庆市的空气质量情况,适合采用抽样调查,故此选项错误;B.了解长江水流的污染情况,适合采用抽样调查,故此选项错误;C.了解重庆市居民的环保意识,人数众多,适合采用抽样调查,故此选项错误;D.了解全班同学每周体育锻炼的时间,范围小,适宜普查,正确;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.D【分析】根据中位数的定义求解即可.【详解】解:将6个数据按从小到大的顺序排列如下,0.07,0.30,0.90,1.42,1.57,2.40,最中间两个数为0.90,1.42,℃中位数为0901421162...+=,故选:D.【点睛】本题主要考查的是中位数的定义,注意找中位数的时候一定要先排好顺序,如果数据有奇数个则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.B【分析】根据众数和中位数的定义进行求解即可得.【详解】解:这一组数据中12出现了两次,是出现次数最多的,故众数是12,这组数据一共7个数,从小到大排列后第4个数据是中位数,观察可知中位数是10,故选:B.【点睛】本题考查了中位数和众数,熟练掌握“众数是指一组数据中出现次数最多的数”、“中位数是指将一组数据从小到大排列后,处于中间的数(如果是奇数个数据,则是最中间的那个,如果有偶数个数据,则是中间两个的平均数)”是解题的关键.7.C【分析】根据题意,画出树状图,然后根据概率公式计算即可.【详解】解:画树状图如下由图可知:共有12种等可能的结果,其中甲乙两名同学恰好抽中相邻赛道的结果共有6种℃甲乙两名同学恰好抽中相邻赛道的概率为6÷12=12故选C.【点睛】此题考查的是求概率问题,掌握画树状图和概率公式是解决此题的关键.8.D【分析】根据最简二次根式、一元二次方程、方差和二次根式有意义的条件判断即可.【详解】A. ;B. 方程210x+=是一元二次方程;C. 乙组方差小,所以乙组数据的波动较小;D. 由题意可得:2x-5≥0,5-2x≥0,解得:55x22≤≤,所以5x2=,则原式=5.故选D.【点睛】本题考查了最简二次根式、一元二次方程的定义、方差和二次根式有意义的条件,其中最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.9.D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析可知.【详解】A. 了解某品牌LED灯的使用寿命,调查具有破坏性,适合抽样调查,故A不符合题意;B. 了解全市每年使用塑料袋的个数,调查范围广,费时费力,适合抽样调查,故B不符合题意;C. 了解某远程弹道导弹的飞行距离,,调查具有破坏性,适合抽样调查,故C不符合题意;D. 了解八年级(1)班学生的近视情况,人员不多,适合普查,故D符合题意.故选D.【点睛】本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.10.B【分析】将一组数据从小到大排列,处于最中间的数字就是中位数,本题有5个数字,则排在第三个的就是中位数.【详解】把数据从小到大排列为:2,2,4,5,6,中间的数是4,℃中位数是4,故选:B.【点睛】本题考查中位数的定义,将一组数据按从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数是中位数,如果数据的个数是偶数,则处于中间两个数据的平均数是中位数.11.C【分析】根据中位数与众数的概念和求解方法进行求解即可.【详解】将数据从小到大排列:4、5、6、7、7、8,所以中位数为672=6.5,众数是7,故选C.【点睛】本题考查了中位数和众数,熟练掌握相关定义以及求解方法是解题的关键.℃给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.℃给定一组数据,出现次数最多的那个数,称为这组数据的众数.12.B【分析】把所有可能出现的情况列举出来,将需要的结果数出来,代入概率公式计算即可.【详解】同时抛掷两枚均匀的硬币,正面朝上记为“正”,背面朝上记为“背”,则可能出现的情况有(正,背),(正,正),(背,正),(背,背)共4种情况,其中出现两个正面朝上的情况有(正,正)共1种,故出现两个正面朝上的概率为14.故选B.【点睛】本题考查了列举法求概率,熟悉列举法的步骤是解决本题的关键.13.A【分析】最合适的包装即顾客购买最多的包装,而顾客购买最多的包装质量即这组数据的众数,取所得范围的组中值即可.【详解】解:由图知这组数据的众数为1.5kg~2.5kg,取其组中值2kg,故选:A.【点睛】本题主要考查频数(率)分布直方图,解题的关键是根据最合适的包装即顾客购买最多的包装,并根据频数分布直方图得出具体的数据及众数的概念.14.D【详解】A. 不可能事件发生的概率为0,故错误;B. 随机事件发生的概率介于0和1之间,不一定是13,故错误;C. 概率很小的事件不是不可能发生,而是发生的机会较小,故错误;D. 抛一枚质地均匀的硬币,正面朝上和反面朝上的可能性相等,都是12,故正确.故选D.15.A【分析】根据中位数的概念求解即可.【详解】把这组数据按照从小到大的顺序排列14,14,15,15,15,16,16,16,16,17,位于中间位置的两个数的平均数为(15+16) 2=15.5,故中位数为15.5.故选A.【点睛】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.B【详解】如图可知,产量最低的月份为2015年12月份,产量为1500辆,2015年9月~12月汽车总产量为:2100+ 1700 + 2200 + 1500=7500辆,1500÷7500=20%,故选B.17.B【分析】由于开方开不尽的数、无限不循环小数是无理数,根据频率、频数的关系即可判断选择项.【详解】在题目所给的5个数据中,π,2个,所以无理数出现的频率是25=40%,故选:B.【点睛】本题主要考查了无理数的定义及频率、频数灵活运用,其中频率、频数的关系为:频率等于频数与数据总和之比.18.A【分析】画树状图,共有12个等可能的结果,选择C、D和D、C的结果有2个,再由概率公式求解即可.【详解】解:画树状图如图:共有12个等可能的结果,小明答对的情况只有C 、D 和D 、C 这两种情况,℃小明答对的概率是21126= , 故选:A .【点睛】本题考查了列表法、树状图法求概率,画出树状图得出所有可能出现的结果情况是正确解答的关键.19.D 【详解】试题分析:根据平均数的意义,可知其平均数为:121+134+143+15?2+16?2=1412⨯⨯⨯;根据中位数的概念,从小到大排列,然后取中间的一个或两个的平均数,可知其中位数为14,而众数是出现次数最多的数,因此众数是13. 故选D20.C【分析】列表得出所有等可能的情况数,找出两次摸出的卡片的数字之和等于4的情况,即可求出所求的概率.【详解】列表得:所有等可能的情况有8种,其中两次摸出的卡片的数字之和等于4的情况有2种,则P =28=14, 故选C .【点睛】此题考查了列表法或树状图法求事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.21.5【分析】根据中位数的定义回答即可.【详解】解:数据1,2,3,3,3,5,5,8,8,9,9中,中位数为5,故答案为:5.【点睛】本题考查了中位数的定义,解题的关键是学会根据定义找出一组数据的中位数.22.1 6【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出场顺序恰好是甲、乙、丙的情况,再利用概率公式求解即可求得答案.【详解】解:画出树状图得:℃共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,℃出场顺序恰好是甲、乙、丙的概率为16,故答案为:16.【点睛】本题考查了树状图法求概率问题,关键是根据题意正确画出树状图进而求解. 23.6【分析】根据极差是指一组数据中最大数据与最小数据的差可得答案.【详解】解:这个样本的极差为7﹣1=6,故答案为:6.【点睛】本题主要考查了极差,关键是掌握极差=最大值−最小值.24.500【分析】根据样本容量的定义可得答案,样本容量:一个样本包括的个体数量叫做样本容量.【详解】解:为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是500.故答案为:500.【点睛】此题主要考查了样本容量,关键是注意样本容量只是个数字,没有单位.25.83##223【分析】先根据众数求出x ,再求这组数据的平均数,最后求出方差即可.【详解】解:℃一组数据5,8,10,x ,7,9的众数是9,℃9x =,则这组数据为:5,8,10,9,7,9, 平均数是1(5810979)86+++++=, 这组数据的方差是()()()()()()22222218588810898789863⎡⎤-+-+-+-+-+-=⎣⎦, 故答案为:83【点睛】此题考查了众数、平均数和方差,熟练掌握方差的求法是解题的关键. 26.8【分析】利用平均数的定义列式求解即可. 【详解】解:小丽每周的睡眠时间为897978887++++++= 故答案为:8.【点睛】本题考查求平均数,掌握平均数的定义是解题的关键.27.>【分析】利用方差代表的意义判断即可.【详解】解:由题意可知:℃第一组数据是间隔为2的偶数,第二组数据是间隔为1的数,℃第一组数据波动比较大,℃2212s s >,故答案为:>.【点睛】本题考查方差的意义,关键是理解方差代表的意义:方差代表一组数据在其平均数附近的波动情况,波动越大,方差越大.28.21【分析】根据大量反复试验下频率的稳定值即为概率,即可用球的总数乘以白球的频率,可求得白球数量,从而得到红球的熟练.【详解】解:℃小明通过多次试验发现,摸出白球的频率稳定在0.3左右,℃白球的个数=30×0.3=9个,℃红球的个数=30-9=21个,故答案为:21.【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.29.87分86分甲【分析】根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.【详解】解:甲的平均成绩为:(85×6+90×4)÷10=87(分),乙的平均成绩为:(90×6+80×4)÷10=86(分),因为甲的平均分数最高,所以甲将被录取.故答案为:87分,86分,甲.【点睛】本题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.30.1.6【详解】0.1×42=1.6.【点睛】当把一组数据每个数都加上或减去同一个数时,方差不变;当把一组数据每个数都乘以或除以同一个数时,方差变为这个数的平方倍.31.甲【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】℃甲的方差为0.03,乙的方差为0.1,0.03<0.1,℃成绩较为稳定的是甲.故答案为甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.32.0.2【分析】总数减去其它四组的数据就是第5组的频数,再除以50可得频率.。
新高考数学二轮总复习第三部分专题六.3统计与概率小题专项练课件
C 15 C 110
取法,所求概率为 2
C 15
=
50
105
=
10
.
21
4.(2021江西萍乡高三检测,8)算盘是中国传统的计算工具,其形长方,周为
木框,内贯直柱,俗称“档〞,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每
珠作数一.算珠梁上局部叫上珠,梁下局部叫下珠.例如:在十位档拨上一颗
=
4
4
P(B|A2)= ,P(B|A3)= ,而
11
11
1
3
,P(A3)= ;P(B|A1)=
5
10
=
5
,由此知选项
11
B 正确.
P(B)=P(A1B)+P(A2B)+P(A3B)
1
=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=2
此知选项 AC 不正确.
1 5
×
2 11
1
2
×
5
11
1
+5
×
4
11
+
3
10
×
4
11
=
9
.由
22
考向四
相互独立事件及二项分布
10.(2021天津,13)甲、乙两球落入盒子的概率分别为
落入盒子互不影响,那么甲、乙两球都落入盒子的概率为
乙两球至少有一个落入盒子的概率为
答案
1
6
1 1
.假定两球是否
和
2 3
;甲、
.
2
3
解析 两球都落入
1
p1=2
1
2 2
中考数学统计与概率专题知识易错题50题含答案
中考数学统计与概率专题知识易错题50题含答案一、单选题1.下列事件中,不可能发生的事件是()A.明天气温为30C︒B.学校新调进一位女教师C.大伟身长丈八D.打开电视机,就看到广告2.数据1,2,3,4,5,3-的平均数是()A.0B.2C.3D.2.53.下列事件中,是必然事件的是()A.如果a2=b2,那么a=bB.将一滴花生油滴入水中,油会浮在水面上C.车辆随机到达一个路口,遇到红灯D.掷一枚质地均匀的硬币,一定正面向上4.如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A.中位数是9B.众数是9C.平均数是10D.方差是3 5.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数分布直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~12小时之间的学生数大约是()A.280B.100C.380D.2606.一个布袋中装有7个红球,2个黑球和1个白球,它们除颜色外都相同.从中任意摸出一个球,被摸到的可能性最大的球是()A.红球B.黑球C.白球D.黄球7.一个不透明的口袋里有10个黑球和若干个红球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共实验600次,其中360次摸到红球,由此估计袋中的红球有()个A.15B.9C.10D.208.对于数据:80,88,85,85,83,83,84.下列说法中错误的有()①这组数据的平均数是84;①这组数据的众数是85;①这组数据的中位数是84;①这组数据的方差是36.A.1 个B.2 个C.3 个D.4 个9.下列事件中属于随机事件的是()A.13名同学中,至少有两名同学出生月份相同B.任意一个实数的绝对值小于0a b b a D.经过有交通信号的路口,遇到红灯C.a,b是实数,+=+10.技术员小张为考察某种小麦长势整齐的情况,从中抽取了20株麦苗,并分别测量了苗高,则小张最需要知道这些麦苗高的()A.平均数B.方差C.中位数D.众数11.如表记录了甲、乙、丙、丁四名学生近10次英语词汇成绩的数据信息,要选择一名成绩好又发挥稳定的学生参加年级英语词汇比赛,应该选择的是()A.甲B.乙C.丙D.丁12.下列事件是必然事件的是()A.某种彩票中奖率是1%,则买这种彩票100张一定会中奖B.一组数据1,2,4,5的平均数是4C.三角形的内角和等于180°D.若a是实数,则|a|>013.一组数据﹣2、1、1、0、2、1.这组数据的众数和中位数分别是()A.﹣2、0B.1、0C.1、1D.2、114.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是()A.87,87B.87,85C.83,87D.83,85 15.一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,则他合格的概率为()A.710B.12C.25D.1516.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1B.67C.12D.017.从编号为1~10的10个完全相同的球中,任取一球,其号码能被3整除的概率是()A.110B.115C.310D.2518.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.6519.下列事件中是不可能事件的是()A.任意画一个四边形,它的内角和是360°B.若a b=,则22a b=C.一只不透明的袋子共装有3个小球,它们的标号分别为1、2、3,从中摸出一个小球,标号是“5”D.掷一枚质地均匀的硬币,落地时正面朝上20.已知A样本的数据如下:67,68,68,71,66,64,64,72,B样本的数据恰好是A样本数据每个都加6,则A、B两个样本的下列统计量对应相同的是()A.平均数B.方差C.中位数D.众数二、填空题21.在一次体检中,某班学生视力检查结果如表:从表中看出全班视力的众数是___.22.端午假期鼓浪屿商场为了吸引顾客,举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会,不透明的盒子中装有红、黄色的小球共20个,除颜色外无其他差别,随机摸出一个小球,如果摸到红色小球则有机会以优惠价28.88元购买“冰墩墩”一个.如图显示了活动第一天开展上述摸球活动的获奖的结果.李老师在活动第二天去购物,刚好消费了100元,推测李老师能以优惠价购买“冰墩墩”的概率为___.23.如图,用两个可以自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配出紫色,那么可配成紫色的概率是___.24.甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如下表,则这四人中水平发挥最稳定的是________.25.如图,是用黑白打印机在纸张上打印的边长为20cm的正方形“易加学院”微课二维码.为了估计图中黑色部分的总面积,在该二维码内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.75左右,据此可以估计黑色部分的总面积约为_________2cm.26.一个袋中装有2个黄球和2个红球,任意摸出一个球后放回,再任意摸出一个球,则两次都找到红球的概率为__________.27.把分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,字面朝下随意放置在桌面上,从中任意摸出一张卡片数字是素数的概率是_____.28.下面是某市2013~2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是_________年,私人汽车拥有量年增长率最大的是_________年.29.在一只不透明的口袋中放入红球5个,黑球1个,黄球n个.这些球除颜色不同外,其它无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n=___.30.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是_______;________.31.现将某校七年一班女生按照身高共分成三组,下表是这个班级女生的身高分组情况统计表,则在统计表中b的值是______.32.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是108°.宇宙中一块陨石落在地球上,落在陆地的概率是___33.抽样时要注意样本的______性和______性.34.掷一枚均匀的硬币,前两次抛掷的结果都是正面朝上,那么第三次抛掷的结果正面朝上的概率为________35.一套书有上、中、下三册,将它们任意摆放到书架的同一层上,这三册书从左向右恰好成上、中、下顺序的概率为__ __.36.如图,Rt△ABC是一块草坪,其中①C=90°,AC=9m,AB=15m,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟随机落在这块草坪上,则小鸟落在阴影部分的概率为________.37.新冠肺炎在我国得到有效控制后,各校相继开学.为了检测学生在家学习情况,在开学初,我校进行了一次数学测试,如图是某班数学成绩的频数分布直方图,则由图可知,得分在70分以上(包括70分)的人数占总人数的百分比为__________.38.若随机掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6点,则点数不小于3的概率是______.39.甲,乙两名跳高运动员近期20次的跳高成绩统计分析如下:x甲=1.70m,x乙=1.70m,s甲2=0.007,s乙2=0.003,则两名运动员中,_____的成绩更稳定.40.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________三、解答题41.如表是我国运动员在最近六届奥运会上所获奖牌总数情况:数学小组分析了上面的数据,得出这六届奥运会我国奖牌总数的平均数、中位数如表所示:(1)上表中的中位数m的值为;(2)经过数学小组的讨论,认为由于第29届奥运会在我国北京召开,我国运动员的成绩超常,所以其数据应记为极端数据,在计算平均数时应该去掉,于是计算了另外五属奥运会上我国奖总数的平均数,这个平均数应该是(3)根据上面提供的信息,预估我国运动员在2020年举行的第32届奥运会上将获得多少枚奖牌,并写出你的预估理由42.小丽在家备战体育中考,增强自身免疫力抗击疫情,每天晚上进行5组1分钟跳绳训练,10天成绩如下图.(1)扇形统计图中a=.(2)补全条形统计图.(3)小丽的跳远成绩是跳绳平均成绩的90%,小丽的跳远成绩是多少分?(精确到个位)43.某单位欲招聘一名员工,现有A,B,C三人竞聘该职位,他们的笔试成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表一和图一.(1).请将表一和图一中的空缺部分补充完整;(2).竞聘的最后一个程序是由该单位的300名职工进行投票,三位竞聘者的得票情况如图二(没有弃权票,每名职工只能推荐一个),请计算每人的得票数;(3).若每票计1分,该单位将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位竞聘者的最后成绩,并根据成绩判断谁能竞聘成功.44.某校260名学生参加植树活动,要求每人植树4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数和中位数;(3)求这20名学生每人植树量的平均数,并估计这260名学生共植树多少棵?45.(1) 请你调查自己家一周内每天消耗粮食的数量.(2) 统计本班学生这一周内消耗粮食的总数,并用科学记数法表示.(3) 根据你收集的数据,估计全校学生的家庭,一周内消耗粮食的总数并用科学记数法表示.46.某数学研究小组为了解各类危险天气对航空飞行安全的影响,从国际航空飞行安全网提供的近百年飞行事故报告中,选取了650起与危险天气相关的个例,研究小组将危险天气细分为9类:火山灰云(A),强降水(B),飞机积冰(C),闪电(D),低能见度(E),沙尘暴(F),雷暴(G),湍流(H),风切变(I),然后对数据进行了收集、整理、描述和分析,相关信息如下:信息一:各类危险天气导致飞行事故的数量统计图;信息二:C类与E类危险天气导致飞行事故的月频数统计图;(以上数据来源于国际航空飞行安全网)根据以上信息,解决下列问题:(1)导致重大飞行事故发生数量最多的危险天气类别是______类;(填写字母)(2)从C类与E类危险天气导致飞行事故的月频数统计图来看,______类危险天气导致飞行事故发生次数的波动性小;(填“C”或“E”)(3)根据以上信息,下列结论正确的是______.(只填序号)①C类危险天气导致飞行事故的概率最高;①每年1—4月份C类危险天气比E类危险天气导致飞行事故发生的次数要多;①每年的12月至次年的1月是C类危险天气导致飞行事故发生的多发时期.47.某校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的可能性大还是选中两名女生的可能性大?48.由于“新冠疫情”,小红响应国家号召,减少不必要的外出,打算选择一家快餐店订外卖.他借助网络评价,选择了A、B、C三家快餐店,对每家快餐店随机选择1000条网络评价统计如表:(1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.请你为小红从A、B、C中推荐一家快餐店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.49.某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1 000m及女生800m测试成绩整理、绘制成如下不完整的统计图(图①、图①),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有________人,女生有________人;(2)扇形统计图中a=________,b=________;(3)补全条形统计图(不必写出计算过程).50.一个角的顶点在圆外,两边都与该圆相交,则称这个角是它所夹的较大的弧所对的圆外角.(1)证明:一条弧所对的圆周角大于它所对的圆外角;(2)应用(1)的结论,解决下面的问题:某市博物馆近日展出当地出土的珍贵文物,该市小学生合唱队计划组织120名队员前去参观,队员身高的频数分布直方图如图1所示.该文物PQ高度为96cm,放置文物的展台QO高度为168cm,如图2所示.为了让参观的队员站在最理想的观看位置,需要使其观看该文物的视角最大(视),则分隔参观者角:文物最高点P、文物最低点Q、参观者的眼睛A所形成的PAQ与展台的围栏应放在距离展台多远的地方?请说明理由.(说明:①参观者眼睛A与地面的距离近似于身高;①通常围栏的摆放位置需考虑参观者的平均身高)参考答案:1.C【分析】不可能事件是指在一定条件下,一定不发生的事件,根据概念即可解决问题.【详解】A、B、D选项都是可能发生也可能不发生的事件,是随机事件;C、大伟身长丈八是一定不发生的事件,是不可能事件.故选:C.【点睛】本题考查了不可能事件的概念,理解掌握相关的概念是解题的关键.2.B【分析】根据题目中的数据,可以计算出这组数据的平均数,本题得以解决.【详解】解:() 12345326+++++-=,故选:B.【点睛】本题考查算术平均数,解答本题的关键是明确算术平均数的计算方法.3.B【分析】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】解:A、如果a2=b2,那么a=b或a=-b,故该选项不是必然事件,该选项不符合题意;B、将一滴花生油滴入水中,油会浮在水面上,故该选项是必然事件,该选项符合题意;C、车辆随机到达一个路口,可能遇到红灯,故该选项不是必然事件,该选项不符合题意;D、掷一枚质地均匀的硬币,不一定正面向上,故该选项不是必然事件,该选项不符合题意.故选:B.【点睛】本题考查了必然事件,熟练掌握必然事件的定义是解题的关键.4.A【分析】根据给出的折线统计图确定他在一周内每天跑步圈数的数据分别为多少,再根据各选项要求的数据进行求解即可.【详解】解:由题目中折线统计图可知,每天跑步圈数数据分别为7、10、9、9、10、8、10,A、将数据按照从小到大排列,依次为7、8、9、9、10、10、10,中位数应为9,故A正确;B 、该组数据中10出现的次数最多,为3次,所以众数为10,故B 错误;C 、平均数应为710991081097++++++=,故C 错误; D 、由C 可知平均数为9,方差应为222222218(79)(109)(99)(99)(109)(89)(109)77⎡⎤-+-+-+-+-+-+-=⎣⎦,故D 错误, 故选:A .【点睛】本题主要考查众数、中位数、平均数、方差的求法,结合了折线统计图的应用,重点在于熟练掌握各类数据定义进而求出数值.5.C【分析】根据条形统计图中的数据可以计算出统计图中8~12小时的学生数,从而可以估计该校五一期间参加社团活动时间在8~12小时的学生数.【详解】解:由题意可得,条形统计图中,参加社团活动时间8~12小时的学生有:100−8−24−30=38(名),则该校五一期间参加社团活动时间在8~12小时之间的学生数大约是:1000×38100=380(名),故选:C .【点睛】本题考查频数分布直方图、用样本估计总体,解答本题的关键是明确题意,根据样本的频数估计总体的频数.6.A【分析】根据布袋哪个颜色的球最多即可判断.【详解】解:∵红球最多,∴被摸到的可能性最大.故选:A .【点睛】本题考查了概率,解决本题的关键是灵活运用所学知识解决问题.7.A【分析】先求出摸到红球的频率,用频率估计概率,再用频率公式,列出方程,即可求解.【详解】由题意得:P (摸到红球)≈360÷600=0.6,设红球的个数为x 个,则0.610x x=+,解得:x=15, 答:估计袋中的红球有15个.故选A .【点睛】本题主要考查用频率估计概率以及概率公式,根据概率公式,列出方程是解题的关键.8.B【详解】由平均数公式可得这组数据的平均数为84;在这组数据中83出现了2次,85出现了2次,其他数据均出现了1次,所以众数是83和85;将这组数据从小到大排列为:80、83、83、84、85、85、88,可得其中位数是84; 其方差为367, 故选B .9.D【分析】随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件),据此判断即可.【详解】解:A 、13名同学中,至少有两名同学出生月份相同,为必然事件,不符合题意;B 、任意一个实数的绝对值小于0为不可能事件,不符合题意;C 、a ,b 是实数,+=+a b b a ,根据加法交换律可知为必然事件,不符合题意;D 、经过有交通信号的路口,遇到红灯是随机事件,符合题意;故选:D .【点睛】本题考查了随机事件的定义,熟知定义是解题的关键.10.B【详解】试题分析:根据平均数、方差、中位数及众数的定义求解.解:①为考察某种小麦长势整齐的情况,①应该需要知道这些麦苗的方差,故选B .点评:本题考查了统计量的选择及平均数、方差、中位数及众数的定义,方差能反映一组数据的稳定情况,方差越大,越不稳定.11.C【分析】成绩好,需要考查平均分;发挥稳定,需要考查方差.【详解】①乙和丙的平均数最高,乙和丙的方差分别为8.5和1.5①丙的成绩好又发挥稳定.故答案为:C.【点睛】本题考查平均数和方差,需要注意,方差越小,则这组数据越稳定,理解方差衡量数据的稳定性时,方差越小,越稳定是解题的关键.12.C【分析】先判断各个选项事件的可能性,再根据必然事件的概念进行判断即可.【详解】A.某种彩票中奖率是1%,则买这种彩票100张一定会中奖为随机事件,不符合题意;B.一组数据1,2,4,5的平均数是124534+++=,故平均数是4是不可能事件,不符合题意;C.三角形的内角和等于180°为必然事件,符合题意;D.若a是实数,则0a≥,故|a|>0为随机事件,不符合题意.故选:C.【点睛】本题考查了必然事件、不可能事件及随机事件,必然事件是一定会发生的事件,即发生的概率是1的事件;不可能事件是一定不会发生的事件,即发生的概率为0;随机事件发生的概率在0和1之间.13.C【分析】根据的中位数和众数的概念进行分析即可.【详解】这组数据1出现的次数最多,所以这组数据的众数为1,从小到大排列:﹣2,0,1,1,1,2,处在最中间的两个数的平均数为1,所以这组数据的中位数是1,故选C.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.A【分析】首先对这组数据进行排序,根据中位数和众数的定义回答即可.【详解】①这组数据排序后为83,83,87,87,87,90,①这组数据的众数是87,这组数据的中位数是87872=87.故选A.【点睛】本题考查了中位数和众数的定义.注意找中位数的时候一定要先排好顺序,然后再根据数据个数确定中位数:如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.15.A【分析】列举出所有情况,看合格的情况数占所有情况数的多少即可.【详解】共有20种情况,合格的情况数有14种,所以概率为7 10.故选A.【点睛】考查用列树状图的方法解决概率问题;得到合格的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.16.C【分析】根据大量重复试验事件发生的频率接近事件发生的可能性的大小(概率),时间确定了则概率是不变的,而频率是改变的,根据此特点可得答案.【详解】解:掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是1 2 .故选C.【点睛】本题考查概率,大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).17.C【分析】根据数的整除性得出连续自然数每10个有三个能整除3,即可得出卡片号能被3整除的概率.【详解】解:①10张已编号的球(编号为连续的自然数)有三个能整除3,为3,6,9,①号码能被3整除的概率为3 10.【点睛】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.18.C【分析】根据平均数,中位数,众数的定义求解即可.【详解】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.654 1.633 1.71⨯-⨯=米,正确;D.四位同学身高的众数一定是1.65,错误.故选C.【点睛】本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键.19.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、任意画一个四边形,它的内角和是360°是必然事件,故A不符合题意;B、若a=b,则a2=b2是必然事件,故B不符合题意;C、一只不透明的袋子共装有3个小球,它们的标号分别为1、2、3,从中摸出一个小球,标号是“5”是不可能事件,故C符合题意;D、掷一枚质地均匀的硬币,落地时正面朝上是随机事件,故D不符合题意;故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.20.B【分析】根据样本A,B中数据之间的关系,结合众数,平均数,中位数和方差的定义即可得到结论.【详解】设样本A中的数据为xi,则样本B中的数据为yi=xi+6,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差6,只有方差没有发生变化.故选B.【点睛】本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的21.4.9【分析】根据众数的定义可知出现次数最多的数据是众数,然后根据表格中的数据,可知4.9所占的百分比最大,即4.9就是这组数据的众数.【详解】解:由表格中的数据可得,视力4.9的学生所占的百分比最大,故全班视力情况的众数是4.9,故答案为:4.9.【点睛】本题考查了众数,解答本题的关键是明确众数的定义,会求一组数据的众数.众数是一组数据中出现次数最多的数据,注意众数可以不只一个.22.0.35【分析】根据概率的定义推测即可得出答案.【详解】解:随着摸球次数的增加,摸到红球的频率总是在0.35的附近摆动,显示出一定的稳定性,可以推测摸到红球的概率即是老师能以优惠价购买“冰墩墩”的概率为0.35,故答案为0.35.【点睛】本题主要考查了概率的定义,在做重复试验时,当试验次数很大时,事件A的频率总是会在一个常数的附近摆动,这就是频率的稳定性,我们用这个常数表示事件A发生的可能性大小,我们把刻画事件A发生可能性大小的数值成为事件A的概率,掌握概率的概念是解题的关键.23.1 3【分析】用列表法表示所有可能出现的结果情况,从中找出能配成紫色的情况,即可求出配紫的概率.【详解】解:用列表法表示所有可能出现的结果情况如下:共有6种等可能出现的结果,其中能配成紫色的有2种,所以,能配成紫色的概率为21=63,故答案为:13.。
2021年河北省中考数学二轮复习统计与概率特训
统计与概率特训 题型1 概率算法1.在一个不透明的袋子里装有6个白色乒乓球和若干个红色乒乓球,这些球除颜色外其余均相同,搅拌均匀后,从这个袋子里随机摸出一个乒乓球,是红球的概率为13.(1)求该袋内红球的个数;(2)小明取出3个白色乒乓球分别标上1,2,3三个数字,装入另一个不透明的袋子里搅拌均匀,第一次从袋里摸出一个球并记录下该球上的数字,重新放回袋中搅拌均匀,第二次从袋里摸出一个球并记录下该球上的数字,求这两个数字之积是3的倍数的概率.(用画树状图或列表的方法求解)2.(2020·保定定兴县一模)一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上都各标一个不小于-2的数,已知其中3个乒乓球上标的数分别是-2,2,4,所标的4个数的中位数是0.(1)求这4个数的众数;(2)从这个口袋中随机摸出1个球,求摸出的球面上的数是正数的概率;(3)从这个口袋中随机摸出1个球(不放回),再从余下的球中随机摸出1个球,用列表法求两次摸出的球面上的数之和为负数的概率.3.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率;(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大.”小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用画树状图或列表的方法求出两枚骰子朝上的点数之和为3的倍数的概率.4.为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是________;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用画树状图或列表的方法求小丽回答正确的概率.水 重 富 山 疑 路 无复穷九宫格5.如图,放在直角坐标系中的正方形ABCD 的边长为4.现做如下实验:转盘被划分成4个相同的小扇形,并分别标上数字1,2,3,4,分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中点M 的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,则重新转动转盘.(1)请你用画树状图或列表的方法,求点M 落在正方形ABCD 面上(含内部与边界)的概率;(2)将正方形ABCD 平移整数个单位,则是否存在某种平移,使点M 落在正方形ABCD 面上的概率为34 ?若存在,指出一种具体的平移过程;若不存在,请说明理由.题型2 数据分析1.(2020·遵化市一模)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.2.(2020·河北模拟)期末考试结束后,数学老师对本班的数学成绩进行了统计.根据图中信息回答下列问题.(1)该班级的人数为,D等级的学生有人.根据数据补全统计图;(2)若规定80分以上为及格,求该班级的及格率;(3)若在各个分数段的人数这一组数据上,再添加一个数据a(a为正整数),该组数据的中位数没有改变,请直接写出a的值.3.(2020·邯郸复兴区二模)A,B两所学校的学生都参加了某次体育测试,成绩均为7~10分,且为整数.亮亮分别从这两所学校各随机抽取一部分学生的测试成绩,共200份,并绘制了如下尚不完整的统计图.(1)这200份测试成绩的中位数是分,m=;(2)补全条形统计图;扇形统计图中,求成绩为10分所在扇形的圆心角的度数;(3)亮亮算出了“1名A校学生的成绩被抽到”的概率是111,请你估计A校成绩为8分的学生有多少名.4.(2020·邢台沙河市模拟)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有________人;(2)表中m的值为________;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.5.(2020·河北中考样题)某数学老师将本班学生的身高数据(精确到1 cm)交给甲、乙两同学,要求他们各自独立地绘制一幅频数分布直方图,甲绘制如图1所示,乙绘制如图2所示.经确认,甲绘制的图是正确的,乙在整理数据与绘图的过程中均有个别错误.请回答下列问题: (1)该班学生有多少人?(2)某同学身高为165 cm ,他说:“我们班上比我高的人不超过14 ”,他的说法正确吗?(3)写出乙同学在整理或绘图过程中的错误(写出一个即可); (4)设该班学生的身高数据的中位数为a ,试写出a 的值.6.疫情期间,某校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取七年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B ,E 两组发言人数的比为5∶2,请结合图中相关数据回答下列问题:F(1)E 组人数为________人;(2)被调查的学生人数为________人,A 组人数为________人,并补全频数分布直方图; (3)求出扇形统计图中,“B ”所对应的圆心角的度数;(4)七年级共有学生1 500人,请估计全年级在这天里发言次数不少于12次的人数.题型3 统计与概率综合1.(2020·石家庄市模拟)文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知P (一次拿到7元本)=23.(1)求这6个本价格的众数;(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法求嘉嘉两次都拿到7元本的概率.2.(2020·唐山市二模)某销售公司年终进行业绩考核,人事部门把考核结果按照A ,B ,C ,D 四个等级,绘制成两个不完整的统计图,如图1、图2所示.(1)参加考试的人数是________人,扇形统计图中D 部分所对应的圆心角的度数是________,请把条形统计图补充完整;(2)若公司领导计划从考核人员中选一人交流考核意见,求所选人员考核为A 等级的概率;(3)为推动公司进一步发展,公司决定计划两年内考核A 等级的人数达到30人,求平均每年的增长率.(精确到0.01,5 ≈2.236)3.(2020·衡水市模拟)某次数学测验中,一道题满分3分,老师评分只给整数,即得分只能为0分,1分,2分,3分.李老师为了了解学生得分情况和试题的难易情况,对初三(1)班所有学生的试题进行了分析整理,并绘制了两幅尚不完整的统计图,如图所示.初三(1)班得分情况小知识难度系数的计算公式为L=XW,其中L为难度系数,X为样本平均数,W为试题满分值.《考试说明》指出:L在0.7以上的题为容易题;在0.4~0.7之间的题为中档题;在0.2~0.4之间的题为较难题.解答下列问题:(1)m=________,n=________,并补全条形统计图;(2)在初三(1)班随机抽取一名学生的成绩,求抽中的成绩为得分众数的概率;(3)根据“小知识”,通过计算判断这道题对于该班级来说,属于哪一类难度的试题.4.(2020·遵化市二模)为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩用如图的折线统计图表示(甲为实线,乙为虚线).(1)依据折线统计图,得到下面的表格:其中a=,b=;(2)甲成绩的众数是环,乙成绩的中位数是环;(3)请运用方差的知识,判断甲、乙两人谁的成绩更为稳定;(4)该校射击队要参加市组织的射击比赛,已预选出2名男同学和2名女同学,现要从这4名同学中任意选取2名同学参加比赛,请用画树状图或列表的方法,求出恰好选到1男1女的概率.5.(2020·石家庄市模拟)在抗击新型冠状病毒肺炎战役中,某市党员积极响应国家号召,参加志愿者活动,为人民服务,现随机抽查部分党员一个月来参加志愿者活动的次数,并绘制成如下尚不完整的条形统计图(图1)和扇形统计图(图2).(1)“4次”所在扇形的圆心角度数是________,请补全条形统计图;(2)若从抽查的党员中随机选择一位接受媒体的采访,求该党员一个月来参加志愿者活动次数不少于3次的概率;(3)设随机抽查的党员一个月来参加志愿者活动次数的中位数为a,若去掉一部分党员参加志愿者活动的次数后,得到一组新数据的众数为b,当b>a时,求最少去掉了几名党员参加志愿者活动的次数.6.(2020·黔西南中考)新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如下两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是____名;(2)扇形统计图中表示A级的扇形圆心角α的度数是____,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为____;(4)某班有4名优秀的同学(分别记为E,F,G,H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.答案专题四 统计与概率特训题型1 概率算法1.在一个不透明的袋子里装有6个白色乒乓球和若干个红色乒乓球,这些球除颜色外其余均相同,搅拌均匀后,从这个袋子里随机摸出一个乒乓球,是红球的概率为13.(1)求该袋内红球的个数;(2)小明取出3个白色乒乓球分别标上1,2,3三个数字,装入另一个不透明的袋子里搅拌均匀,第一次从袋里摸出一个球并记录下该球上的数字,重新放回袋中搅拌均匀,第二次从袋里摸出一个球并记录下该球上的数字,求这两个数字之积是3的倍数的概率.(用画树状图或列表的方法求解)解:(1)设该袋内红球有x 个.根据题意,得 x x +6 =13.解得x =3. 经检验,x =3是原分式方程的解. ∴该袋内红球有3个; (2)画树状图:由图可知,共有9种等可能的结果,其中这两个数字之积是3的倍数的结果有5种, ∴P (这两个数字之积是3的倍数)=59 .2.(2020·保定定兴县一模)一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上都各标一个不小于-2的数,已知其中3个乒乓球上标的数分别是-2,2,4,所标的4个数的中位数是0.(1)求这4个数的众数;(2)从这个口袋中随机摸出1个球,求摸出的球面上的数是正数的概率;(3)从这个口袋中随机摸出1个球(不放回),再从余下的球中随机摸出1个球,用列表法求两次摸出的球面上的数之和为负数的概率.后摸 先摸解:(1)设另一个球面上标的数是x .由题意,得 x +22=0.解得x =-2. ∴这4个数的众数是-2;(2)∵4个球中球面上的数是正数的有2个, ∴P (摸出的球面上的数是正数)=24 =12 ;(3)列表:后摸 先摸 -2 2 4 -2 -2 (-2,2)(-2,4) (-2,-2) 2 (2,-2) (2,4) (2,-2) 4 (4,-2) (4,2) (4,-2)-2(-2,-2)(-2,2)(-2,4)由表可知,共有12种等可能的结果,其中两次摸出的球面上的数之和为负数的结果有2种, ∴P (两次摸出的球面上的数之和为负数)=212 =16 .3.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数 1 2 3 4 5 6 出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率;(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大.”小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用画树状图或列表的方法求出两枚骰子朝上的点数之和为3的倍数的概率. 解:(1)“3点朝上”的频率是660 =110,“5点朝上”的频率是2060 =13;(2)小颖和小红的说法都是错误的.“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当实验的次数足够大时,该事件发生的频率才会稳定在事件发生的概率附近;事件发生具有随机性,故投掷600次,“6点朝上”的次数不一定是100次;(3)列表如下:由表可知,共有36种等可能的结果,其中两枚骰子朝上的点数之和为3的倍数的结果有12种, ∴P (两枚骰子朝上的点数之和为3的倍数)=1236 =13.4.为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是________;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用画树状图或列表的方法求小丽回答正确的概率.九宫格解:(1)12 ;(2)画树状图如下:由图可知,共有4种等可能的结果,其中小丽回答正确的结果有1种, ∴P (小丽回答正确)=14.5.如图,放在直角坐标系中的正方形ABCD 的边长为4.现做如下实验:转盘被划分成4个相同的小扇形,并分别标上数字1,2,3,4,分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中点M 的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,则重新转动转盘.(1)请你用画树状图或列表的方法,求点M 落在正方形ABCD 面上(含内部与边界)的概率;(2)将正方形ABCD 平移整数个单位,则是否存在某种平移,使点M 落在正方形ABCD 面上的概率为34 ?若存在,指出一种具体的平移过程;若不存在,请说明理由.解:(1)正方形四个顶点的坐标分别是A (-2,2), B (-2,-2),C (2,-2),D (2,2). 列表:由表可知,共有16种等可能的结果,其中点M 落在正方形ABCD 面上(含内部与边界)的结果有(1,1),(1,2),(2,1),(2,2),共4种,∴点M 落在正方形ABCD 面上(含内部与边界)的概率是416 =14;(2)若使点M 落在正方形ABCD 面上的概率为34 ,则只有4个点不在正方形面上,故可把正方形ABCD 先向右平移2个单位长度,再向上平移1个单位长度或先向右平移1个单位长度,再向上平移2个单位长度即可(答案不唯一).题型2 数据分析1.(2020·遵化市一模)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.解:(1)该市蛋糕店的总数为150÷90360 =600(家),甲公司经营的蛋糕店数量为600×60360 =100(家);(2)设甲公司增设x 家蛋糕店.由题意,得 20%×(600+x )=100+x .解得x =25. 答:甲公司需要增设25家蛋糕店.2.(2020·河北模拟)期末考试结束后,数学老师对本班的数学成绩进行了统计.根据图中信息回答下列问题.(1)该班级的人数为 ,D 等级的学生有 人.根据数据补全统计图; (2)若规定80分以上为及格,求该班级的及格率;(3)若在各个分数段的人数这一组数据上,再添加一个数据a (a 为正整数),该组数据的中位数没有改变,请直接写出a 的值.解:(1)100;5;补全统计图如图所示;[该班级的人数为45÷45%=100(人),D 等级人数为100×(1-15%-45%-35%)=5(人),A 等级人数为100×15%=15(人),C 等级人数为100×35%=35(人).](2)该班级的及格率为45%+15%=60%;(3)a =25.[∵原分数段人数的数据为5,15,35,45, ∴中位数为15+352=25.若要使中位数不发生改变,则需添加数据25,即a =25.]3.(2020·邯郸复兴区二模)A ,B 两所学校的学生都参加了某次体育测试,成绩均为7~10分,且为整数.亮亮分别从这两所学校各随机抽取一部分学生的测试成绩,共200份,并绘制了如下尚不完整的统计图.(1)这200份测试成绩的中位数是 分,m = ;(2)补全条形统计图;扇形统计图中,求成绩为10分所在扇形的圆心角的度数;(3)亮亮算出了“1名A 校学生的成绩被抽到”的概率是111 ,请你估计A 校成绩为8分的学生有多少名.解:(1)9;12;[200份成绩的中位数是第100、第101个数据的平均数,把这些成绩按大小排列后,第100、第101 个数据都是9分,故中位数是9+92=9(分).m =200×10%-8=12(人).] (2)补全条形统计图如图所示;成绩为10分所在扇形的圆心角的度数为54+36200 ×360°=162°;(3)8+20+38+54=120(名), 120÷111 =1 320(名),1 320×20120=220(名).答:A 校成绩为8分的学生大约有220名.4.(2020·邢台沙河市模拟)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a .七年级成绩频数分布直方图:b .七年级成绩在70≤x <80这一组的是:70 72 74 75 76 76 77 77 77 78 79 c .七、八年级成绩的平均数、中位数如下:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有________人; (2)表中m 的值为________;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数. 解:(1)23;(2)77.5;[七年级50人成绩的中位数是第25、第26个数据的平均数,而第25、第26个数据分别为77,78, ∴m =77+782=77.5.](3)学生甲在该年级的排名更靠前.理由:∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生成绩的25名之前, 八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生成绩的25名之后, ∴学生甲在该年级的排名更靠前;(4)估计七年级成绩超过平均数76.9分的人数为400×5+15+850=224(人). 5.(2020·河北中考样题)某数学老师将本班学生的身高数据(精确到1 cm)交给甲、乙两同学,要求他们各自独立地绘制一幅频数分布直方图,甲绘制如图1所示,乙绘制如图2所示.经确认,甲绘制的图是正确的,乙在整理数据与绘图的过程中均有个别错误.请回答下列问题: (1)该班学生有多少人?(2)某同学身高为165 cm ,他说:“我们班上比我高的人不超过14 ”,他的说法正确吗?(3)写出乙同学在整理或绘图过程中的错误(写出一个即可); (4)设该班学生的身高数据的中位数为a ,试写出a 的值. 解:(1)该班学生有10+15+20+10+5=60(人); (2)正确.从图1可得身高高于165 cm 的有10+5=15(人),15÷60=14.∴他的说法正确;(3)乙同学在整理数据时,漏了一个数据,这个数据落在169.5~173.5范围内(或总人数少1人); (4)由图1知中位数大于159.5,由图2知中位数小于161.5.∴159.5<a <161.5. ∵身高为整数,∴a =160,160.5或161.6.疫情期间,某校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取七年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B ,E 两组发言人数的比为5∶2,请结合图中相关数据回答下列问题:F(1)E 组人数为________人;(2)被调查的学生人数为________人,A 组人数为________人,并补全频数分布直方图; (3)求出扇形统计图中,“B ”所对应的圆心角的度数;(4)七年级共有学生1 500人,请估计全年级在这天里发言次数不少于12次的人数. 解:(1)4;[∵B ,E 两组发言人数的比为5∶2, ∴E 组人数为10×25=4(人).](2)50;3;补全频数分布直方图如图所示;[被调查的学生人数为4÷8%=50(人), A 组人数为50×6%=3(人),C 组的人数是50×30%=15(人).](3)“B ”所对应的圆心角的度数是360°×1050=72°; (4)F 组所占的百分比是550 ×100%=10%,则全年级在这天里发言次数不少于12次的约有1 500×(10%+8%)=270(人).题型3 统计与概率综合1.(2020·石家庄市模拟)文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知P (一次拿到7元本)=23.(1)求这6个本价格的众数;(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法求嘉嘉两次都拿到7元本的概率.解:(1)6×23=4(本).∴7元本有4本,则这6个本的价格为4元、5元、7元、7元、7元、7元. ∴这6个本价格的众数是7元; (2)①相同.理由:原来6本价格为4元、5元、7元、7元、7元、7元,价格的中位数是7+72=7(元),所剩的5个本价格为4元、5元、7元、7元、7元,价格的中位数是7元,∴中位数相同;②列表:由表可知,共有20种等可能的结果,其中嘉嘉两次都拿到7元本的结果有6种, ∴P (嘉嘉两次都拿到7元本)=620 =310.2.(2020·唐山市二模)某销售公司年终进行业绩考核,人事部门把考核结果按照A ,B ,C ,D 四个等级,绘制成两个不完整的统计图,如图1、图2所示.(1)参加考试的人数是________人,扇形统计图中D 部分所对应的圆心角的度数是________,请把条形统计图补充完整;(2)若公司领导计划从考核人员中选一人交流考核意见,求所选人员考核为A 等级的概率;(3)为推动公司进一步发展,公司决定计划两年内考核A 等级的人数达到30人,求平均每年的增长率.(精确到0.01,5 ≈2.236)解:(1)50;36;补全条形统计图如图所示;[参加考试的人数是24÷48%=50(人),扇形统计图中D 部分所对应的圆心角的度数是360°×550=36°,C 等级的人数是50-24-15-5=6(人).](2)∵参加考试的有50人,考核为A 等级有24人, ∴P (所选人员考核为A 等级)=2450 =1225 ;(3)设平均每年增长率是x .由题意,得 24(1+x )2=30. 解得x 1=-1+52 ≈0.12,x 2=-1-52(舍去). 答:平均每年增长率为12%.3.(2020·衡水市模拟)某次数学测验中,一道题满分3分,老师评分只给整数,即得分只能为0分,1分,2分,3分.李老师为了了解学生得分情况和试题的难易情况,对初三(1)班所有学生的试题进行了分析整理,并绘制了两幅尚不完整的统计图,如图所示.初三(1)班得分情况小知识难度系数的计算公式为L =XW,其中L 为难度系数,X 为样本平均数,W 为试题满分值.《考试说明》指出:L 在0.7以上的题为容易题;在0.4~0.7之间的题为中档题;在0.2~0.4之间的题为较难题.解答下列问题:(1)m =________,n =________,并补全条形统计图;(2)在初三(1)班随机抽取一名学生的成绩,求抽中的成绩为得分众数的概率; (3)根据“小知识”,通过计算判断这道题对于该班级来说,属于哪一类难度的试题. 解:(1)25;20;补全条形统计图如图所示;。
压轴题07 统计与概率压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用-文)
压轴题07统计与概率压轴题题型/考向一:统计与概率题型/考向二:统计案例一、统计与概率热点一用样本估计总体1.频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.在频率分布直方图中各小长方形的面积之和为1.3.利用频率分布直方图求众数、中位数与平均数.(1)最高的小长方形底边中点的横坐标即众数.(2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.热点二概率1.古典概型的概率公式P(A)=事件A中包含的样本点数试验的样本点总数.2.条件概率公式设A,B为随机事件,且P(A)>0,则P(B|A)=P(AB)P(A).3.全概率公式设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑ni =1P (A i )P (B |A i ).○热○点○题○型一统计与概率一、单选题1.对某校中学学生的身高进行统计,并将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图),则该校学生身高数据的中位数为()A .165B .165.75C .166D .166.252.如图,一组数据123910,,,,,x x x x x ⋅⋅⋅,的平均数为5,方差为21s ,去除9x ,10x 这两个数据后,平均数为x ,方差为22s ,则()A .5x >,2212s s >B .5x <,2212s s <C .5x =,2212s s <D .5x =,2212s s >3.已知数据12,,,n x x x 是某市()*5,n n n ≥∈N 个普通职工的年收入,如果再加上世界首富的年收入1n x +,组成1n +个数据,则下列说法正确的是()A .年收入的平均数可能不变,中位数可能不变,方差可能不变B .年收入的平均数大大增加,中位数可能不变,方差变大C .年收入的平均数大大增加,中位数可能不变,方差变小D .年收入的平均数大大增加,中位数一定变大,方差可能不变4.甲、乙两名篮球运动员在8场比赛中的单场得分用茎叶图表示(图1),茎叶图中甲的得分有部分数据丢失,但甲得分的折线图(图2)完好,则()A .甲的单场平均得分比乙低B .乙的60%分位数为19C .甲、乙的极差均为11D .乙得分的中位数是16.55.某省普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为,,,,A B C D E 五个等级.某高中2022年参加“选择考”总人数是2020年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平,统计了该校2020年和2022年“选择考”成绩等级结果,得到如下统计图.针对该校“选择考”情况,2022年与2020年比较,下列说法正确的是()A .获得A 等级的人数减少了B .获得B 等级的人数增加了1.5倍C .获得D 等级的人数减少了一半D .获得E 等级的人数相同6.在“2,3,5,7,11,13,17,19”这8个素数中,任取2个不同的数,则这两个数之和仍为素数的概率是()A .328B .528C .17D .3147.2022年11月30日,神舟十五号、神舟十四号乘组在太空“胜利会师”,在中国人自己的“太空家园”里留下了一张足以载入史册的太空合影.某班级开展了关于太空知识的分享交流活动,活动中有2名男生、3名女生发言,活动后从这5人中任选2人进行采访,则这2人中至少有1名男生的概率为()A .310B .25C .35D .7108.不透明箱子中装有大小相同标号为1,2,3,4,5的5个冰墩墩(北京冬奥会吉祥物),随机抽取2个冰墩墩,则被抽到的2个冰墩墩标号相邻的概率是()A .15B .25C .35D .45二、多选题9.如图是国家统计局公布的2021年5月至2021年12月的规模以上工业日均发电量的月度走势情况,则().A .2021年7月至2021年10月,规模以上工业月度日均发电量呈现下降趋势B .2021年5月至2021年12月,规模以上工业月度日均发电量的中位数为228C .2021年11月,规模以上工业发电总量约为6758亿千瓦时D .从2021年5月至2021年12月中随机抽取2个月份,规模以上工业月度日均发电量都超过230亿千瓦时的概率为32810.树人中学2006班某科研小组,持续跟踪调查了他们班全体同学一学期中16周锻炼身体的时长,经过整理得到男生、女生各周锻炼身体的平均时长(单位:h )的数据如下:男生:6.3、7.4、7.6、8.1、8.2、8.2、8.5、8.6、8.6、8.6、8.6、9.0、9.2、9.3、9.8、10.1;女生:5.1、5.6、6.0、6.3、6.5、6.8、7.2、7.3、7.5、7.7、8.1、8.2、8.4、8.6、9.2、9.4.以下判断中正确的是()A .女生每周锻炼身体的平均时长的平均值等于8B .男生每周锻炼身体的平均时长的80%分位数是9.2C .男生每周锻炼身体的平均时长大于9h 的概率的估计值为0.3125D .与男生相比,女生每周锻炼身体的平均时长波动性比较大11.已知甲袋内有a 个红球,b 个黑球,乙袋内有b 个红球,a 个黑球(),a b *∈N ,从甲、乙两袋内各随机取出1个球,记事件A =“取出的2个球中恰有1个红球”,B =“取出的2个球都是红球”,C =“取出的2个球都是黑球”,则()A .()0.75P AB +≤B .()()P A P B >C .()()P B P C <D .()()P A B P A C +=+12.某中学为了能充分调动学生对学术科技的积极性,鼓励更多的学生参与到学术科技之中,提升学生的创新意识,该学校决定邀请知名教授于9月2日和9月9日到学校做两场专题讲座.学校有东、西两个礼堂,第一次讲座地点的安排不影响下一次讲座的安排,假设选择东、西两个礼堂作为讲座地点是等可能的,则下列叙述正确的是()A .两次讲座都在东礼堂的概率是14B .两次讲座安排在东、西礼堂各一场的概率是12C .两次讲座中至少有一次安排在东礼堂的概率是34D .若第一次讲座安排在东礼堂,下一次讲座安排在西礼堂的概率是13三、解答题13.春节期间,我国高速公路继续执行“节假日高速免费政策”.某路桥公司为了解春节期间车辆出行的高峰情况,在某高速收费点发现大年初三上午9:20~10:40这一时间段内有600辆车通过,将其通过该收费点的时刻绘成频率分布直方图.其中时间段9:20~9:40记作区间[)20,40,9:40~10:00记作[)40,60,10:00~10:20记作[)60,80,10:20~10:40记作[]80,100,例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取5辆,再从这5辆车中随机抽取3辆,则恰有1辆为9:20~10:00之间通过的概率是多少?14.我国某医药研究所在针对某种世界疾病难题的解决方案中提到了中医疗法,为证实此方法的效用,该研究所购进若干副某种中草药,现按照每副该中草药的重量大小(单位:克)分为4组:[)0,20,[)20,40,[)40,60,[]60,80,并绘制频率分布直方图如下所示:(1)估计每副该中草药的平均重量(同一组中的数据用该区间的中点值作代表);(2)现从每副重量在[)20,40,[]60,80内的中草药中按照分层抽样的方式一共抽取6副该中草药,再从这6副中草药中随机取出2副进行分析,求取出的2副中仅有1副重量在[]60,80中的概率.二、统计案例热点一回归分析求经验回归方程的步骤(1)依据成对样本数据画出散点图,确定两个变量具有线性相关关系(有时可省略).(2)计算出x -,y -,∑n i =1x 2i ,∑ni =1x i y i 的值.(3)计算a ^,b ^.(4)写出经验回归方程.热点二独立性检验独立性检验的一般步骤(1)根据样本数据列2×2列联表;(2)根据公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),计算χ2的值;(3)查表比较χ2与临界值的大小关系,作统计判断.χ2越大,对应假设事件H 0成立(两类变量相互独立)的概率越小,H 0不成立的概率越大.○热○点○题○型二统计案例一、单选题1.以模型()e 0kxy c c =>去拟合一组数据时,设ln z y =,将其变换后得到线性回归方程21z x =-,则c =()A .12B .2e -C .1e -D .e2.下列说法正确的有()①对于分类变量X 与Y ,它们的随机变量2K 的观测值k 越大,说明“X 与Y 有关系”的把握越大;②我校高一、高二、高三共有学生4800人,其中高三有1200人.为调查需要,用分层抽样的方法从全校学生中抽取一个容量为200的样本,那么应从高三年级抽取40人;③若数据1x 、2x 、L 、n x 的方差为5,则另一组数据11x +、21x +、L 、1n x +的方差为6;④把六进制数()6210转换成十进制数为:()012621006162678⨯⨯⨯=++=.A .①④B .①②C .③④D .①③3.给出以下四个命题:①在回归分析中,可用相关指数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好;②回归模型中离差是实际值i y 与估计值ˆy的差,离差点所在的带状区域宽度越窄,说明模型拟合精度越高;③在一组样本数据()()()1122,,,,,,n n x y x y x y ⋅⋅⋅(2n ≥,12,,,n x x x ⋅⋅⋅不全相等)的散点图中,若所有样本点()(),1,2,,i i x y i n =⋅⋅⋅都在直线112y x =-+上,则这组样本数据的线性相关系数为12-;④对分类变量x 与y 的统计量2χ来说,2χ值越小,判断“x 与y 有关系”的把握程度越大.其中,真命题的个数为()A .1B .2C .3D .44.如图是近十年来全国城镇人口、乡村人口的折线图(数据来自国家统计局).根据该折线图,下列说法错误的是()A .城镇人口与年份呈现正相关B .乡村人口与年份的相关系数r 接近1C .城镇人口逐年增长率大致相同D .可预测乡村人口仍呈现下降趋势5.已知变量,x y 之间的线性回归方程为ˆ0.47.6yx =-+,且变量,x y 之间的一组相关数据如表所示,x681012y6m32则下列说法中错误的有()A .变量,x y 之间呈现负相关关系B .变量,x y 之间的相关系数0.4r =-C .m 的值为5D .该回归直线必过点(9,4)6.设两个相关变量x 和y 分别满足下表:x12345y128816若相关变量x 和y 可拟合为非线性回归方程ˆ2bx a y+=,则当6x =时,y 的估计值为()(参考公式:对于一组数据()11u v ,,()22u v ,,⋯,()n n u v ,,其回归直线ˆˆˆvu αβ=+的斜率和截距的最小二乘估计公式分别为:1221ˆni ii nii u v nu vunu β==-⋅=-∑∑,ˆˆav u β=-;51.152≈)A .33B .37C .65D .737.通过随机询问相同数量的不同性别大学生在购买食物时是否看营养说明,得知有16的男大学生“不看”,有13的女大学生“不看”,若有99%的把握认为性别与是否看营养说明之间有关,则调查的总人数可能为()A .150B .170C .240D .1758.已知一组样本数据()()()1122,,,,,,n n x y x y x y ,根据这组数据的散点图分析x 与y 之间的线性相关关系,若求得其线性回归方程为0.8587ˆ 5.yx =-,则在样本点(165,57)处的残差为()A . 2.45-B .2.45C .3.45D .54.55二、多选题9.下列关于成对数据的统计说法正确的有()A .若当一个变量的值增加时,另一个变量的相应值呈现减少的趋势,则称这两个变量负相关B .样本相关系数r 的绝对值大小可以反映成对样本数据之间线性相关的程度C .通过对残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据D .决定系数2R 越大,模型的拟合效果越差10.某服装生产商为了解青少年的身高和体重的关系,在15岁的男生中随机抽测了10人的身高和体重,数据如下表所示:编号12345678910身高/cm 165168170172173174175177179182体重/kg55896165677075757880由表中数据制作成如下所示的散点图:由最小二乘法计算得到经验回归直线1l 的方程为 11y bx a =+ ,相关系数为1r ,决定系数为21R ;经过残差分析确定()168,89为离群点(对应残差过大),把它去掉后,再用剩下的9组数据计算得到经验回归直线2l 的方程为 22y bx a =+ ,相关系数为2r ,决定系数为22R .则以下结论中正确的有()A . 12a a >B .12bb > C .12r r <D .2212R R >11.下列命题中为真命题的是()A .用最小二乘法求得的一元线性回归模型的残差和一定是0.B .一组数按照从小到大排列后为:1x ,2x ,…,n x ,计算得:25%17n ⨯=,则这组数的25%分位数是17x .C .在分层抽样时,如果知道各层的样本量、各层的样本均值及各层的样本方差,可以计算得出所有数据的样本均值和方差.D .从统计量中得知有97%的把握认为吸烟与患肺病有关系,是指推断有3%的可能性出现错误.12.给出下列说法,其中正确的是()A .某病8位患者的潜伏期(天)分别为3,3,8,4,2,7,10,18,则它们的第50百分位数为5.5B .已知数据12,,x x 的平均数为2,方差为3,那么数据121x +,221x +,L 的平均数和方差分别为5,13C .在回归分析中,变量间的关系若是非确定性关系,那么因变量不能由自变量唯一确定D .样本相关系数()1,1r ∈-三、解答题13.国家发改委和住建部等六部门发布通知,提到:2025年,农村生活垃圾无害化处理水平将明显提升.现阶段我国生活垃圾有填埋、焚烧、堆肥等三种处理方式,随着我国生态文明建设的不断深入,焚烧处理已逐渐成为主要方式.根据国家统计局公布的数据,对2013-2020年全国生活垃圾焚烧无害化处理厂的个数y (单位:座)进行统计,得到如下表格:年份20132014201520162017201820192020年份代码x 12345678垃圾焚烧无害化处理厂的个数y166188220249286331389463(1)根据表格中的数据,可用一元线性回归模型刻画变量y 与变量x 之间的线性相关关系,请用相关系数加以说明(精确到0.01);(2)求出y 关于x 的经验回归方程,并预测2022年全国生活垃圾焚烧无害化处理厂的个数;(3)对于2035年全国生活垃圾焚烧无害化处理厂的个数,还能用(2)所求的经验回归方程预测吗?请简要说明理由.参考公式:相关系数()()ni i x x y y r --=∑ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为()()()121ˆˆˆ,n ii i ni i x x yy b a y bx x x ==--==-∑∑参考数据:88882211112292,204,730348,12041i i i i i i i i i y x y x y ========∑∑∑∑,257385.84=≈≈14.为加快推动旅游业复苏,进一步增强居民旅游消费意愿,山东省人民政府规定自2023年1月21日起至3月31日在全省实施景区门票减免,全省国有A 级旅游景区免首道门票,鼓励非国有A 级旅游景区首道门票至少半价优惠.本次门票优惠几乎涵盖了全省所有知名的重点景区,据统计,活动开展以来游客至少去过两个及以上景区的人数占比约为90%.某市旅游局从游客中随机抽取100人(其中年龄在50周岁及以下的有60人)了解他们对全省实施景区门票减免活动的满意度,并按年龄(50周岁及以下和50周岁以上)分类统计得到如下不完整的22⨯列联表:不满意满意总计50周岁及以下5550周岁以上15总计100(1)根据统计数据完成以上22⨯列联表,并根据小概率值0.001α=的独立性检验,能否认为对全省实施景区门票减免活动是否满意与年龄有关联?(2)现从本市游客中随机抽取3人了解他们的出游情况,设其中至少去过两个及以上景区的人数为X ,若以本次活动中至少去过两个及以上景区的人数的频率为概率.①求X 的分布列和数学期望;②求()11P X -≤.参考公式及数据:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.()2P k αχ=≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828。
初中数学统计与概率专题训练50题(含答案)
初中数学统计与概率专题训练50题含参考答案一、单选题1.红河州博物馆拟招聘一名优秀讲解员,其中小华笔试、试讲、面试三轮测试得分分别为90分、94分、92分.综合成绩中笔试占30%、试讲占50%、面试占20%,那么小华的最后得分为()A.92分B.92.4分C.90分D.94分2.一个足球队23名队员的年龄统计结果如下表所示,这个足球队队员年龄的众数,中位数分别是()A.14,15B.14,14C.15,13D.15,153.我校四名跳远运动员在前的10次跳远测试中成绩的平均数相同,方差s2如下表示数,如果要选出一名跳远成绩最稳定的选手参加抚顺市运动会,应选择的选手是()A.甲B.乙C.丙D.丁4.盒子中有白色乒乓球和黄色乒乓球若干个,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,由此估计摸白色乒乓球的概率为()A.14B.12C.13D.345.下列数据是2019年3月一天某时公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是()A.162和155B.169和155C .155和162D .102和1556.下列调查中,适合采用全面调查方式的是( ) A .对横锦水库水质情况的调查B .新冠疫情期间,对某高危县市居民的体温进行调查C .某厂生产出的口罩进行质量合格率的调查D .春节期间对某类烟花爆竹燃放安全情况的调查 7.以下调查中,适宜全面调查是( ) A .调查某种灯泡的使用寿命 B .调查某班学生的身高情况 C .调查春节联欢晚会的收视率D .调查我市居民日平均用水量8.一个不透明的箱子里装有红色小球和白色小球共4个,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量的重复实验后,发现摸到红色小球的频率稳定于0.75左右.请估计箱子里白色小球的个数是( ) A .1B .2C .3D .49.在一个不透明的袋子中装有2个红球、1个黄球和1个黑球,这些球的形状、大小、质地等完全相同,若随机从袋子里摸出1个球,则摸出红球的概率是( )A .14B .13C .12D .3410.七个人并成一排照相,如果a 表示甲、乙两人相邻的可能性,b 表示甲、乙两人不相邻的可能性,则( ) A .a b >B .a b <C .a b =D .无法确定11.8名学生的鞋码(单位:原米)由小到大是21,22,22,22,23,23,24,25,则这组数据的众数和中位数是( ) A .23,22B .23,22.5C .22,22D .22,22.512.以下问题,不适合采用全面调查方式的是(). A .调查全班同学对“商合杭”高铁的了解程度 B .春运期间检查旅客的随身携带物品 C .学校竞选学生会干部,对报名学生面试D .了解全市中小学生对“2019年海军阅兵”的知晓程度13.若一组数据1,1,2,3,x 的平均数是2,则这组数据的众数是( ) A .1B .1和3C .1和2D .314.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )A .中位数是12.7%B .众数是15.3%C .平均数是15.98%D .方差是015.下列说法正确的是( )A .为了解一批电池的使用寿命,应采用全面调查的方式B .数据1x ,2x ,...,n x 的平均数是5,方差是0.2,则数据12x +,22x +,...,2n x +的平均数是7,方差是2.2C .通过对甲、乙两组学生数学成绩的跟踪调查,整理计算得到甲、乙两组数据的方差为20.3s =甲,20.5s =乙,则乙数据较为稳定D .为了解官渡区九年级8000多名学生的视力情况,从中随机选取500名学生的视力情况进行分析,则选取的样本容量为50016.下列结论中:①ABC 的内切圆半径为r ,ABC 的周长为L ,则ABC 的面积是12Lr ;①同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为12;①圆内接平行四边形是矩形;①无论p 取何值,方程()()2320x x p ---=总有两个不等的实数根.其中正确的结论有( ) A .4个B .3个C .2个D .1个17.将50个数据分成3组,第一组和第三组的频率之和为0.7,则第二小组的频数是( ) A .0.3B .0.7C .15D .3518.教练准备从甲、乙、丙、丁四个足球队员中选出一个队员去罚点球,四个队员平时训练罚点球的平均命中率x 及方差s 2如表所示:如果要选出一个成绩较好且状态较稳定的队员去执行罚球,那么应选的队员是( )A .甲B .乙C .丙D .丁19.有下列调查:①了解地里西瓜的成熟程度;①了解某班学生完成20道素质测评选择题的通过率;①了解一批导弹的杀伤范围;①了解成都市中学生睡眠情况.其中不适合普查而适合抽样调查的是( )A .①①B .①①①C .①①①D .①①①20.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( ) A .12B .13C .34D .1二、填空题21.为了调查全校学生对购买正版书籍,唱片和软件的支持率,用简单的随机抽样方法,在全校55个班级中抽取8个班级,调查这8个班级所有学生对购买正版书籍,唱片和软件的支持率.在这次调查中,总体是_____,样本是_____,样本容量是_____,抽样方法 _____(填“合理”或“不合理”).22.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择___________. 23.为完成下列任务,你认为用什么调查方式更合适?(选填“全面调查”或“抽样调查”)(1)了解一批圆珠笔芯的使用寿命________. (2)了解全班同学周末时间是如何安排的________. (3)了解我国八年级学生的视力情况________. (4)了解中央电视台春节联欢晚会的收视率________. (5)了解集贸市场出售的蔬菜中农药的残留情况________.(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况________.24.我市11月份30天的最高气温变化情况如图所示,将1日-15日气温的方差记为21S ,15日-30日气温的方差记为22S .观察统计图,比较21S ,22S 的大小:21S ______22S (填“>、=、<”)25.小张手机月基本费用为18元,某月,他把手机费中各项费用的情况制成扇形统计图(如图),则他该月的基本话费为________元.26.某校为了解学生课外阅读情况,随机调查了50名学生,得到某一天各自课外阅读所用时间,结果如图.根据条形图估计这一天该校学生平均课外阅读时间为______小时.27.甲、乙两名同学投掷实心球,每人投10次,平均成绩为18米,方差分别为S甲2=0.1,S2=0.04,成绩比较稳定的是__(填“甲”或“乙”).乙28.某社区开展“节约每一滴水”活动,为了解开展活动的一个月以来节约用水的情况,从该小区的1000个家庭中选出20个家庭统计了解一个月的节水情况,见下表①请你估计这1000个家庭一个月节约用水的总量大约是________m3.29.某射击运动员在同一条件下的射击结果如下表:根据频率的稳定性,估计这名运动员射击一次时击中靶心的概率是______(结果保留小数点后两位).30.一组数据-3,-2,1,3,6,x的中位数是1,那么这组数据的众数是___________.31.袋中装有大小相同的2个红球和3个绿球,从袋中摸出1个球摸到绿球的概率为___________.32.甲乙两班举行一分钟跳绳比赛,参赛学生每分钟跳绳次数的统计结果如表:某同学分析如表后得到如下结论:①甲,乙两班学生平均成绩相同;①乙班优秀人数多于甲班优秀人数(每分钟跳绳≥110次为优秀);①甲班成绩的波动比乙班大,则正确结论的序号是____.33.质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是________ 34.一组数据为5,7,3,x,6,4. 若这组数据的众数是5,则该组数据的平均数是______.35.转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数小于5的概率是________.36.数据-5,3,4,0,1,8,2的极差为_______.37.从1-,23-,0,23,1这五个数字中,随机抽取一个数记为a,则使得关于x的方程213axx+=-的解为正数的概率是______.38.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1000人,则根据此估计步行上学的有________人.39.一组数据3,2,3,4,x的平均数是3,则它的方差是_____.40.从如图所示的四个带圆圈的数字中,任取两个数字(既可以是相邻也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,①两数在相对位置上的概率是________.三、解答题41.某中学举行“校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校比赛.两个队选出的五名选手的决赛成绩如图所示.(1)根据图示,填写下表:(2)结合两个队的成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队成绩的方差,并判断哪一个代表队选手成绩较稳定.42.质量检查员准备从一批产品中抽取10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等;(1)请采用计算器模拟实验的方法,帮质量检查员抽取被检产品;(2)如果没有计算器,你能用什么方法抽取被检产品?43.某市在,,,,A B C D E五处客流中心存放共享单车,并陆续投放至城区.在D处客流中心存放了甲、乙、丙三种型号的单车,其中甲型号单车500辆.根据单车存放数量绘制了如图1的条形统计图和图2的扇形统计图.图1图2(1)补全条形统计图1,该市在五处客流中心存放共享单车共______辆,这五处客流中心单车存放量的中位数是________千辆;(2)在客流中心D处有_________辆乙型号单车;(3)张华和姐姐准备一起从所住小区每人骑一辆单车去书店.小区门口停放着甲型单车两辆,乙型和丙型单车各一辆,张华认为自己随机选中乙型单车,同时姐姐选中甲型单车的概率是13.张华的说法是否正确?请通过列树状图的方法说明理由.44.为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出),根据以上提供的信息,解答下列问题:(1)本次调查共抽取了名学生?(2)①请补全条形统计图;①扇形统计图中表示“及格”的扇形的圆心角度数为°(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?45.小明和小聪最近5次数学测验的成绩如下:小聪:76,84,80,87,73;小明:78,82,79,80,81.哪位同学的数学成绩比较稳定?46.在一个不透明的口袋中装有4个红球,3个白球,2个黄球,每个球除颜色外都相同.(1)请判断下列事件是不确定事件、不可能事件还是必然事件,填写在横线上.①从口袋中任意摸出1个球是白球;①从口袋中任意摸出4个球全是白球;①从口袋中任意摸出1个球是红球或黄球;①从口袋中任意摸出8个球,红、白、黄三种颜色的球都有;(2)请求出(1)中不确定事件的概率.47.佳佳调查了初一600名学生选择课外兴趣班的情况,根据调查结果绘制了统计图的一部分如下:(1)补全条形统计图;(2)求扇形统计图中表示“书法”的扇形圆心角的度数;(3)估计在3000名学生中选择音乐兴趣班的学生人数.48.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答年新型冠状病毒防治全国统一考试全国卷试卷满分100分,社区管理员随机从有400人的某小区抽取40名人员的答卷成绩,根据他们的成绩数据绘制了如下的表格和统计图:根据上面提供的信息,回答下列问题: .a,b=,c=;(1)统计表中的=(2)请补全条形统计图;(3)根据抽样调查结果,请估计该小区答题成绩为“C级”的有多少人?49.在学校组织的迎接建党100周年知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相等级的得分依次记为100分,90分,80分,70分.学校将九年级一班和二班的成绩整理并绘制成统计图.(1)根据统计图,求出在此次竞赛中二班成绩为C的人数.(2)①请完成下面的表格:①结合以上统计量,请你从不同角度分析两个班级的成绩.50.某学校八年级举行“垃圾分类,人人有责”的知识测试活动,现从中随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理,得到条形统计图如下:(1)求抽取的学生测试成绩的平均数、众数和中位数;(2)该校八年级共有600名学生参加此次测试活动,试估计八年级参加此次测试的学生成绩合格的人数.参考答案:1.B【分析】根据加权平均数的定义列式计算即可.【详解】解:小华的最后得分为90×30%+94×50%+92×20%=92.4(分),故选:B.【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.2.D【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.【详解】解:这组数据中出现次数最多的是15,所以这组数据的众数是15,这组数据中第12个数据是15,所以这组数据的中位数是15,故选:D.【点睛】本题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.3.D【分析】根据方差的意义进行判断即可.【详解】解:由题意知:丁的方差最小,所以丁的成绩最稳定,应选择的选手是丁,故D 正确.故选:D.【点睛】本题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,利用概率公式解答即可.【详解】解:估计摸白色乒乓球的概率为901 3604,故选A.【点睛】此题考查利用频率估计概率,解答此题的关键是要计算出口袋中白色球所占的比例即白球的概率.5.A【分析】根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.【详解】解:由图可得出这组数据中155出现的次数最多,因此,这组数据的众数是155;把这一组数据按从小到大的数序排列,在中间的两个数字是155、169,因此,这组数据的中位数是1691551622+=.故选:A.【点睛】本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.6.B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、对横锦水库水质情况的调查,适合抽样调查,故本选项不合题意;B、新冠疫情期间,对某高危县市居民的体温进行调查,适合全面调查,故本选项符合题意;C、某厂生产出的口罩进行质量合格率的调查,适合抽样调查,故本选项不合题意;D、春节期间对某类烟花爆竹燃放安全情况的调查,适合抽样调查,故本选项不合题意.故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、调查某种灯泡的使用寿命,适宜抽样调查,故本选项不符合题意;B、调查某班学生的身高情况,适宜全面调查,故本选项符合题意;C、调查春节联欢晚会的收视率,适宜抽样调查,故本选项不符合题意;D、调查我市居民日平均用水量,适宜抽样调查,故本选项不符合题意;故选:B【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.A【分析】用球的总个数乘以摸到白球的频率即可.【详解】解:估计箱子里白色小球的个数是4(10.75)⨯-=1(个),故选:A.【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.9.C【分析】由袋子中装有2个红球,1个黄球,1个黑球,随机从袋子中摸出1个球,这个球是黄球的情况有1种,根据概率公式即可求得答案.【详解】解:①袋子中装有2个红球,1个黄球,1个黑球共2+1+1=4个球,①摸到这个球是红球的概率是1÷2=12.故选:C.【点睛】本题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.10.B【分析】可分析特定情况下a,b的值,比较即可.【详解】若甲站在一排最左边的位置,那么第二个位置可有6个人选择,是乙的只有1种,故a<b.故选B.【点睛】易错点是得到特定情况下两人相邻的情况数和不相邻的情况数.11.D【分析】根据中位数和众数的概念求解即可.【详解】解:数据按从小到大的顺序排列为21,22,22,22,23,23,24,25,所以中位数是22232=22.5;数据22出现了3次,出现次数最多,所以众数是22.故选:D.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.12.D【分析】根据全面调查和抽样调查的特点对每个选项进行判断即可.【详解】A、调查全班同学对“商合杭”高铁的了解程度,适合采用全面调查,故A项错误;B、春运期间检查旅客的随身携带物品,适合采用全面调查,故B项错误;C、学校竞选学生会干部,对报名学生面试,适合采用全面调查,故C项错误;D、了解全市中小学生对“2019年海军阅兵”的知晓程度,不适合采用全面调查,故D项正确;故选:D.【点睛】本题考查了全面调查和抽样调查的区别,掌握这两种调查方式的特点是解题关键.13.B【分析】先根据算术平均数的定义列出关于x的方程,解之求出x的值,从而还原这组数据,再利用众数的概念求解可得.【详解】解:①数据1,1,2,3,x的平均数是2,①1+1+2+3+x=5×2,解得x=3,则这组数据为1,1,2,3,3,①这组数据的众数为1和3,故选:B .【点睛】本题主要考查众数和算术平均数的求法,解题的关键是掌握算术平均数和众数的概念.14.B【详解】分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A 、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B 、众数是15.3%,正确;C 、15(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C 错误; D 、①5个数据不完全相同,①方差不可能为零,故此选项错误.故选B .点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.15.D【分析】根据普查与抽样调查的区别判断A ,根据平均数的计算方法和方差的计算方法可得出B ,根据方差的意义可得出C ,最后根据样本容量的含义进行分析即可.【详解】为了解一批电池的使用寿命,应采用抽样调查,故A 错误; 由题可得125n x x x n+++=可得,125n x x x n +++=, 所以12+25+27n x x x n n n n n +++==; 因为()()()22212-5-5-50.2n x x x n+++=, 所以()()()22212+2-7+2-7+2-7n x x x n+++,()()()22212-5-5-5=0.2n x x x n +++=.故B 错误;根据方差的意义可知,方差越小越稳定,故C错误;题目中的500确实是样本容量,故D正确;故答案选D.【点睛】本题主要考查了平均数和方差的求解,准确的理解方差意义及样本容量的意义是解题的关键.16.B【分析】①如图1,连接圆心和切点,则可得到垂直关系,此时将图形分割成三个三角形,求三个三角形的面积和即为ABC的面积;①用列举法求此种情况的概率即可;①如图3,根据矩形的判定性质:对角线相等,且互相平分的四边形是矩形,判断其是否为矩形;①根据一元二次方程根的判别式性质判断该方程有几个实数根.【详解】①如图1,连接OE,OD,OF;OA,OB,OC;则OE①AB,OF①AC,OD①BC;①S△ABC=12AB·OE+12BC·OD+12AC·OF①OE=OF=OD=r,AB+BC+AC=l,①S△ABC=12AB·r+12BC·r+12AC·r=2r(AB+BC+AC)=12Lr,①①正确.①列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,反正,反反,①满足硬币全部正面向上的概率=14,①①错误.①如图3,①平行四边形ABCD为圆内接平行四边形,①OA=OB=OC=OD,且圆心O是对角线的交点,①BD=2OB=2OC=AC ,①平行四边形ABCD 是矩形,①①正确.①①()()2320x x p ---=,即x 2-5x +6-p 2=0,①△=b 2﹣4ac =(-5)2-4(6-p 2),①△=25-24+4 p 2>0,①无论p 取何值,该方程总有两个不相等的实数根,①①正确,故选:B .【点睛】①本小问考查了三角形内切圆的性质,三角形的面积公式,解答本小问的关键是,充分利用已知条件,将问题转化为求几个三角形面积的和;①本小问考查了用列举法求概率,解答本题的关键是列举出所能产生的全部结果,然后再找出题目所要求的结果数量除以全部结果的数量;①本小问考查了圆的性质,矩形的判定,熟练掌握并运用对角线互相平分且相等的四边形是矩形是解题的关键;①本小问考查了一元二次方程根的判别式,熟练掌握并运用一元二次方程根的判别式是解题的关键(①>0时,有两个不同的实数根;①=0时,有两个相等的实数根;①<0时,无实数根).17.C【分析】根据频率的性质,即各组的频率和是1,求得第二组的频率;再根据频率=频数÷总数,进行计算【详解】根据频率的性质,得第二小组的频率是0.3,则第二小组的频数是50×0.3=15.故选C .【点睛】本题考查频率、频数的关系:频率=数据数据总数.注意:各组的频率和是1.18.C【分析】先比较平均数得到乙和丙成绩较好,然后比较方差得到丙的状态稳定,于是可决定选队员丙去参赛.【详解】解:①乙、丙的平均数比甲、丁大,①应从乙和丙中选,①丙的方差比乙的小,①丙的成绩较好且状态稳定,应选的队员是丙;故选:C.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.19.C【分析】根据普查适用的范围小,具有适用性,抽样调查具有代表性,机会均等的原则,不具破坏性的特点依次判断即可.【详解】①了解地里西瓜的成熟程度,不适合普查而适合抽样调查;①了解某班学生完成20道素质测评选择题的通过率,适合普查;①了解一批导弹的杀伤范围,不适合普查而适合抽样调查;①了解成都市中学生睡眠情况,不适合普查而适合抽样调查;故选:C.【点睛】此题考查普查与抽样调查的定义,正确理解两者的关系及各自的特点是解题的关键.20.C【分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是34,。
(完整版)新高考概率与统计 大题专题训练最新
概率与统计(解答题)1.【2021·全国高考真题(理)】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥高,否则不认为有显著提高).2.【2021·北京高考真题】为加快新冠肺炎检测效率,某检测机构采取“k合1检测法”,即将k个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X为总检测次数,求检测次数X的分布列和数学期望E(X);(2)若采用“5合1检测法”,检测次数Y的期望为E(Y),试比较E(X)和E(Y)的大小(直接写出结果).3.【2021·全国高考真题】某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.4.【2021·全国高考真题】一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <;(3)根据你的理解说明(2)问结论的实际含义.5.【2020年高考全国Ⅰ卷理数】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为1 2,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.6.【2020年高考全国Ⅰ卷理数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)8(0ii x x =-=∑,2021)9000(i i y y =-=∑,201)(800(i i i y y x x =--=∑.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数)((iinx y r x y --=∑1.414≈7.【2020年高考全国III卷理数】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:K2=()()()()2)n ad bca b c d a c b d-++++,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828.8.【2020年高考山东】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:2SO PM 2.5[0,50](50,150](150,475][0,35]32184(35,75]6812(75,115]3710(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:2SO PM 2.5[0,150](150,475][0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥0.0500.0100.001k3.841 6.63510.8289.【2020年高考北京】某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)10.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).11.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.12.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.13.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.14.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i = 为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.。
备考2021年中考数学复习专题:统计与概率_数据收集与处理_扇形统计图
备考2021年中考数学复习专题:统计与概率_数据收集与处理_扇形统计图备考2021中考数学复习专题:统计与概率_数据收集与处理_扇形统计图,专项训练单选题:1、(2019乐清.中考模拟) 某校在开展“爱阅读”活动中,学生某一个月的课外阅读情况的统计图如图所示.若该校的学生有 60 0 人,则阅读的数量是4本的学生有()A . 人B . 人C . 人D . 人2、(2019温州.中考模拟) 小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上共支出100元,则她在午餐上共支出()A . 50元B . 100元C . 150元D . 200元3、(2019温州.中考真卷) 对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A . 20人B . 40人C . 60人D . 80人4、(2013温州.中考真卷) 小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是()A . 羽毛球B . 乒乓球C . 排球D . 篮球5、(2011温州.中考真卷) 某校开展形式多样的“阳光体育”活动,七(3)班同学积极响应,全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示),由图可知参加人数最多的体育项目是()A . 排球B . 乒乓球C . 篮球D . 跳绳6、(2016泰安.中考真卷) 某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课 A B C D E F人数 40 60 100根据图表提供的信息,下列结论错误的是( )A . 这次被调查的学生人数为400人B . 扇形统计图中E部分扇形的圆心角为72°C . 被调查的学生中喜欢选修课E,F的人数分别为80,70D . 喜欢选修课C的人数最少7、(2020许昌.中考模拟) 九年级一班同学根据兴趣分成 A,B,C,D,E 五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则 D 小组的人数是()A . 10 人B . l1 人C . 12 人D . 15 人8、(2011崇左.中考真卷) 我市某中学八年级一班准备在“七一”组织参加红色旅游,班长把全班48名同学对旅游地点的意向绘制成了扇形统计图,其中“想去我市龙州县红八军纪念馆参加的学生数”的扇形圆心角为60°,则下列说法中正确的是()A . 想去龙州县红八军纪念馆参加的学生占全班学生的60%B . 想去龙州县红八军纪念馆参观的学生有12人C . 想去龙州县红八军纪念馆参观的学生肯定最多 D . 想去龙州县红八军纪念馆参观的学生占全班学生的9、(2013贺州.中考真卷) 为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况.随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有( )A . 500名B . 600名C . 700名D . 800名10、(2015梧州.中考真卷) 为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是( )A . 100人B . 200人C . 260人D . 400人填空题:11、(2017苏州.中考模拟) 如图,某班参加课外活动的总共有30人,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1:2,那么参加“其它”活动的人数有________人.12、(2017苏州.中考模拟) 某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中A所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是________.13、(2012宁波.中考真卷) 如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是________人.14、(2017含山.中考模拟) 某校组织开展“迎新春长跑活动”,将报名的男运动员共分成4组,分别是:七年级组、八年级组、九年级组、教工组,各组人数所占比例如图所示,已知九年级组有60人,则教工组人数是________.15、(2018长沙.中考真卷) 某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为________度.16、(2017番禺.中考模拟) 根据环保局公布的广州市2013年至2014年PM2.5的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是________.(填主要来源的名称)17、(2018毕节.中考模拟) 如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是________人.18、(2018青海.中考真卷) 某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图如图,可计算出该店当月销售出水果的平均价格是________元解答题:19、(2017河西.中考模拟) 为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如图的统计图表:睡眠情况分段情况如下组别睡眠时间x(小时)A 4.5≤x<5.5B 5.5≤x<6.5C 6.5≤x<7.5D7.5≤x<8.5E8.5≤x<9.5根据图表提供的信息,回答下列问题:(Ⅰ)直接写出统计图中a的值(Ⅱ)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?20、(2018惠山.中考模拟) 初二年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初二学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初二学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?21、(2017绍兴.中考真卷) 为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如下图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题.(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.22、(2019滨州.中考模拟) 为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(Ⅰ)被抽样调查的学生有________人,并补全条形统计图;(Ⅱ)每天户外活动时间的中位数是________(小时);(Ⅲ)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人 ________?23、(2017深圳.中考模拟) 为了解南山荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(Ⅰ)该市场6月上半月共销售这三种荔枝多少吨?(Ⅱ)补全图1的统计图并计算图2中A所在扇形的圆心角的度数.(Ⅲ)某商场计划六月下半月进货A、B、C三种荔枝共300千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?24、(2020贵州.中考模拟) 今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706(1)表中的x=;(2)扇形统计图中m=,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a,a表示)和两名女生(用b,b表示),请用列表或画树状图的方法求恰好选取的是a和b的概率.12121125、(2020绍兴.中考真卷) 一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如下统计图表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
600分专题统计与概率&计数原理专题一计数原理第一节学业测评1.(考点3、4/2011•成都检测)已知集合M={1,-2,3},N={-4,5,6,7},a∈M,b∈N,在直角坐标系中,点(a,b)可表示第一、第二象限内的不同点,这样的点共有()A.7个B.8个C.9个D.10个2.(考点7)从1,2,3,4四个数字中任取数(不重复取)作和,则取出这些数的不同的和共有()A.8种B.9种C.10种D.5种3.(考点3、4/2013•长沙调研)已知合集M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系第一、第二象限中的不同点的个数为()A.18B.16C.14D.104.(考点7)设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳一个单位,经过5次跳动质点落在(3,0)(允许重复过此点),则质点不同的运动方法有()种。
5.(考点3、4)某艺术小组有9人,没人至少会弹钢琴和小号中的一种乐器,其中7人会弹钢琴,3人会小号,从中选出会弹钢琴和小号的各一人,则不同的选法种数为_____。
6.考点(5、6/2012•济南统考)用0,1,2,3,4,5组成没有重复数字的数。
(1)可组成两位偶数_______个;(2)可组成能被5整除的三位数_______个。
7.(考点7)某公司的内设机构划分为系列1、系列2,系列1包括3个部门,每个部门设置5个岗位;系列2包括4个部门,每个部门设置6个岗位。
(1)画流程图描述这家公司的岗位设置情况;(2)在这家公司选择一个岗位,共有多少种不同的选择方案?8.(考点5、6/2013•东北三校联考)如图1-1-9,“过五关”游戏是指完成从A到B、从B 到C、从C到D、从D到E、从E到F这五关,图中箭线下面的数表示从上一关到下一关的方法数。
“过五关”共有多少种不同的方案?9.(考点2、9/2012•合肥质量检测)如图1-1-10是某校的校园设施平面图,现用不同的颜色作为各区域的底色,为了便于区分,要求相邻区域不能使用同一种颜色。
若有六种不同的颜色可选,则共有多少种着色方案?高考测评1.(考点10/2010•湖北)现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中一个讲座,则不同的选法种数是()A.65 B. 56 C. 2234565⨯⨯⨯⨯⨯D.6×5×4×3×22.(考点11/2011•湖南)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息。
若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10B.11C.12D.153.(考点10/2012•重庆部分重点中学联考)从集合{1,2,3,…,11}中任选两个元素作为椭圆方程1x2222=+nym中的m和n,则能组成落在矩形区域B={(x,y)∣∣x∣<11,且∣y∣<9}内的椭圆个数为( )A. 43B.72C.86D.904.(考点10/2010•全国卷II )将标号为1,2,3,4,5,6的六张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A.12种B.18种C.36种D.54种5.(考点11/2012•西城质量检测)将3种作物种植在如图1-1-12所示的5块试验田里,每块试验田种植一种作物,且相邻的试验田不能种植同一种作物,不同的种植方法有________种(用数字作答)6.(考点10/2011•北京)用数字2、3组成四位数,且2、3至少都出现一次,这样的四位数共有_______个。
(用数字作答)7.(考点10/2010•北京西城抽样测试)将编号为1、2、3的3个小球,放入编号为1、2、3、4的四个盒子中,如果每个盒子中最多放一个球,那么不同的放球方法有________种。
8.(考点11)如图1-1-13,有A 、B 、C 、D 四个区域,用红、黄、蓝三种颜色涂色,要求任意两个相邻区域的颜色各不相同,共有多少种不同的涂法?第二节学业测评1.(考点2、3/2011•唐山高二检测)若m 为正整数,则乘积m (m+1)•(m+2)…(m+20)=( )。
A.20m AB.21m AC.2020m A +D.2120m A + 2.(考点2、3/2012•长春调研)已知25-n 2n A 6A =,则n=_______。
3.(考点4)5人排队照相,前排2人,后排3人,则不同的站法有________种。
4.(考点1)给出下列问题:(1)从2,3,5,7,11中任取两数相乘,可得多少种不同的积?(2)从(1)中各数中任取两数相除,可得多少种不同的商?(3)以圆上的10个点为端点,共可做多少条弦?(4)其中排列问题的个数为_______5.(考点5/2010•浙江)有4位同学在同一天的上、下午参加“身高与体重”“立定跳远”“肺活量”“握力”“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复。
若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一个人,则不同的安排方式共有_______种(用数字作答)6.(考点5)用数字0,1,2,3,4,5可组成没有重复数字,并且比20000大的五位偶数共( )A.288个B.240个C.144个D.126个7.(考点6)在数字1,2,3与符号+,-,五个元素所组成的的全排列中,任意两个数字都不相邻的全排列个数是( )A.6B.12C.18D.248.(考点2、3/2013•太原模拟)求和:)!(!!!1n n 433221++⋯+++ 9.(考点5、6、7/2012•山东质检)有4名男生,4名女生排成一排。
(1)从中选出3人排成一排,有多少种不同的排法?(2)若甲男生不站排头,乙女生不站排位,则有多少种不同的排法?(3)要求女生必须站在一起,有多少种不同的排法?(4)若4名女生互不相邻,有多少种不同的排法?(5)全体站成一排,甲、乙、丙三人自左向右顺序不变,有多少种不同的排法? 高考测评1.(考点8/2010•四川)由1,2,3,4,5,6组成没有重复数字,且1,3都不与5相邻的6位偶数的个数是( )。
A.72B.96C.108D.1442.(考点8/2010•重庆)某单位安排7为员工在10月1日至7日值班,每天安排1人,每人值班1天。
若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )。
A.504种B.960种C.1008种D.1108种3.(考点9/2010•广东)为了迎接2010年广州亚运会,某大楼安装了5个彩灯,它们闪亮的顺序不固定,每个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同,记这5个彩灯有序地各闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。
如果要实现所有不同的闪烁,那么需要的时间至少是( )。
A.1205秒B.1200秒C.1195秒D.1108秒4.(考点8)3个人坐8个位置,要求每人的左右都有空位,则有_______种坐法。
5.(考点8)高三(1)班需要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是________。
6.(考点8、9/2012•山东质检)7名教师站成一排照相留念,其中老师1人,男学生4人,女学生2人,在下列情况下,个有多少种不同站法?(1)两名女生必须相邻而站;(2)两名女生必须相邻而站;(3)若4名男生身高都不等,按从高到低的顺序站;(4)老师不站中间,女生不站两端。
学业测评1.(考点7/2012•武汉二月调考)9名会员分成3组讨论问题,每组3人,共有不同的分组方法种数为( )。
A.3639C C B.3639A A C.333639A C C D.333639A A A 2.(考点1、4、6/2012•全国卷II )将标点符号为1、2、3、4、5、6的6张卡片放入3个不同的信封中,若每个信封放2张,其中,标号为1,2的卡片放入同一信封,则不同的放法共有( )。
A.12种B.18种C.36种D.54种4.(考点6)如图1-2-6所示的四棱锥中,顶点为P ,从其他的顶点和各棱中点取3个,使它们和点P 在同一平面内,不同的取法种数为( )。
A.40B.48C.56D.625.(考点4/2012•陕西)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )。
A.10种B.15种C.20种D.30种6.(考点2、3)计算=+⋯+++210242322C C C C __________。
7.(2011•湖北联考)2011年3月10日是第六届世界肾脏日,某社区服务站将5位志愿者分成3组,其中两组各2人,另一组1人,分别去三个不同的社区宣传者肾脏日的主题:“保护肾脏,拯救心脏”,不同的分配方案有_______种。
(用数字作答)8.计算n n n n n n n n C C C C --+-+++⋯+++17223111312313.9.(2011•全国)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有多少种?10.(2013•北京模拟)如图1-2-7,在以AB 为直径的半圆周上,有异于B A 、的6个点654321C C C C C C 、、、、、,直径AB 上有异于B A 、的四个点4321D D D D 、、、.(1)以这10个点中的3个点为顶点作三角形可作出多少个?其中含1C 的点有多少个?(2)以图中的12个点(包括B A 、)中的4个点作为顶点,可作出多少个四边形? 高考测评1.(2010•全国)某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门。
若要求两类课程中各至少选一门,则不同的选法共有( )。
A.30种B.35种C.42种D.48种2.(2010•湖北)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任4四项工作,则不同安排方案的种数是( )A.152B.126C.90D.543.(2010•上海)从集合},,,{d c b a U =的子集中选出4个不同的子集,需同时满足以下两个条件:(1)U ,∅都要选出;(2)对选出的任意两个子集B A 和,必有B A ⊆或A B ⊆.(3)那么共有_______种选法。