大田县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大田县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )
A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定
B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定
C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定
D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定
2. f
()
=,则f (2)=( ) A .3
B .1
C .2
D
.
3. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( ) A
. B
.
或
C
. D
.
或
4.
是首项
,公差的等差数列,如果
,则序号等于( )
A .667
B .668
C .669
D .670 5. 设函数f (x )在x 0
处可导,则等于( )
A .f ′(x 0)
B .f ′(﹣x 0)
C .﹣f ′(x 0)
D .﹣f (﹣x 0)
6. 有下列关于三角函数的命题 P 1:∀x ∈R ,x ≠k π
+(k ∈Z ),若tanx >0,则sin2x >0;
P 2:函数y=sin (x
﹣)与函数y=cosx 的图象相同;
P 3:∃x 0∈R ,2cosx 0=3;
P 4:函数y=|cosx|(x ∈R )的最小正周期为2π,其中真命题是( ) A .P 1,P 4
B .P 2,P 4
C .P 2,P 3
D .P 1,P 2
7. 已知x >0,y >0
,
+=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( ) A .(﹣∞
,] B .(﹣∞
,] C .(﹣∞
,
] D .(﹣∞
,
]
8. 已知椭圆C
:
+y 2=1,点M 1,M 2…,M 5为其长轴AB 的6等分点,分别过这五点作斜率为k (k ≠0)
的一组平行线,交椭圆C 于P 1,P 2,…,P 10,则直线AP 1,AP 2,…,AP 10这10条直线的斜率乘积为( ) A
.﹣ B
.﹣
C
.
D
.﹣
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
9. 某班有50名学生,一次数学考试的成绩ξ服从正态分布N (105,102),已知P (95≤ξ≤105)=0.32,估计该班学生数学成绩在115分以上的人数为( )
A .10
B .9
C .8
D .7
10.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=( )
A .30°
B .60°
C .120°
D .150° 11.已知双曲线
的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支
有且只有一个交点,则此双曲线离心率的取值范围是( ) A .(1,2] B .(1,2) C .[2,+∞) D .(2,+∞)
12.某三棱锥的三视图如图所示,该三棱锥的表面积是 A 、2865+ B 、3065+ C 、56125+ D 、 60125+
二、填空题
13.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 .
14.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .
15.过抛物线y 2=4x 的焦点作一条直线交抛物线于A ,B 两点,若线段AB 的中点M 的横坐标为2,则|AB|等于 . 16.双曲线x 2﹣my 2=1(m >0)的实轴长是虚轴长的2倍,则m 的值为 .
17.下列结论正确的是 ①在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.35,则
ξ在(0,2)内取值的概率为0.7;
②以模型y=ce kx 去拟合一组数据时,为了求出回归方程,设z=lny ,其变换后得到线性回归方程z=0.3x+4,则c=e 4;
③已知命题“若函数f (x )=e x ﹣mx 在(0,+∞)上是增函数,则m ≤1”的逆否命题是“若m >1,则函数f (x )=e x ﹣mx 在(0,+∞)上是减函数”是真命题;
④设常数a ,b ∈R ,则不等式ax 2﹣(a+b ﹣1)x+b >0对∀x >1恒成立的充要条件是a ≥b ﹣1.
18.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:
那么在所有不同的粉刷方案中,最低的涂料总费用是 _______元.
三、解答题
19.已知m ≥0,函数f (x )=2|x ﹣1|﹣|2x+m|的最大值为3. (Ⅰ)求实数m 的值;
(Ⅱ)若实数a ,b ,c 满足a ﹣2b+c=m ,求a 2+b 2+c 2
的最小值.
20.已知f (x )=|﹣x|﹣|+x|
(Ⅰ)关于x 的不等式f (x )≥a 2
﹣3a 恒成立,求实数a 的取值范围;
(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围.
21.(本题满分15分)
设点P 是椭圆14
:2
21=+y x C 上任意一点,
过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.
PA=;
(1)求证:PB
∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
(2)OAB
【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.
22.已知集合A={x|x2+2x<0},B={x|y=}
(1)求(∁R A)∩B;
(2)若集合C={x|a<x<2a+1}且C⊆A,求a的取值范围.
23.已知函数f(x)=的定义域为A,集合B是不等式x2﹣(2a+1)x+a2+a>0的解集.
(Ⅰ)求A,B;
(Ⅱ)若A∪B=B,求实数a的取值范围.
24.如图所示,在菱形ABCD中,对角线AC,BD交于E点,F,G分别为AD,BC的中点,AB=2,∠DAB=60°,沿对角线BD将△ABD折起,使得AC=.
(1)求证:平面ABD⊥平面BCD;
(2)求二面角F﹣DG﹣C的余弦值.
大田县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】C
【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),∴μ1=90,▱1=86,μ2=93,▱2=79,
∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,
故选:C.
【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.
2.【答案】A
【解析】解:∵f()=,
∴f(2)=f()==3.
故选:A.
3.【答案】B
【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,
根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,
当x<0时,f(x)=x+2,
代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,
解得x<﹣,则原不等式的解集为x<﹣;
当x≥0时,f(x)=x﹣2,
代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,
解得x<,则原不等式的解集为0≤x<,
综上,所求不等式的解集为{x|x<﹣或0≤x<}.
故选B
4.【答案】C
【解析】
由已知,由得,故选C
答案:C
5.【答案】C
【解析】解:=﹣=﹣f′(x0),
故选C.
6.【答案】D
【解析】解:对于P1,∀x∈R,x≠kπ+(k∈Z),若tanx>0,则sin2x=2sinxcosx
==>0,则P1为真命题;
对于P2,函数y=sin(x﹣)=sin(2π+x﹣)=sin(x+)=cosx,则P2为真命题;
对于P3,由于cosx∈[﹣1,1],∉[﹣1,1],则P3为假命题;
对于P4,函数y=|cosx|(x∈R),f(x+π)=|cos(x+π)|=|﹣cosx|=|cosx|=f(x),
则f(x)的最小正周期为π,则P4为假命题.
故选D.
【点评】本题考查全称性命题和存在性命题的真假,以及三角函数的图象和周期,运用二倍角公式和诱导公式以及周期函数的定义是解题的关键,属于基础题和易错题.
7.【答案】D
【解析】解:x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,
所以(x+y)(+)=10+≥10=16,
当且仅当时等号成立,所以2m﹣1≤16,解得m;
故m的取值范围是(﹣];
故选D.
8.【答案】B
【解析】解:如图所示,
由椭圆的性质可得==﹣=﹣.
由椭圆的对称性可得,,
∴=﹣,
同理可得===﹣.
∴直线AP1,AP2,…,AP10这10条直线的斜率乘积==﹣.
故选:B.
【点评】本题考查了椭圆的性质可得=﹣及椭圆的对称性,考查了推理能力和计算能力,属于难题.
9.【答案】B
【解析】解:∵考试的成绩ξ服从正态分布N(105,102).
∴考试的成绩ξ关于ξ=105对称,
∵P(95≤ξ≤105)=0.32,
∴P(ξ≥115)=(1﹣0.64)=0.18,
∴该班数学成绩在115分以上的人数为0.18×50=9
故选:B.
【点评】本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩ξ关于ξ=105对称,利用对称写出要用的一段分数的频数,题目得解.
10.【答案】A
【解析】解:∵sinC=2sinB,∴c=2b,
∵a2﹣b2
=bc,∴cosA===
∵A是三角形的内角
∴A=30°
故选A.
【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.
11.【答案】C
【解析】解:已知双曲线的右焦点为F,
若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,
则该直线的斜率的绝对值小于等于渐近线的斜率,
∴≥,离心率e2=,
∴e≥2,故选C
【点评】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.
12.【答案】B
【解析】从所给的三视图可以得到该几何体为三棱锥,
所求表面积为三棱锥四个面的面积之和。
利用垂直关系和三角形面积公式,可得:
====
S S S S
10,10,10,
后右左
底
S=+,故选B.
因此该几何体表面积30
二、填空题
13.【答案】.
【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是6×6=36,即(a,b)的情况有36种,
事件“a+b为偶数”包含基本事件:
(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),
(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)
(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,
“在a+b为偶数的条件下,|a﹣b|>2”包含基本事件:
(1,5),(2,6),(5,1),(6,2)共4个,
故在a+b为偶数的条件下,|a﹣b|>2发生的概率是P==
故答案为:
【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键.
14.【答案】12π
【解析】
考点:球的体积与表面积.
【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的
结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.
15.【答案】6.
【解析】解:由抛物线y2=4x可得p=2.
设A(x1,y1),B(x2,y2).
∵线段AB的中点M的横坐标为2,∴x1+x2=2×2=4.
∵直线AB过焦点F,
∴|AB|=x1+x2+p=4+2=6.
故答案为:6.
【点评】本题考查了抛物线的过焦点的弦长公式、中点坐标公式,属于基础题.
16.【答案】4.
【解析】解:双曲线x2﹣my2=1化为x2﹣=1,
∴a2=1,b2=,
∵实轴长是虚轴长的2倍,
∴2a=2×2b,化为a2=4b2,即1=,
解得m=4.
故答案为:4.
【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键.
17.【答案】①②④
【解析】解:①在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0)则正态曲线关于x=1对称.若ξ在(0,1)内取值的概率为0.35,则ξ在(0,2)内取值的概率P=2×0.35=0.7;故①正确,
②∵y=ce kx,
∴两边取对数,可得lny=ln(ce kx)=lnc+lne kx=lnc+kx,
令z=lny,可得z=lnc+kx,
∵z=0.3x+4,
∴lnc=4,
∴c=e4.故②正确,
③已知命题“若函数f(x)=e x﹣mx在(0,+∞)上是增函数,
则m≤1”的逆否命题是“若m>1,则函数f(x)=e x﹣mx在(0,+∞)上不是增函数”,
若函数f(x)=e x﹣mx在(0,+∞)上是增函数,则f′(x)≥0恒成立,
即f′(x)=e x﹣m≥0在(0,+∞)上恒成立,
即m≤e x,
∵x>0,∴e x>1,
则m≤1.故原命题是真命题,则命题的逆否命题也是真命题,故③错误,
④设f(x)=ax2﹣(a+b﹣1)x+b,
则f(0)=b>0,f(1)=a﹣(a+b﹣1)+b=1>0,
∴要使∀x>1恒成立,
则对称轴x=,
即a+b﹣1≤2a,即a≥b﹣1,
即不等式ax2﹣(a+b﹣1)x+b>0对∀x>1恒成立的充要条件是a≥b﹣1.故④正确,
故答案为:①②④
18.【答案】1464
【解析】【知识点】函数模型及其应用
【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,
房间C用涂料2,即最低的涂料总费用是元。
故答案为:1464
三、解答题
19.【答案】
【解析】解:(Ⅰ)f(x)=2|x﹣1|﹣|2x+m|=|2x﹣2|﹣|2x+m|≤|(2x﹣2)﹣(2x+m)|=|m+2|
∵m≥0,∴f(x)≤|m+2|=m+2,当x=1时取等号,
∴f(x)max=m+2,又f(x)的最大值为3,∴m+2=3,即m=1.
(Ⅱ)根据柯西不等式得:(a2+b2+c2)[12+(﹣2)2+12]≥(a﹣2b+c)2,
∵a﹣2b+c=m=1,∴,
当,即时取等号,∴a2+b2+c2的最小值为.
【点评】本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题.20.【答案】
【解析】解:(Ⅰ)关于x的不等式f(x)≥a2﹣3a恒成立,即|﹣x|﹣|+x|≥a2﹣3a恒成立.
由于f(x)=|﹣x|﹣|+x|=,故f(x)的最小值为﹣2,
∴﹣2≥a2﹣3a,求得1≤a≤2.
(Ⅱ)由于f(x)的最大值为2,∴f(m)≤2,f(n)≤2,
若f (m )+f (n )=4,∴m <n ≤
﹣,∴m+n <﹣5.
【点评】本题主要考查分段函数的应用,求函数的最值,函数的恒成立问题,属于中档题.
21.【答案】(1)详见解析;(2)详见解析
.
∴点P 为线段AB 中点,PB PA =;…………7分 (2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,故122-=∆t S OAB ,…………9分
若直线AB 斜率存在,由(1)可得
148221+-=+k km x x ,144422221+-=k t m x x ,1
41141222212+-+=-+=k t k x x k AB ,…………11分 点O 到直线AB 的距离2221141k k k m d ++=+=
,…………13分 ∴122
12-=⋅=∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分 22.【答案】
【解析】解:(1)A={x|x 2+2x <0}={x|﹣2<x <0}, B={x|y=}={x|x+1≥0}={x|x ≥﹣1},
∴∁R A={x|x ≤﹣2或x ≥0},
∴(∁R A )∩B={x|x ≥0};…
(2)当a ≥2a+1时,C=∅,此时a ≤﹣1满足题意;
当a <2a+1时,C ≠∅,
应满足,
解得﹣1<a ≤﹣;
综上,a 的取值范围是
.…
23.【答案】
【解析】解:(Ⅰ)∵,化为(x ﹣2)(x+1)>0,解得x >2或x <﹣1,∴函数f (x )=的定义域A=(﹣∞,﹣1)∪(2,+∞);
由不等式x 2﹣(2a+1)x+a 2+a >0化为(x ﹣a )(x ﹣a ﹣1)>0,又a+1>a ,∴x >a+1或x <a ,
∴不等式x 2﹣(2a+1)x+a 2+a >0的解集B=(﹣∞,a )∪(a+1,+∞);
(Ⅱ)∵A ∪B=B ,∴A ⊆B .
∴,解得﹣1≤a ≤1.
∴实数a 的取值范围[﹣1,1].
24.【答案】
【解析】(1)证明;在菱形ABCD 中,AB=2,∠DAB=60°,∴△ABD ,△CBD 为等边三角形,
∵E 是BD 的中点,∴AE ⊥BD ,AE=CE=
,
∵AC=,∴AE 2+CE 2=AC 2, ∴AE ⊥EC ,∴AE ⊥平面BCD ,
又∵AE ⊂平面ABD ,∴平面ABD ⊥平面BCD ;
(2)解:由(1)可知建立以E 为原点,EC 为x 轴,ED 为y 轴,EA 为z 轴的空间直角坐标系E ﹣xyz ,
则D (0,1,0),C (,0,0),F (0,,)G (﹣,1,),
平面CDG 的一个法向量=(0,0,1),
设平面FDG 的法向量=(x ,y ,z ),=(0,﹣,),=(﹣,1,)
∴,即,令z=1,得x=3,y=
,
故平面FDG 的一个法向量=(3,
,1),
∴cos ==,
∴二面角F ﹣DG ﹣C 的余弦值为﹣.
【点评】本题考查平面垂直,考查平面与平面所成的角,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.。