(最新)届高考物理:专题十二动量和冲量动量定理及其应用精准培优专练11081171(含答案)(精品).doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培优点十二动量和冲量、动量定理及其应用
一、考点分析
1. 本部分内容改为必考后,一般是以较容易或中等难度的选择题或计算题出现,可单独考查,也可和动量守恒定律综合考查。

2. 注意要点:
(1)注意动量的矢量性及动量变化量的矢量性;(2)动量定理Ft=p′-p中“Ft”为合外力的冲量。

二、考题再现
典例1. (2018∙全国II卷∙15)高空坠物极易对行人造成伤害。

若一个50 g的鸡蛋从一居民楼的25层坠下,与地面的撞击时间约为2 ms,则该鸡蛋对地面产生的冲击力约为
( )
A. 10 N
B. 102 N
C. 103 N
D. 104 N
【解析】设鸡蛋落地瞬间的速度为v ,每层楼的高度大约是3 m ,由动能定理:212mgh mv =,解得:1015m/s v =,落地时受到自身的重力和地面的支持力,规定向上为正,由动量定理可知:(F -mg )t = 0-(-mv ),解得:F ≈1000 N ,根据牛顿第三定律可知鸡蛋对地面产生的冲击力约为103 N ,故C 正确。

【答案】C
典例2. (2017∙全国III 卷∙20)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动。

F 随时间t 变化
的图线如图所示,则( )
A.t=1 s时物块的速率为1 m/s
B.t=2 s时物块的动量大小为4 kg·m/s
C.t=3 s时物块的动量大小为5 kg·m/s
D.t=4 s时物块的速度为零
【解析】法一根据F-t图线与时间轴围成的面积的物理意义为合外力F的冲量,可知在0~1 s、0~2 s、0~3 s、0~4 s内合外力冲量分别为2 N·s、4 N·s、3 N·s、2 N·s,应用动量定理I=mΔv可知物块在1 s、2 s、3 s、4 s末的速率分别为1 m/s、2 m/s、1.5 m/s、1 m/s,物块在这些时刻的动量大小分别为2 kg·m/s、4
kg·m/s、3 kg·m/s、2 kg·m/s,则A、B项正确,C、D项错误。

法二前2 s内物块做初速度为零的匀加速直线运
动,加速度a1=F1
m

2
2
m/s2=1 m/s2,t=1 s时物块的速率
v1=a1t1=1 m/s,A正确;t=2 s时物块的速率v2=a1t2=2 m/s,动量大小为p2=mv2=4 kg·m/s,B正确;物块在2~
4 s内做匀减速直线运动,加速度的大小为a2=F2
m
=0.5
m/s2,t=3 s时物块的速率v3=v2-a2t3=(2-0.5×1) m/s=1.5 m/s,动量大小为p3=mv3=3 kg·m/s,C错误;t=4 s 时物块的速率v4=v2-a2t4=(2-0.5×2) m/s=1 m/s,D错误。

【答案】AB
三、对点速练
1.“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下,将蹦极过程简化为人沿竖直方向的运动,从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是( )
A.绳对人的冲量始终向上,人的动量先增大后减小
B.绳对人的拉力始终做负功,人的动能一直减小
C.绳恰好伸直时,绳的弹性势能为零,人的动能最大
D.人在最低点时,绳对人的拉力等于人所受的重力
【答案】A
2.(多选)一物体仅在力F的作用下由静止开始运动,
力F随时间变化的图象如图所示,则下列说法中正确的
是( )
A.0~3 s内,力F所做的功等于零,冲量也等于零
B.0~4 s内,力F所做的功等于零,冲量也等于零
C.第1 s内和第2 s内的速度方向相同,加速度方向相反
D.第3 s内和第4 s内的速度方向相反,加速度方向相同
【答案】AD
3.下列四个图描述的是竖直上抛物体的动量增量随时间变化的曲线和动量变化率随时间变化的曲线,若不计空气阻力,取竖直向上为正方向,那么正确的是( )
【答案】C
【解析】在不计空气阻力的情况下,做竖直上抛运动的物体只受重力的作用,加速度方向竖直向下,取竖直向上
为正方向,根据动量定理,有Δp =-mg Δt ,Δp Δt
=-mg ,所以C 正确。

4.(多选)如图所示,质量为m 的小球从距离地面高H
的A 点由静止开始释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h 的B 点时速度减为零。

不计空气阻力,重力加速度为g 。

关于小球下落的整个
过程,下列说法正确的有( )
A.小球的机械能减小了mg(H+h)
B.小球克服阻力做的功为mgh
C.小球所受阻力的冲量大于m2gH
D.小球动量的改变量等于所受阻力的冲量
【答案】AC
【解析】小球在整个过程中,动能变化量为零,重力势能减小了mg(H+h),则小球的机械能减小了mg(H+h),故A正确;对小球下落的全过程运用动能定理得,mg(H+h)-W f=0,则小球克服阻力做功W f=mg(H+h),故B错误;小球落到地面的速度v=2gH,对进入泥潭的过程运用动量定理得:I G-I F=0-m2gH,得:I F=I G+m2gH,知
阻力的冲量大于m2gH,故C正确;对全过程分析,运用动量定理知,动量的变化量等于重力的冲量和阻力冲量的矢量和,故D错误。

5.(多选)几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!完全相同的水球
紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则下列判断正确的是( ) A.子弹在每个水球中的速度变化相同
B.子弹在每个水球中运动的时间不同
C.每个水球对子弹的冲量不同
D.子弹在每个水球中的动能变化相同
【答案】BCD
【解析】恰好能穿出第4个水球,即末速度v=0,逆向看子弹由右向左做初速度为零的匀加速直线运动,则自左向右子弹通过四个水球的时间比为(2-3)∶(3-2)∶(2-1)∶1,则B正确;由于加速度a恒定,
由at=Δv,可知子弹在每个水球中的速度变化不同,A项错误;因加速度恒定,则每个水球对子弹的阻力恒定,则由I=ft可知每个水球对子弹的冲量不同,C项正确;由动能定理有ΔE k=fx,f相同,x相同,则ΔE k相同,D项正确。

6.一质量为2 kg的物体受水平拉力F作用,在粗糙水平面上做加速直线运动时的a-t图象如图所示,t=0时其速度大小为2 m/s,滑动摩擦力大小恒为2 N,则( )
A .t =6 s 时,物体的速度为
18 m/s
B .在0~6 s 内,合力对物体做的功为400 J
C .在0~6 s 内,拉力对物体的冲量为36 N ·s
D .t =6 s 时,拉力F 的功率为200 W
【答案】D
【解析】类比速度图象中位移的表示方法可知,在a -t 图象中图线与坐标轴所围面积表示速度变化量,在0~6 s 内Δv =18 m/s ,又v 0=2 m/s ,则t =6 s 时的速度v =20 m/s ,
A 错误;由动能定理可知,0~6 s 内,合力做的功为W =12
mv 2-12
mv 20=396 J ,B 错误;由动量定理可知,I F -F f ·t =mv -
mv0,代入已知条件解得I F=48 N·s,C错误;由牛顿第二定律可知,6 s末F-F f=ma,解得F=10 N,所以拉力的功率P=Fv=200 W,D正确。

7.(多选)如图甲所示,一质量为m的物块在t=0时
刻,以初速度v0从足够长、倾角为θ的粗糙
斜面底端向上滑行,物块速度随时间变化的
图象如图乙所示。

t0时刻物块到达最高点,3t0时刻物块又返回底端。

下列说法正确的是( )
A.斜面倾角θ的正弦值为5v0 8gt0
B.不能求出3t0时间内物块克服摩擦力所做的功
C.物块从开始运动到返回底端的过程中重力的冲量大小为3mgt0sin θ
D.物块从t=0时刻开始运动到返回底端的过程中动
量变化量大小为3
2 mv0
【答案】AD
【解析】根据动量定理得,上滑过程:-(mg sin θ+μmg cos θ)·t0=0-mv0,下滑过程:(mg sin θ-μmg cos
θ)·2t0=mv;上滑与下滑过程位移大小相等,则v0t0
2

v·2t0
2

联立解得v=v0
2
,sin θ=
5v0
8gt0
,μ=
3
5
tan θ,故A正确;根据
μ=3
5
tan θ可求解摩擦力,根据题图乙也可求解3t0内的路
程,由此可求解3t0时间内物块克服摩擦力所做的功,故B 错误;物块从开始运动到返回底端的过程中重力的冲量大小
为3mgt0,C错误;物块从t=0时
刻开始运动到返回底端的过程中动量变化量大小为Δ
p=mv0-(-1
2
mv0)=
3
2
mv0,选项D正确。

8.一位蹦床运动员仅在竖直方向上运动,弹簧床对运动员的弹力F随时间t的变化规律通过传感器用计算机绘制出来,如图所示,不计空气阻力,取重力加速度g=10 m/s2,试结合图象,求:
(1)运动员的质量;
(2)运动员跳起的最大高度;
(3)在11.5~12.3 s时间内,运动员对弹簧床的平均作
用力多大?
【解析】(1)由图象可知:mg=500 N,所以m=50 kg。

(2)由图象可知,运动员在空气中运动时间t=2 s,所以
H=1
2
g




⎫t
2
2=
1
2
×10×12 m=5 m。

(3)v0=v=g·t
2
=10 m/s
以运动员为研究对象,向上为正,由动量定理:
(N-mg)·Δt=mv-m(-v0)
解得:N=1750 N
由牛顿第三定律,运动员对弹簧床的平均作用力为1750 N。

9.如图所示,质量0.5 kg,长1.2 m的金属盒AB,
放在水平桌面上,它与桌面间动摩擦因数μ=1
8
,在盒内右端
B放着质量也为0.5 kg,半径为0.1 m的弹性球,球与盒接触面光滑。

若在A端给盒以水平向右的冲量1.5 N·s,设盒在运动中与球碰撞时间极短,且无能量损失,求:
(1)盒从开始运动到完全停止所通过的路
程;
(2)盒从开始运动到完全停止所经过的时间。

【解析】(1)研究对象是金属盒,盒受冲量I后获得速度v,由动量定理,有:
I=mv-0
解得:v=3 m/s
盒以此速度向右运动,运动中受到桌面对盒的摩擦力为:
f=μF N=μ·2mg
由牛顿第二定律得:f=ma
盒运动了x1=(1.2-0.1×2)m=1 m后速度减少为v′,则有:
v′2-v2=2ax1
联立解得:v′=2 m/s
盒左壁A以v′速度与球相碰,因碰撞中无能量损失,盒停止,球以v′=2 m/s的速度向右做匀速直线运动,运动1 m后又与盒的右壁相碰,盒又以v′=2 m/s的速度向右运动,直到停止。

由0-v′2=2ax2
得x2=0.8 m
因x2只有0.8 m,此时静止小球不会再与盒的左壁相碰,所以盒通过的总路程为:
s=x1+x2=1.8 m。

(2)盒从开始运动到与球相碰所用时间为t1根据动量定理,有:
-μ·2mgt1=mv′-mv
解得:t1=0.4 s
小球匀速运动时间t2=x1
v′
=0.5 s
盒第二次与球相碰后到停止运动的时间为t3,根据动量定理,有:
-μ·2mgt3=0-mv′
解得:t3=0.8 s
总时间t=t1+t2+t3=1.7 s。

相关文档
最新文档