2018年四川省中考数学真题汇编解析:数与式、方程不等式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国各地中考数学真题汇编(四川专版)
数与式、方程不等式
参考答案与试题解析
一.选择题(共10小题)
1.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()
A.9人B.10人C.11人D.12人
解:设参加酒会的人数为x人,
根据题意得:x(x﹣1)=55,
整理,得:x2﹣x﹣110=0,
解得:x1=11,x2=﹣10(不合题意,舍去).
答:参加酒会的人数为11人.
故选:C.
2.(2018•乐山)方程组==x+y﹣4的解是()
A.B.C.D.
解:由题可得,,
消去x,可得
2(4﹣y)=3y,
解得y=2,
把y=2代入2x=3y,可得
x=3,
∴方程组的解为.
故选:D.
3.(2018•乐山)估计+1的值,应在()
A.1和2之间B.2和3之间C.3和4之间D.4和5之间
解:∵≈2.236,
∴+1≈3.236,
故选:C.
4.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()
A.B.C.D.
解:移项,得:x﹣2x≥﹣1﹣1,
合并同类项,得:﹣x≥﹣2,
系数化为1,得:x≤2,
将不等式的解集表示在数轴上如下:
,
故选:B.
5.(2018•绵阳)将全体正奇数排成一个三角形数阵:
1
3 5
7 9 11
13 15 17 19
23 25 27 29
…
按照以上排列的规律,第25行第20个数是()
A.639 B.637 C.635 D.633
解:根据三角形数阵可知,第n行奇数的个数为n个,
则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,
则第n行(n≥3)从左向右的第m数为为第+m奇数,
即:1+2[+m﹣1]=n2﹣n+2m﹣1
n=25,m=20,这个数为639,
故选:A.
6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()
A.B.﹣C.﹣D.
解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,
∴α+β=﹣,αβ=﹣3,
∴+====﹣.
故选:C.
7.(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()
A.1 B.﹣C.±1 D.±
解:∵a+b=2,ab=,
∴(a+b)2=4=a2+2ab+b2,
∴a2+b2=,
∴(a﹣b)2=a2﹣2ab+b2=1,
∴a﹣b=±1,
故选:C.
8.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()
A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1
解:由x>2a﹣3,
由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,
由关于x的不等式组仅有三个整数:
解得﹣2≤2a﹣3<﹣1,
解得≤a<1,
故选:A.
9.(2018•南充)已知=3,则代数式的值是()
A.B.C.D.
解:∵=3,
∴=3,
∴x﹣y=﹣3xy,
则原式=
=
=
=,
故选:D.
10.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()
A.8% B.9% C.10% D.11%
解:设平均每次下调的百分率为x,由题意,得
6000(1﹣x)2=4860,
解得:x1=0.1,x2=1.9(舍去).
答:平均每次下调的百分率为10%.
故选:C.
二.填空题(共10小题)
11.(2018•自贡)分解因式:ax2+2axy+ay2=a(x+y)2.
解:原式=a(x2+2xy+y2)…(提取公因式)
=a(x+y)2.…(完全平方公式)
12.(2018•成都)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即
当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,
S2018=﹣.
解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==
﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,
∴S n的值每6个一循环.
∵2018=336×6+2,
∴S2018=S2=﹣.
故答案为:﹣.
13.(2018•自贡)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为10、20个.
解:设甲玩具购买x个,乙玩具购买y个,由题意,得
,
解得,
甲玩具购买10个,乙玩具购买20个,
故答案为:10,20.
14.(2018•绵阳)已知a>b>0,且++=0,则=.
解:由题意得:2b(b﹣a)+a(b﹣a)+3ab=0,
整理得:2()2+﹣1=0,
解得=,
∵a>b>0,
∴=,
故答案为.
15.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为
.
解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,
∴4n2﹣4mn+2n=0,
∴4n﹣4m+2=0,
∴m﹣n=.
故答案是:.
16.(2018•达州)若关于x的分式方程=2a无解,则a的值为1或.解:去分母得:
x﹣3a=2a(x﹣3),
整理得:(1﹣2a)x=﹣3a,
当1﹣2a=0时,方程无解,故a=;
当1﹣2a≠0时,x==3时,分式方程无解,
则a=1,
故关于x的分式方程=2a无解,则a的值为:1或.
故答案为:1或.
17.(2018•自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.
解:
观察图形可知:
第1个图形共有:1+1×3,
第2个图形共有:1+2×3,
第3个图形共有:1+3×3,
…,
第n个图形共有:1+3n,
∴第2018个图形共有1+3×2018=6055,
故答案为:6055.
18.(2018•眉山)已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为k<6且k≠3.
解;﹣2=,
方程两边都乘以(x﹣3),得
x=2(x﹣3)+k,
解得x=6﹣k≠3,
关于x的方程程﹣2=有一个正数解,
∴x=6﹣k>0,
k<6,且k≠3,
∴k的取值范围是k<6且k≠3.
故答案为:k<6且k≠3.
19.(2018•达州)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.解:由n2+2n﹣1=0可知n≠0.
∴1+﹣=0.
∴﹣﹣1=0,
又m2﹣2m﹣1=0,且mn≠1,即m≠.
∴m,是方程x2﹣2x﹣1=0的两根.
∴m+=2.
∴=m+1+=2+1=3,
故答案为:3.
20.(2018•遂宁)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达
目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣=.解:设乙车的速度是x千米/小时,则根据题意,可列方程:
﹣=.
故答案为:﹣=.
三.解答题(共16小题)
.(2018•攀枝花)解方程:﹣=1.
解:去分母得:3(x﹣3)﹣2(2x+1)=6,
去括号得:3x﹣9﹣4x﹣2=6,
移项得:﹣x=17,
系数化为1得:x=﹣17.
22.(2018•遂宁)计算:()﹣1+(﹣1)0+2sin45°+|﹣2|.
解:原式=3+1+2×+2﹣
=4++2﹣
=6.
23.(2018•自贡)解不等式组:,并在数轴上表示其解集.
解:解不等式①,得:x≤2;
解不等式②,得:x>1,
∴不等式组的解集为:1<x≤2.
将其表示在数轴上,如图所示.
24.(2018•遂宁)先化简,再求值•+.(其中x=1,y=2)解:当x=1,y=2时,
原式=•+
=+
=
=﹣3
25.(2018•攀枝花)攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?
解:设该同学的家到学校的距离是x千米,依题意:
24.8﹣1.8<5+1.8(x﹣2)≤24.8,
解得:12<x≤13.
故该同学的家到学校的距离在大于12小于等于13的范围.
26.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.
解:∵该一元二次方程有两个实数根,
∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,
解得:a≤1,
由韦达定理可得x1x2=a,x1+x2=2,
∵x1x2+x1+x2>0,
∴a+2>0,
解得:a>﹣2,
∴﹣2<a≤1.
27.(2018•宜宾)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.
解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,
根据题意得:﹣=5,
解得:x=20,
经检验,x=20是原方程的解,且符合题意,
∴(1+50%)x=30.
答:每月实际生产智能手机30万部.
28.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?
(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,
根据题意可得:﹣=24,
解得:x=20,
经检验得:x=20是原方程的根,
则2.5x=50,
答:乙图书每本价格为20元,则甲图书每本价格是50元;
(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,
故50x+20(2x+8)≤1060,
解得:x≤10,
故2x+8≤28,
答:该图书馆最多可以购买28本乙图书.
29.(2018•绵阳)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.
(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?
(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?
解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:
,
解得:,
答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;
(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,
根据题意可得:4m+1.5(10﹣m)≥33,
解得:m≥7.2,令m=8,
大货车运费高于小货车,故用大货车少费用就小
则安排方案有:大货车8辆,小货车1辆,
30.(2018•内江)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是00元.
(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?
(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.
①该商场有哪几种进货方式?
②该商场选择哪种进货方式,获得的利润最大?
解:(1)设A、B两种型号的手机每部进价各是x元、y元,
根据题意得:,
解得:,
答:A、B两种型号的手机每部进价各是2000元、1500元;
(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,
根据题意得:,
解得:≤a≤30,
∵a为解集内的正整数,
∴a=27,28,29,30,
∴有4种购机方案:
方案一:A种型号的手机购进27部,则B种型号的手机购进13部;
方案二:A种型号的手机购进28部,则B种型号的手机购进12部;
方案三:A种型号的手机购进29部,则B种型号的手机购进11部;
方案四:A种型号的手机购进30部,则B种型号的手机购进10部;
②设A种型号的手机购进a部时,获得的利润为w元.
根据题意,得w=500a+600(40﹣a)=﹣100a+24000,
∵﹣10<0,
∴w随a的增大而减小,
∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=300(元).
因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.
答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.
31.(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).
(1)求证:无论m为任何非零实数,此方程总有两个实数根;
(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;
(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.
(1)证明:由题意可得:
△=(1﹣5m)2﹣4m×(﹣5)
=1+25m2﹣10m+20m
=25m2+10m+1
=(5m+1)2≥0,
故无论m为任何非零实数,此方程总有两个实数根;
(2)解:mx2+(1﹣5m)x﹣5=0,
解得:x1=﹣,x2=5,
由|x1﹣x2|=6,
得|﹣﹣5|=6,
解得:m=1或m=﹣;
(3)解:由(2)得,当m>0时,m=1,
此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,
由题已知,P,Q关于x=2对称,
∴=2,即2a=4﹣n,
∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.
32.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.
(1)求证:方程有两个不相等的实数根.
(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.
解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)
=4>0,
∴方程有两个不相等的实数根.
(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,
∴+=(x1+x2)2﹣2x1x2=10,
∴(2m﹣2)2﹣2(m2﹣2m)=10,
∴m2﹣2m﹣3=0,
∴m=﹣1或m=3
33.(2018•广安)某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.
(1)求今年A型车每辆车的售价.
(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元、1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?
解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,
根据题意得:=,
解得:x=1600,
经检验,x=1600是原分式方程的解,
∴今年A型车每辆车售价为1600元.
(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,
根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.
∵B型车的进货数量不超过A型车数量的两倍,
∴45﹣a≤2a,解得:a≥15.
∵﹣100<0,
∴y随a的增大而减小,
∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.
答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.
34.(2018•资阳)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.
(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?
解:(1)设改建后的绿化区面积为x亩.
由题意:x+20%•x=162,
解得x=135,
162﹣135=27,
答:改建后的绿化区面积为135亩和休闲区面积有27亩.
(2)设绿化区的面积为m亩.
由题意:35000m+25000(162﹣m)≤5500000,
解得m≤145,
答:绿化区的面积最多可以达到145亩.
35.(2018•自贡)阅读以下材料:
对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.
对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log6,对数式2=log525可以转化为52=25.
我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:
设log a M=m,log a N=n,则M=a m,N=a n
∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)
又∵m+n=log a M+log a N
∴log a(M•N)=log a M+log a N
解决以下问题:
(1)将指数43=64转化为对数式3=log464;
(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)
(3)拓展运用:计算log32+log36﹣log34=1.
解:(1)由题意可得,指数式43=64写成对数式为:3=log 464,
故答案为:3=log 464;
(2)设log a M=m ,log a N=n ,则M=a m ,N=a n ,
∴==a m ﹣n ,由对数的定义得m ﹣n=log a ,
又∵m ﹣n=log a M ﹣log a N ,
∴log a =log a M ﹣log a N (a >0,a ≠1,M >0,N >0);
(3)log 32+log 36﹣log 34,
=log 3(2×6÷4),
=log 33,
=1,
故答案为:1.
36.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.
(1)求一件A 型、B 型丝绸的进价分别为多少元?
(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.
①求m 的取值范围.
②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n ≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).
解:(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为(x +100)元
根据题意得:
解得400=x
经检验,400=x 为原方程的解 500100=+x
答:一件A 型、B 型丝绸的进价分别为500元,400元.
(2)①根据题意得:
∴m的取值范围为:16≤m≤25
②设销售这批丝绸的利润为y
根据题意得:
y=(800﹣500﹣2n)m+(600﹣400﹣n)•(50﹣m)
=(100﹣n)m+10000﹣50n
∵50≤n≤150
∴(Ⅰ)当50≤n<100时,100﹣n>0
m=25时,
销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500(Ⅱ)当n=100时,100﹣n=0,
销售这批丝绸的最大利润w=5000
(Ⅲ)当100<n≤150时,100﹣n<0
当m=16时,
销售这批丝绸的最大利润w=﹣66n+11600。