9月Y2笔试

合集下载

2009年9月全国计算机等级考试笔试试题及答案

2009年9月全国计算机等级考试笔试试题及答案
if(max<x[i]) max=x[i];}
return max;
}
造成错误的原因是
A)定义语句int i,max:中max 未赋初值
B)赋值语句max=MIN;中,不应给max 赋MIN值
C)语句if(max<x[i]) max=x[i];中判断条件设置错误
D)赋值语句max=MIN;放错了位置
#include <string.h>
main()
{char a[10]=”abcd”;
printf(“%d, %d\n”,strlen(a),sizeof(a));
}
程序运行后的输出结果为:
A)7,4 B)4,10 C)8,8D)10,10
(31)下面是有关C语言字;&s[i]<=’z’) n++;
printf(“%d\n”,n);
}
程序运行后的输出结果是
A)0 B)2 C)3 D)5
(21)有以下程序
}
该程序在编译时产生错误,其出错原因是
A) 定义语句出错,case是关键字,不能用作用户自定义标识符
B) 定义语句出错,printF不能用作用户自定义标识符
C) 定义语句无错,scanf不能作为输入函数使用
D) 定义语句无错,printf不能输出case的值
(14)表达式:(int)((double)9/2)-(9)%2的值是
A)操作系统的一部分 B)在操作系统支持下的系统软件
C)一种编译系统 D)一种操作系统
9、在E-R图型中,用来表示两个实体联系的图型的是:
A) 矩形 B) 椭圆 C)菱形 D)三角形

重庆市育才中学教育集团2024-2025学年九年级上学期9月月考数学试题

重庆市育才中学教育集团2024-2025学年九年级上学期9月月考数学试题

重庆市育才中学教育集团2024-2025学年九年级上学期9月月考数学试题一、单选题1.下面这四个图形中,不是轴对称图形的是( )A .B .C .D . 2.要使分式12x x +-有意义,则x 的取值应满足( ) A .1x ≠-且2x ≠ B .0x ≠ C .1x ≠- D .2x ≠3.一元二次方程2312x x +=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法判断4.甲流病毒是一种传染性极强的急性呼吸道传染病,感染者的临床以发热、乏力、干咳为主要表现.在“甲流”初期,若有一人感染了“甲流”,若得不到有效控制,则每轮传染平均一个人传染x 人,经过两轮传染后共有256人感染了“甲流”.则关于x 的方程为( ) A .(1)256x x x ++=B .2256x x +=C .1(1)256x x x +++=D .2(1)(1)256x x +++=5.根据下列表格的对应值,估计方程2430x x +-=的一个解的范围是( )A .0.40.5x <<B .0.50.6x <<C .0.60.7x <<D .0.70.8x << 6.下列命题中,错误的命题是( )A .一组对边平行且相等的四边形是平行四边形;B .两条对角线互相垂直且相等的四边形是正方形;C .对角线相等的平行四边形是矩形;D .对角线互相垂直的平行四边形是菱形. 7.2024年3月24日,长安汽车重庆马拉松在美丽的海棠烟雨公园鸣枪起跑.甲、乙两人参加了40千米的比赛,甲每小时比乙多跑了2千米,最终甲比乙早1小时到达.设乙的速度为每小时x 千米,则可列方程为( )A .404012x x =+-B .404012x x =--C .404012x x =++D .404012x x =-+ 8.函数2(0)y mx nx m =+≠与y mx n =+的图象可能是( )A .B .C .D .9.已知四边形ABCD 和DEFG 都是正方形,点F 在线段AB 上,连接,AE BD BD 、交FG 于点H .若AEF α∠=,则BHF ∠=( )A .2αB .45α︒+C .22.5α︒+D .90α︒+10.将有序实数对(),m n 进行操作后可得到一个新的有序实数对(),m n m n ---,将得到的新的有序实数对按上述规则继续操作下去,每得到一个新的有序实数对称为一次操作.例如:()2,1经过一次操作后得到()1,3-,()2,1经过二次操作后得到()4,2,…,下列说法: ①若(),5m 经过三次操作后得到有序实数对(),5x ,则25x =-;②在平面直角坐标系中,将()m,2所对应的点标记为点P ,将()m ,2经过二次操作、五次操作所得的有序实数对分别标记为点M ,点N ,若直线MN 垂直于x 轴,则PMN V 的面积为56;③若3x y +=,2xy =-且x y <,则()22,x y 经过三次操作后的结果为()26--. 其中正确的个数是( )A .0B .1C .2D .3二、填空题11.计算:)201222-⎛⎫+-+-π= ⎪⎝⎭. 12.某商品原价200元,连续两次降价后售价为128元,则平均每次降价的百分数为. 13.已知一个多边形的每一个外角都等于72︒,则这个多边形的边数是.14.已知四边形ABCD 是菱形,若(0,0),(3,1)A C ,则直线BD 与x 轴的交点的坐标为. 15.如图所示,抛物线形拱桥的顶点距水面2m 时,测得拱桥内水面宽为12m .当水面升高1m 后,拱桥内水面的宽度为m .16.若二次函数()2142y a x x =+--的图象与x 轴有两个公共点,且关于y 的不等式组2423210y a y -⎧<⎪⎨⎪--≤⎩至少有两个整数解,则符合条件的所有整数a 的和为. 17.如图,在矩形ABCD中,4,AB BC ==P 是BC 边上一点,连接AP ,以A 为中心,将线段AP 绕点A 逆时针旋转60︒得到AQ ,连接CQ DQ 、,且BCQ DCQ ∠=∠,则CQ 的长度为.18.一个各数位上的数字均不为0的四位自然数abcd ,若百位数字与十位数字的乘积等于千位数字与个位数字组成的两位数,即b c ad ⋅=,则称这个数为“功能数”例如:四位数1342,∵3412⨯=,∴1342是“功能数”.若349d 是一个“功能数”,则这个数为;对于一个“功能数”P ,将P 的千位数字和十位数字交换位置,百位数字和个位数字交换位置得到的新数记为P ',若4P P '+除以13的余数为P 的十位数字的2倍,则满足条件的P 的值为.三、解答题19.计算:(1)()()22x x y x y -++; (2)22111a a a a -⎛⎫+÷ ⎪+⎝⎭. 20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表根据以上信息,解答下列问题:(1)上述图表中a =______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹) (2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD ∥. ∴①,OCF OAE ∠=∠.∵点O 是AC 的中点, ∴②.∴CFO AEO ≅△△(AAS ). ∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.22.某水果店商家购进了一批哈密瓜和脆桃.商家用1600元购买哈密瓜,800元购买脆桃,每斤哈密瓜比每斤脆桃的进价贵6元,且购进脆桃的数量是哈密瓜的2倍.(1)求商家购买每斤哈密瓜和每斤脆桃的进价;(2)商家在销售过程中发现,当哈密瓜的售价为每斤14元,脆桃的售价为每斤5元时,平均每天可售出20斤哈密瓜,40斤脆桃.调查,哈密瓜的售价每降低0.5元平均每天可多售出5斤,且降价幅度不低于10%.商家在保证脆桃的售价和销量不变且不考虑其他因素的情况下,想使哈密瓜和胞桃平均每天的总获利为270元,则每斤哈密瓜的售价为多少元? 23.如图,在Rt ABC △中,90C ∠=︒,4AC =,3BC =,点D 是AC 的中点,动点P 以每秒1个单位长度的速度从点D 出发沿折线D A B →→方向运动,到达点B 时停止运动,设点P 的运动时间为x 秒,BCP V 的面积记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,若直线11y x b 2=+与该函数图象有且仅有两个交点,则b 的取值范围是______.24.如图,四边形ABCD 是休闲公园的人行步道.AC ,BD 是两条自行车道且相交于点O ,点B 是休闲公园入口.经测量,点A 在点D 的西偏南45︒方向,点C 在点D 的东偏南30︒方向,点C 在点A 的北偏东75︒方向,AD =(1)求自行车道AC 的长度(精确到个位数);(2)测得45AOB ∠=︒,小刚从A 点出发步行沿步道AB 去B 处取快餐,小刚步行的速度为60米每分钟,送餐员等待的时间不超过5分钟,请计算说明小刚能否在送餐员规定的时间内取1.414≈ 1.732≈2.449)25.如图,抛物线25y ax ax b =++经过点()1,5D --,且交x 轴于()6,0A -,B 两点(点A 在点B 的左侧),交y 轴于点C .(1)求抛物线的解析式.(2)如图1,过点D 作DM x ⊥轴,垂足为M ,点P 在直线AD 下方抛物线上运动,过点P 作PE AD ⊥,PF DM ⊥PF +的最大值,以及此时点P 的坐标.(3)将原抛物线沿射线CA G ,使得45CAG ∠=︒,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过程. 26.已知ABC V 为等边三角形,D 是边AB 上一点,连接CD ,点E 为CD 上一点,连接BE .(1)如图1,延长BE 交AC 于点F ,若45CBF ∠=︒,BF =CF 的长;(2)如图2,将BEC V 绕点C 顺时针旋转60︒到AGC V ,延长BC 至点H ,使得CH BD =,连接AH 交CG 于点N ,求证2CE DE GN =+;(3)如图3,4AB =,点H 是BC 上一点,且2BD CH =,连接DH ,点K 是AC 上一点,CK AD =,连接DK ,BK ,将△BKD 沿BK 翻折到BKQ V ,连接CQ ,当ADK △的周长最小时,直接写出CKQ V的面积.。

云南2024-2025学年高三上学期9月月考数学试题含答案

云南2024-2025学年高三上学期9月月考数学试题含答案

数学试卷(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{13},{(2)(4)0}A xx B x x x =≤≤=--<∣∣,则A B = ()A.(2,3] B.[1,2)C.(,4)-∞ D.[1,4)【答案】A 【解析】【分析】解出集合B ,再利用交集含义即可得到答案.【详解】{(2)(4)0}{24}B xx x x x =--<=<<∣∣,而{|13}A x x =≤≤,则(2,3]A B ⋂=.故选:A.2.已知命题2:,10p z z ∃∈+<C ,则p 的否定是()A.2,10z z ∀∈+<CB.2,10z z ∀∈+≥C C.2,10z z ∃∈+<C D.2,10z z ∃∈+≥C 【答案】B 【解析】【分析】根据存在量词命题的否定形式可得.【详解】由存在量词命题的否定形式可知:2:,10p z z ∃∈+<C 的否定为2,10z z ∀∈+≥C .故选:B3.正项等差数列{}n a 的公差为d ,已知14a =,且135,2,a a a -三项成等比数列,则d =()A.7B.5C.3D.1【答案】C【解析】【分析】由等比中项的性质再结合等差数列性质列方程计算即可;【详解】由题意可得()23152a a a -=,又正项等差数列{}n a 的公差为d ,已知14a =,所以()()2111224a d a a d +-=+,即()()222444d d +=+,解得3d =或1-(舍去),故选:C.4.若sin160m ︒=,则︒=sin 40()A.2m -B.2-C.2-D.2【答案】D 【解析】【分析】利用诱导公式求出sin 20︒,然后结合平方公式和二倍角公式可得.【详解】因为()sin160sin 18020sin 20m ︒=︒-︒=︒=,所以cos 20︒==,所以sin 402sin 20cos 202︒=︒︒=故选:D5.已知向量(1,2),||a a b =+= ,若(2)b b a ⊥- ,则cos ,a b 〈〉=()A.5-B.10-C.10D.5【答案】C 【解析】【分析】联立||a b += 和(2)0b b a ⋅-=求出,b a b ⋅ 即可得解.【详解】因为(1,2)a = ,所以a =,所以222||27a b a b a b +=++⋅=,整理得222b a b +⋅=①,又(2)b b a ⊥- ,所以2(2)20b b a b a b ⋅-=-⋅=②,联立①②求解得11,2b a b =⋅= ,所以12cos ,10a b a b a b⋅〈〉=== .故选:C 6.函数)()ln f x kx =是奇函数且在R 上单调递增,则k 的取值集合为()A.{}1-B.{0}C.{1}D.{1,1}-【答案】C 【解析】【分析】根据奇函数的定义得()))()222()ln lnln 10f x f x kx kx x k x -+=-+=+-=得1k =±,即可验证单调性求解.【详解】)()lnf x kx =+是奇函数,故()))()222()ln ln ln 10f x f x kx kx x k x -+=-+=+-=,则22211x k x +-=,210k -=,解得1k =±,当1k =-时,)()lnf x x ==,由于y x =在0,+∞为单调递增函数,故()lnf x =0,+∞单调递减,不符合题意,当1k =时,)()lnf x x =+,由于y x =在0,+∞为单调递增函数且()00f =,故)()ln f x x =为0,+∞单调递增,根据奇函数的性质可得)()ln f x x =+在上单调递增,符合题意,故1k =,故选:C7.函数π()3sin ,06f x x ωω⎛⎫=+> ⎪⎝⎭,若()(2π)f x f ≤对x ∈R 恒成立,且()f x 在π13π,66⎡⎤⎢⎣⎦上有3条对称轴,则ω=()A.16 B.76C.136D.16或76【答案】B【解析】【分析】根据()2π3,2π2f T T =≤<求解即可.【详解】由题知,当2πx =时()f x 取得最大值,即π(2π)3sin 2π36f ω⎛⎫=+= ⎪⎝⎭,所以ππ2π2π,Z 62k k ω+=+∈,即1,Z 6k k ω=+∈,又()f x 在π13π,66⎡⎤⎢⎥⎣⎦上有3条对称轴,所以13ππ2π266T T ≤-=<,所以2π12T ω≤=<,所以76ω=.故选:B8.设椭圆2222:1(0)x y E a b a b +=>>的右焦点为F ,过坐标原点O 的直线与E 交于A ,B 两点,点C 满足23AF FC = ,若0,0AB OC AC BF ⋅=⋅=,则E 的离心率为()A.9B.7C.5D.3【答案】D 【解析】【分析】设(),A m n ,表示出,,,OA OC AF BF,根据0,0AB OC AC BF ⋅=⋅= 列方程,用c 表示出,m n ,然后代入椭圆方程构造齐次式求解可得.【详解】设(),A m n ,则()(),,,0B m n F c --,则()()(),,,,,OA m n AF c m n BF c m n ==--=+,因为23AF FC = ,所以()555,222n AC AF c m ⎛⎫==-- ⎪⎝⎭,所以()()55533,,,22222n c n OC OA AC m n c m m ⎛⎫⎛⎫=+=+--=-- ⎪ ⎪⎝⎭⎝⎭ ,因为0,0AB OC AC BF ⋅=⋅=,所以222253302220c OA OC m m n AF BF c m n ⎧⎛⎫⋅=--=⎪ ⎪⎝⎭⎨⎪⋅=--=⎩ ,得34,55m c n c ==,又(),A m n 在椭圆上,所以222291625251c ca b+=,即()()222222229162525c a c a c a a c -+=-,整理得4224255090a a c c -+=,即42950250e e -+=,解得259e =或25e =(舍去),所以3e =.故选:D【点睛】关键点睛:根据在于利用向量关系找到点A 坐标与c 的关系,然后代入椭圆方程构造齐次式求解.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.数列{}n a 的前n 项和为n S ,已知22()n S kn n k =-∈R ,则下列结论正确的是()A.{}n a 为等差数列B.{}n a 不可能为常数列C.若{}n a 为递增数列,则0k >D.若{}n S 为递增数列,则1k >【答案】AC 【解析】【分析】根据,n n a S 的关系求出通项n a ,然后根据公差即可判断ABC ;利用数列的函数性,分析对应二次函数的开口方向和对称轴位置即可判断D .【详解】当1n =时,112a S k ==-,当2n ≥时,()()()221212122n n n a S S kn n k n n kn k -⎡⎤=-=-----=-+⎣⎦,显然1n =时,上式也成立,所以()22n a kn k =-+.对A ,因为()()()1222122n n a a kn k k n k k -⎡⎤-=-+---+=⎣⎦,所以是以2k 为公差的等差数列,A 正确;对B ,由上可知,当0k =时,为常数列,B 错误;对C ,若为递增数列,则公差20k >,即0k >,C 正确;对D ,若{}n S 为递增数列,由函数性质可知02322k k >⎧⎪⎨<⎪⎩,解得23k >,D 错误.故选:AC10.甲、乙两班各有50位同学参加某科目考试(满分100分),考后分别以110.820y x =+、220.7525y x =+的方式赋分,其中12,x x 分别表示甲、乙两班原始考分,12,y y 分别表示甲、乙两班考后赋分.已知赋分后两班的平均分均为60分,标准差分别为16分和15分,则()A.甲班原始分数的平均数比乙班原始分数的平均数高B.甲班原始分数的标准差比乙班原始分数的标准差高C.甲班每位同学赋分后的分数不低于原始分数D.若甲班王同学赋分后的分数比乙班李同学赋分后的分数高,则王同学的原始分数比李同学的原始分数高【答案】ACD 【解析】【分析】根据期望和标准差的性质求出赋分前的期望和标准差即可判断AB ;作差比较,结合自变量范围即可判断C ;作出函数0.820,0.7525y x y x =+=+的图象,结合图象可判断D .【详解】对AB ,由题知()()1215E y E y ====,因为110.820y x =+,220.7525y x =+,所以()()120.82060,0.752515E x E x +=+===,解得()()1250,20E x E x =≈==,所以()()12E x E x >=,故A 正确,B 错误;对C ,因为111200.2y x x -=-,[]10,100x ∈,所以10200.220x ≤-≤,即110y x -≥,所以C 正确;对D ,作出函数0.820,0.7525y x y x =+=+的图象,如图所示:由图可知,当12100y y =<时,有21x x <,又因为0.820y x =+单调递增,所以当12y y >时必有12x x >,D 正确.故选:ACD11.已知函数()f x 及其导函数()f x '的定义域为R ,若(1)f x +与()f x '均为偶函数,且(1)(1)2f f -+=,则下列结论正确的是()A.(1)0f '=B.4是()f x '的一个周期C.(2024)0f =D.()f x 的图象关于点(2,1)对称【答案】ABD 【解析】【分析】注意到()f x '为偶函数则()()2f x f x -+=,由()(1)1f x f x -+=+两边求导,令0x =可判断A ;()()11f x f x --='+'结合导函数的奇偶性可判断B ;利用()f x 的周期性和奇偶性可判断C ;根据()()2f x f x -+=和()(1)1f x f x -+=+可判断D .【详解】因为()f x '为偶函数,所以()()f x f x -'=',即()()f x f x c --=+,而(1)(1)2f f -+=,故2c =-,故()()2f x f x +-=,又(1)f x +为偶函数,所以()(1)1f x f x -+=+,即()()2f x f x =-,所以()2()2f x f x -+-=,故()(2)2f x f x ++=即()2(4)2f x f x +++=,()()4f x f x =+,所以4是()f x 的周期,故B 正确.对A ,由()(1)1f x f x -+=+两边求导得()()11f x f x --='+',令0x =得()()11f f -'=',解得()10f '=,A 正确;对C ,由上知()()2f x f x +-=,所以()01f =,所以()()(2024)450601f f f =⨯==,C 错误;对D ,因为()()2f x f x +-=,()()2f x f x =-,故()2(2)2f x f x -++=,故()f x 的图象关于2,1对称,故选:ABD【点睛】关键点睛:本题解答关键在于原函数与导数数的奇偶性关系,以及对()(1)1f x f x -+=+两边求导,通过代换求导函数的周期.三、填空题(本大题共3小题,每小题5分,共15分)12.曲线()e xf x x =-在0x =处的切线方程为______.【答案】1y =##10y -=【解析】【分析】求出函数的导函数,利用导数的几何意义求出切线的斜率,即可求出切线方程.【详解】因为()e xf x x =-,则()01f =,又()e 1xf x '=-,所以()00f '=,所以曲线()e xf x x =-在0x =处的切线方程为1y =.故答案为:1y =13.若复数cos 21sin isin (0π)2z θλθθθ⎛⎫=+-+<< ⎪⎝⎭在复平面内对应的点位于直线y x =上,则λ的最大值为__________.【答案】1-##1-+【解析】【分析】根据复数对应的点cos 21sin ,sin 2θλθθ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭在y x =得212sin 1sin sin 2θλθθ⎛⎫-+-= ⎪⎝⎭,即可利用二倍角公式以及基本不等式求解.【详解】cos 21sin isin (0π)2z θλθθθ⎛⎫=+-+<< ⎪⎝⎭对应的点为cos 21sin ,sin 2θλθθ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,故cos 21sin sin 2θλθθ⎛⎫+-= ⎪⎝⎭,故212sin 1sin sin 2θλθθ⎛⎫-+-= ⎪⎝⎭,由于()0,πθ∈,故sin 0θ>,则2sin 1111sin sin sin 122sin θλθθθθ==≤++++,当且仅当1sin 2sin θθ=,即2sin 2θ=,解得π3π,44θθ==时等号成立,114.过抛物线2:3C y x =的焦点作直线l 交C 于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于M ,N 两点,若||12AB =,则||MN =__________.【答案】【解析】【分析】联立直线与抛物线方程,得韦达定理,根据焦点弦的公式可得223332122k AB k +=+=,解得213k =,即可求解()111:AM y x x y k=--+得11M x ky x =+,即可代入求解.【详解】2:3C y x =0,根据题意可知直线l 有斜率,且斜率不为0,根据对称性不设直线方程为34y k x ⎛⎫=-⎪⎝⎭,联立直线34y k x ⎛⎫=-⎪⎝⎭与23y x =可得22223930216k x k x k ⎛⎫-++= ⎪⎝⎭,设()()1122,,,A x y B x y ,故2121223392,16k x x x x k ++==,故21223332122k AB x x p k +=++=+=,解得213k =,直线()111:AM y x x y k=--+,令0y =,则11M x ky x =+,同理可得22N x ky x =+,如下图,故()()()211221212121M N MN x x ky x ky x k y y x x k x x =-=+--=-+-=+-,()()22221212233192141483316k MN k x x x x k ⎛⎫+ ⎪⎛⎫=++-=+-⨯= ⎪ ⎪⎝⎭ ⎪⎝⎭故答案为:83四、解答题(本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤)15.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知22cos 0a b c A -+=.(1)求角C ;(2)若AB 边上的高为1,ABC V 的面积为33,求ABC V 的周长.【答案】(1)π3C =;(2)23.【解析】【分析】(1)利用余弦定理角化边,整理后代入余弦定理即可得解;(2)利用面积公式求出c ,然后由面积公式结合余弦定理联立求解可得a b +,可得周长.【小问1详解】由余弦定理角化边得,2222202b c a a b c bc +--+⨯=,整理得222a b c ab +-=,所以2221cos 222a b c ab C ab ab +-===,因为()0,πC ∈,所以π3C =.【小问2详解】由题知,13123c ⨯=,即233c =,由三角形面积公式得1πsin 233ab =,所以43ab =,由余弦定理得()222π42cos 333a b ab a b ab +-=+-=,所以()2416433a b +=+=,所以3a b +=,所以ABC V 的周长为33a b c ++=+=16.如图,PC 是圆台12O O 的一条母线,ABC V 是圆2O 的内接三角形,AB 为圆2O 的直径,4,AB AC ==.(1)证明:AB PC ⊥;(2)若圆台12O O 的高为3,体积为7π,求直线AB 与平面PBC 夹角的正弦值.【答案】(1)证明见详解;(2)19.【解析】【分析】(1)转化为证明AB ⊥平面12O O CP ,利用圆台性质即可证明;(2)先利用圆台体积求出上底面的半径,建立空间坐标系,利用空间向量求线面角即可.【小问1详解】由题知,因为AB 为圆2O 的直径,所以AC BC ⊥,又4,AB AC ==AB ==,因为2O 为AB 的中点,所以2O C AB ⊥,由圆台性质可知,12O O ⊥平面ABC ,且12,,,O O P C 四点共面,因为AB ⊂平面ABC ,所以12O O AB ⊥,因为122,O O O C 是平面12O O CP 内的两条相交直线,所以AB ⊥平面12O O CP ,因为PC ⊂平面12O O CP ,所以AB PC ⊥.【小问2详解】圆台12O O的体积(2211ππ237π3V r =⋅+⋅⨯=,其中11r PO =,解得11r =或13r =-(舍去).由(1)知122,,O O AB O C 两两垂直,分别以2221,,O B O C O O 为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则(2,0,0),(2,0,0),(0,2,0),(0,1,3)A B C P -,所以(4,0,0),(2,1,3),(2,2,0)AB BP BC ==-=-.设平面PBC 的一个法向量为(,,)n x y z =,则230,220,n BP x y z n BC x y ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩解得,3,x y x z =⎧⎨=⎩于是可取(3,3,1)n =.设直线AB 与平面PBC 的夹角为θ,则sin cos ,19AB n θ===,故所求正弦值为19.17.已知函数()ln f x x ax =+.(1)若()0f x ≤在(0,)x ∈+∞恒成立,求a 的取值范围;(2)若()1,()e()xa g x f f x ==-,证明:()g x 存在唯一极小值点01,12x⎛⎫∈ ⎪⎝⎭,且()02g x >.【答案】(1)1,e⎛⎤-∞- ⎥⎝⎦;(2)证明见解析.【解析】【分析】(1)参变分离,构造函数()ln xh x x=-,利用导数求最值即可;(2121内,利用零点方程代入()0g x ,使用放缩法即可得证.【小问1详解】()0f x ≤在(0,)x ∈+∞恒成立,等价于ln xa x≤-在(0,)+∞上恒成立,记()ln x h x x =-,则()2ln 1x h x x='-,当0e x <<时,ℎ′<0,当e x >时,ℎ′>0,所以ℎ在()0,e 上单调递减,在()e,∞+上单调递增,所以当e x =时,ℎ取得最小值()ln e 1e e eh =-=-,所以1a e≤-,即a 的取值范围1,e ∞⎛⎤-- ⎥⎝⎦.【小问2详解】当1a =时,()()e()eln ,0xxg x f f x x x =-=->,则1()e x g x x'=-,因为1e ,xy y x==-在(0,)+∞上均为增函数,所以()g x '在(0,)+∞单调递增,又()121e 20,1e 102g g ⎛⎫=-''=- ⎪⎝⎭,1存在0x ,使得当∈0,0时,()0g x '<,当∈0,+∞时,()0g x '>,所以()g x 在()00,x 上单调递减,在()0,x ∞+上单调递增,所以()g x 存在唯一极小值点01,12x ⎛⎫∈⎪⎝⎭.因为01e 0x x -=,即00ln x x =-,所以00000()e ln =e x x g x x x =-+,因为01,12x ⎛⎫∈⎪⎝⎭,且=e x y x+1上单调递增,所以012001()=e e 2x g x x +>+,又9e 4>,所以123e 2>,所以00031()=e 222xg x x +>+=.18.动点(,)M xy 到直线1:l y=与直线2:l y =的距离之积等于34,且|||y x <.记点M 的轨迹方程为Γ.(1)求Γ的方程;(2)过Γ上的点P 作圆22:(4)1Q x y +-=的切线PT ,T 为切点,求||PT 的最小值;(3)已知点40,3G ⎛⎫⎪⎝⎭,直线:2(0)l y kx k =+>交Γ于点A ,B ,Γ上是否存在点C 满足0GA GB GC ++= ?若存在,求出点C 的坐标;若不存在,说明理由.【答案】(1)2213y x -=(2)2(3)3,44C ⎛⎫-- ⎪ ⎪⎝⎭【解析】【分析】(1)根据点到直线距离公式,即可代入化简求解,(2)由相切,利用勾股定理,结合点到点的距离公式可得PT =,即可由二次函数的性质求解,(3)联立直线与双曲线方程得到韦达定理,进而根据向量的坐标关系可得()02201224,3443k x k k y y y k ⎧=-⎪⎪-⎨-⎪=-+=⎪-⎩,将其代入双曲线方程即可求解.【小问1详解】根据(,)M xy 到直线1:l y=与直线2:l y =的距离之积等于3434=,化简得2233x y -=,由于|||y x <,故2233x y -=,即2213y x -=.【小问2详解】设(,)P x y,PT ====故当3y =时,PT 最小值为2【小问3详解】联立:2(0)l y kx k =+>与2233x y -=可得()223470k x kx ---=,设()()()112200,,,,,A x y B x y C x y ,则12122247,33k x x x x k k-+==--,故()212122444,3k y y k x x k+=++=+-设存在点C 满足0GA GB GC ++= ,则1201200433x x x y y y ++=⎧⎪⎨++=⨯⎪⎩,故()02201224,3443k x k k y y y k ⎧=-⎪⎪-⎨-⎪=-+=⎪-⎩,由于()00,C x y 在2233x y -=,故22222443333k k k k ⎛⎫-⎛⎫--= ⎪⎪--⎝⎭⎝⎭,化简得421966270k k -+=,即()()2231990k k --=,解得2919k =或23k =(舍去),由于()22Δ162830k k =+->,解得27k<且23k ≠,故2919k =符合题意,由于0k >,故31919k =,故022024,344334k x k k y k ⎧=-=-⎪⎪-⎨-⎪==-⎪-⎩,故3,44C ⎛⎫-- ⎪ ⎪⎝⎭,故存在3,44C ⎛⎫-- ⎪ ⎪⎝⎭,使得0GA GB GC ++= 19.设n ∈N ,数对(),n n a b 按如下方式生成:()00,(0,0)a b =,抛掷一枚均匀的硬币,当硬币的正面朝上时,若n n a b >,则()()11,1,1n n n n a b a b ++=++,否则()()11,1,n n n n a b a b ++=+;当硬币的反面朝上时,若n n b a >,则()()11,1,1n n n n a b a b ++=++,否则()()11,,1n n n n a b a b ++=+.抛掷n 次硬币后,记n n a b =的概率为n P .(1)写出()22,a b 的所有可能情况,并求12,P P ;(2)证明:13n P ⎧⎫-⎨⎬⎩⎭是等比数列,并求n P ;(3)设抛掷n 次硬币后n a 的期望为n E ,求n E .【答案】(1)答案见详解;(2)证明见详解,1111332n n P -⎛⎫=-⨯- ⎪⎝⎭;(3)21113929nn E n ⎛⎫=+--⎪⎝⎭【解析】【分析】(1)列出所有()11,a b 和()22,a b 的情况,再利用古典概型公式计算即可;(2)构造得1111323n n P P +⎛⎫-=-- ⎪⎝⎭,再利用等比数列公式即可;(3)由(2)得()11111232nn n Q P ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,再分n n a b >,n n a b =和n n a b <讨论即可.【小问1详解】当抛掷一次硬币结果为正时,()()11,1,0a b =;当抛掷一次硬币结果为反时,()()11,0,1a b =.当抛掷两次硬币结果为(正,正)时,()()22,2,1a b =;当抛掷两次硬币结果为(正,反)时,()()22,1,1a b =;当抛掷两次硬币结果为(反,正)时,()()22,1,1a b =;当抛掷两次硬币结果为(反,反)时,()()22,1,2a b =.所以,12210,42P P ===.【小问2详解】由题知,1n n a b -≤,当n n a b >,且掷出反面时,有()()11,,1n n n n a b a b ++=+,此时11n n a b ++=,当n n a b <,且掷出正面时,有()()11,1,n n n n a b a b ++=+,此时11n n a b ++=,所以()()()()()1111112222n n n n n n n n n n P P a b P a b P a b P a b P +⎡⎤=>+<=>+<=-⎣⎦,所以1111323n n P P +⎛⎫-=-- ⎪⎝⎭,所以13n P ⎧⎫-⎨⎬⎩⎭是以11133P -=-为首项,12-为公比的等比数列,所以1111332n n P -⎛⎫-=-⨯- ⎪⎝⎭,所以1111332n n P -⎛⎫=-⨯- ⎪⎝⎭.【小问3详解】设n n a b >与n n a b <的概率均为n Q ,由(2)知,()11111232nn n Q P ⎡⎤⎛⎫=-=--⎢⎥⎪⎝⎭⎢⎥⎣⎦显然,111110222E =⨯+⨯=.若n n a b >,则1n n a b =+,当下次投掷硬币为正面朝上时,11n n a a +=+,当下次投掷硬币为反面朝上时,1n n a a +=;若n n a b =,则当下次投掷硬币为正面朝上时,11n n a a +=+,当下次投掷硬币为反面朝上时,1n n a a +=;若n n a b <,则1n n b a =+,当下次投掷硬币为正面朝上时,11n n a a +=+,当下次投掷硬币为反面朝上时,11n n a a +=+.所以1n n a a +=时,期望不变,概率为111122262nn n Q P ⎡⎤⎛⎫+=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;11n n a a +=+时,期望加1,概率为1111111124226262n nn n Q P ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+=-+-=--⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦.所以()11111112144626262nn nn nn n E E E E +⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=⨯+-++⨯--=+--⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.故12112111111444626262n n n n n n E E E -----⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+--=+--+--⎢⎥⎢⎥⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=1111111446262n E -⎡⎤⎡⎤⎛⎫⎛⎫=+--++--⎢⎥⎢⎥⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦011111111444626262n -⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--+--++--⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 111241612n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥=-⎢⎥⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦21113929nn ⎛⎫=+-- ⎪⎝⎭.经检验,当1n =时也成立.21113929nn E n ⎛⎫∴=+-- ⎪⎝⎭.【点睛】关键点点睛:本题第三问的关键是分1n n a a +=和11n n a a +=+时讨论,最后再化简n E 的表达式即可.。

武汉市部分学校2023-2024学年度上学期9月考九年级理化试题(word版含答案)

武汉市部分学校2023-2024学年度上学期9月考九年级理化试题(word版含答案)

2023~2024学年度武汉市部分学校9月月考理化综合试卷2023年9月说明:本试卷分Ⅰ卷和Ⅱ卷,满分120分,考试用时120分钟。

注意事项:1.答题前,务必将姓名、考号等信息填写在答题卡指定位置。

2.请将答案直接填写在答题卡上。

3.可能用到的物理量:ρ水=1.0×103kg/m 3ρ油=0.8×103kg/m 3c 水=4.2×103J/(kg ·℃)q 氢=1.4×108J/kgq 汽油4.6×107J/kg第Ⅰ卷(选择题共60分)一、选择题。

(下列各题中只有一个选项是正确的,请将正确选项序号填在答题卡上。

共20小题,每小题3分,共60分。

)1.武汉有许多国家级、省市级非遗项目。

下列属于化学变化的是A .湖泗窑烧制陶瓷B .木雕船模C .用针线制作汉绣D .用糖水制作武汉糖画2.实验是科学探究的重要手段。

下列图示实验操作中,正确的是A .将锌粒放入试管中B .读出液体的体积C .滴加液体D .引燃酒精灯3.化学与生活息息相关。

下列有关说法错误的是A .利用化学生产化肥和农药,可以增加粮食的产量B .点燃蜡烛刚熄灭时产生的白烟,蜡烛能重新燃烧C .被污染的空气会严重损害人体健康,所以人类要保护空气D .硫燃烧时生成有刺激性气味的气体,所以硫不能在空气中燃烧4.利用分类的方法学习在化学,可以起到事半功倍的效果。

下列物质属于混合物的是A .硫酸铜溶液B .五氧化二磷C .二氧化硫D .锰酸钾5.实验室用高锰酸钾制取氧气的实验中,不需要使用的一组仪器是A .大试管、铁架台B .烧杯、玻璃棒C .集气瓶、酒精灯D .导管、单孔塞6.推理是重要的科学思维方法。

下列推理正确的是A .氧气是一种无色气体,所以液态氧也没有颜色B .氧化反应都有热量放出,所以缓慢氧化放出热量C .化学变化中常伴随放热、发光等现象,所以有放热、发光现象的是化学变化D .氮气的化学性质不活泼,常作保护气,所以化学性质不活泼的气体都可用作保护气7.如图所示,两只燃烧匙里装有少许等质量的白磷与木炭粉,观察后再分别在空气中加热燃烧,根据燃烧难易及剧烈程度不同,实验过程中有如下推测,说法正确的是A .白磷为红色粉末,木炭粉为黑色粉末B .二者可以在空气中燃烧,都可用于烤肉C .引燃白磷和木炭粉所需的最低温度相同D .白磷和木炭粉化学性质不同8.用如图装置进行实验,打开活塞向锥形瓶中滴加Y 后关闭活塞,一段时间后打开弹簧夹。

上海市杨浦区复旦大学附属中学2024-2025学年九年级上学期9月月考数学试题(含答案)

上海市杨浦区复旦大学附属中学2024-2025学年九年级上学期9月月考数学试题(含答案)

2024~2025学年上海市复旦大学第二附属中学九年级上学期9月月考数学试卷(考试时间100分钟 满分150分)考生注意:1.带2B 铅笔、黑色签字笔、橡皮擦等参加考试,考试中途不得传借文具2.不携带具有传送功能的通讯设备,一经发现视为作弊。

与考试无关的所有物品放置在考场外。

3.考试期间严格遵守考试纪律,听从监考员指挥,杜绝作弊,违者由教导处进行处分。

4.答题卡务必保持干净整洁,答题卡客观题建议检查好后再填涂。

若因填涂模糊导致无法识别的后果自负。

一、选择题(共6题,每题4分,满分24分)1.是同类二次根式,那么a 的值为()A.2 B.3 C.4 D.52.方程的根的情况是( )A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法确定3.下列说法中错误的是()A.一个负数的绝对值是它的相反数B.数轴上离原点越远的点所表示的数越大C.任何有理数都有相反数D.正数都大于零4.某商场有一个可以自由转动的转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品.经过多次试行,发现转动n 次转盘时,其中指针有m 次落在“铅笔”区域,则估计“饮料”区域所在扇形的圆心角度数是( )A. B. C. D.5.已知一次函数的图象如图所示,则点所在的象限为()2220x x --=1360n m ⎛⎫-︒ ⎪⎝⎭1360m n ⎛⎫-︒ ⎪⎝⎭360m n ︒360n m︒()33y m x n =-++(),2P m n n -A.第一象限B.第二象限C.第三象限D.第四象限6.如图,一块矩形木板斜靠在墙边,,点A ,B ,C ,D ,O 在同一平面内,,,,则点A 到OC 的距离为( )A. B.C. D.二、填空题(共12题,每题4分,满分48分)7.在不等式中,m ,n 是常数且,当时,不等式的解集为_____8.已知关于x 的方程有实数根,则整数a 的最大值是_____9.在比例尺为1:3000的地图上,甲、乙两地的距离为5cm ,则甲、乙两地的实际距离为________米.10.已知:点与点关于原点成中心对称,则________11.一个三位正整数(其中a 、b 都是正整数,,),满足各数位上的数字互不相同.将n 的任意两个数位上的数字对调后得到三个不同的新三位数,把这三个新三位数的和记为.若,则_______12.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是_______13.小明希望测量出电线杆的高度,于是在阳光明媚的一天,他在电线杆旁的点处立一标杆.使标杆的影子与电线杆的影子部分重叠(即点E ,C ,A 在一直线上),量得,,,则电线杆的长为______m.14.如图,正方形的边长为a ,E ,F 分别是对角线上的两点,过点E ,F 分别作,的平行线,则图中阴影部分的面积之和为________.ABCD OC OB ⊥1AB =4AD =BCO α∠=tan 4sin αα+tan 4cos αα+sin 4cos αα+cos 4sin αα+0mx n +>0m ≠0m <()21230a x x +-+=()2025,1A -(),B a b O a b +=100103n a b =++19a ≤≤19b ≤≤()M n ()999M n =a b +=AB D CD DE BE 2m ED =6m DB =1.3m CD =AB ABCD BD AD AB15.如图,中,G 是重心,,,那么________16.在中,点,分别为,的中点,与交于点O ,已知四边形DFOE 的周长为4,的周长为_______.17.对于二次函数(a 是常数),下列结论:①将这个函数的图像向下平移3个单位长度后得到的图像经过原点;②当时,这个函数的图像在函数图像的上方;③若,则当时,函数值y 随自变量x 增大而增大;④这个函数的最小值不大于3.其中正确的是________(填写序号)18.如图,中,,,,将线段绕点B 逆时针旋转90°得到线段,取的中点E ,连接,用含m ,n 的式子表示的长是________.三、解答题(满分78分)19.计算:20.解不等式组:.21.如图是一种躺椅及其结构示意图,扶手与底座都平行于地面,前支架与后支架分ABC △GD BC ⊥AH BC ⊥GD AH=ABCD □E F AD AB AC BD ABCD □223y x ax =-+1a =-y x =-1a ≥1x >ABC △135BAC ∠=︒AB m =AC n =BC BD AD BE 212tan 602-⎛⎫︒+ ⎪⎝⎭()3121223x x x x ⎧->+⎪⎨+>-⎪⎩AB CD EF OE OF别与交于点和点,与交于点,.(1)求证:;(2)若平分,,求:扶手与靠背的夹角的度数.22.2024年春晚吉祥物“龙辰辰”,以十二生肖龙的专属汉字“辰”为名.某厂家生产大小两种型号的“龙辰辰”,大号“龙辰辰”单价比小号“龙辰辰”单价贵15元,且用2400元购进小号“龙辰辰”的数量是用2200元购进大号“龙辰辰”数量的1.5倍,(1)求:大号“龙辰辰”的单价(2)某网店在该厂家购进了两种型号的“龙辰辰”共60个,且大号“龙辰辰”的个数不超过小号“龙辰辰”个数的一半,小号“龙辰辰”售价为60元,大号“龙辰辰”的售价比小号“龙辰辰”的售价多30%.若两种型号的“龙辰辰”全部售出,求:该网店所获的最大利润23.如图,在中,,过点C 的直线,D 为边上一点,过点D 作,垂足为F ,交直线于E ,连接,.(1)求证:;(2)当D 为AB 中点时,当满足什么条件时,四边形BECD 是正方形?24.已知:如图1,二次函数的图像交x 轴于A ,B 两点(A 在B 的左侧),过点A 的直线交该二次函数的图像于另一点,交y 轴于M .CD G D AB DM N AOE BNM ∠=∠OE DM ∥OE AOF ∠30ODC ∠=︒AB DM AND ∠Rt ABC △90ACB ∠=︒MN AB ∥AB DE BC ⊥MN CD BE CE AD =ABC △2344y ax ax =++134y kx k k ⎛⎫=+> ⎪⎝⎭()11,C x y(1)直接写出A 点坐标,并求该二次函数的解析式;(2)过点B 作交于D ,若且点Q 是线段上的一个动点,求出当与相似时点Q 的坐标:(3)设,图2中连接交二次函数的图像于另一点,连接交y 轴于N ,请你探究的值的变化情况,若变化,求其变化范围;若不变,求其值25.如图,在中,AD 平分交BC 边于点D ,在CA 边上取点E ,使得,连接DE .(1)如图1,当时,求:的正切值(2)如图2,过点C 作于点F ,当时,请:的值(3)如图3,在(2)问的条件下,连接BE ,当时,若四边形ABDE 内部的点Q 到四边形ABDE 四条边的距离相等,求:的值BD AC ⊥AC (M DC DBQ △AOM △()1,2P --CP ()22,E x y AE OM ON ⋅ABC △CAB ∠CE CD =120ABC ∠=︒ADE ∠CF ED ⊥AB BC =AD CFBE AD ⊥sin QEB ∠参考答案及部分评分标准选择题(1~6题)CABBDD填空题(7~18题)7. 8.-1 9.150 10.2024 11.6 12.13.5.2 14. 15. 16.8 17.①②④解答题(19~25题)19.原式=720.21.(1)证内错角相等即可(2)85°22.(1)55(2)126023.(1)证:平行四边形ADEC(2)当时24.(1)(2)或(3)值不变,25.(1(2)2(3n x m <-1515112x x -=+22a 1334x <<45A ∠=︒()3,0A -21344x y x ++=(1,Q -(2Q -92。

2008年9月全国计算机二级笔试C语言程序设计真题及答案

2008年9月全国计算机二级笔试C语言程序设计真题及答案

2008年9月全国计算机二级笔试C语言程序设计真题及答案2008年9月全国计算机二级笔试C语言程序设计真题及答案一、选择题((1)~(10)、(21)~(40)每题2 分,(11)~(20)每题1 分,70 分)下列各题A)、B)、C)、D)四个选项中,只有一个选项是正确的,请将正确选项填涂在答题卡相应位置上,答在试卷上不得分。

(1)一个栈的初始状态为空。

现将元素1、2、3、4、5、A、B、C、D、E 依次入栈,然后再依次出栈,则元素出栈的顺序是()。

A)12345ABCDE B)EDCBA54321 C)ABCDE12345 D)54321EDCBA(2)下列叙述中正确的是()。

A)循环队列有队头和队尾两个指针,因此,循环队列是非线性结构B)在循环队列中,只需要队头指针就能反映队列中元素的动态变化情况C)在循环队列中,只需要队尾指针就能反映队列中元素的动态变化情况D)循环队列中元素的个数是由队头指针和队尾指针共同决定(3)在长度为n的有序线性表中进行二分查找,最坏情况下需要比较的次数是()。

A)O(n) B)O(n2) C)O(log2n) D)O(n log2n)(4)下列叙述中正确的是()。

A)顺序存储结构的存储一定是连续的,链式存储结构的存储空间不一定是连续的B)顺序存储结构只针对线性结构,链式存储结构只针对非线性结构C)顺序存储结构能存储有序表,链式存储结构不能存储有序表D)链式存储结构比顺序存储结构节省存储空间(5)数据流图中带有箭头的线段表示的是()。

A)控制流 B)事件驱动 C)模块调用 D)数据流(6)在软件开发中,需求分析阶段可以使用的工具是()。

A)N-S 图 B)DFD 图 C)PAD 图 D)程序流程图(7)在面向对象方法中,不属于“对象”基本特点的是()。

A)一致性 B)分类性 C)多态性 D)标识唯一性(8)一间宿舍可住多个学生,则实体宿舍和学生之间的联系是()。

A)一对一 B)一对多 C)多对一 D)多对多(9)在数据管理技术发展的三个阶段中,数据共享最好的是()。

2011年9月计算机等级考试《二级Visual FoxPro程序设计》笔试真题与上机真题及答案

2011年9月计算机等级考试《二级Visual FoxPro程序设计》笔试真题与上机真题及答案

该系统总体结构图的深度是( ) 。 A ) 7 B ) 6 C ) 3 D ) 2
( 6 ) 程序调试的任务是( ) 。 A ) 设计测试用例 C ) 发现程序中的错误 B ) 验证程序的正确性 D ) 诊断和改正程序中的错误
2 0 1 1年 9月全国计算机等级考试二级 V i s u a l F o x P r o 第 1 页( 共1 5页)
1 3 ) 在数据库中建立索引的目的是( ) 。 ( A ) 节省存储空间 C ) 提高查询和更新速度 B ) 提高查询速度 D ) 提高更新速度
1 4 ) 假设变量 a 的内容是“ 计算机软件工程师” , 变量 b 的内容是“ 数据库管理员” , 表达式的结果为“ 数据库工程 ( 师” 的是( ) 。 A ) l e f t ( b , 6 )- r i g h t ( a , 6 ) C ) A和 B都是 B ) s u b s t r ( b , 1 , 3 )- s u b s t r ( a , 6 , 3 ) D ) A和 B都不是
B ) 所有 S Q L命令对表的所有操作都不需使用 U S E命令先打开表 C ) 部分 S Q L命令对表的所有操作都不需使用 U S E命令先打开表 D ) 传统的 F o x P r o 命令对表的所有操作都不需使用 U S E命令先打开表 ( 2 0 ) 在V i s u a l F o x P r o 中, 如果希望跳出 S C A N …E N D S C A N循环体外执行 E N D S C A N后面的语句, 应使用( ) 。 A ) L O O P语句 C ) B R E A K语句 B ) E X I T语句 D ) R E T U R N语句
1 5 ) S Q L查询命令的结构是 S E L E C T 爥F R O M爥WH E R E 爥G R O U PB Y 爥H A V I N G 爥O R D E RB Y 爥, 其中指定查询条 ( 件的短语是( ) 。 A ) S E L E C T B ) F R O M C ) WH E R E D ) O R D E RB Y

2024-2025学年湖北重点学校高二数学上学期9月联考试卷附答案解析

2024-2025学年湖北重点学校高二数学上学期9月联考试卷附答案解析

2024-2025学年湖北重点学校高二数学上学期9月联考试卷时长:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分、在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数()()1i 2i m ++在复平面内对应的点位于第二象限,则实数m 的取值范围为()A.(),2-∞ B.()2,+∞ C.(),2-∞- D.()2,2-2.平行六面体1111ABCD A B C D -中,O 为11A C 与11B D 的交点,设1,,AB a AD b AA c === ,用,,a b c表示BO,则()A.12BO a b c=-+ B.12BO a b c=+- C.12BO a b c =-++ D.1122BO a b c=-++ 3.被誉为“湖北乌镇,荆门丽江”的莫愁村,位于湖北省钟祥市.高高的塔楼,是整个莫愁村最高的建筑,登楼远跳,可将全村风景尽收眼底.塔楼的主体为砖石砌成的正四棱台,如图所示,上底面正方形的边长约为8米,下底面正方形的边长约为12米,高约为15米,则塔楼主体的体积(单位:立方米)约为()A .2400B.1520C.1530D.24104.某同学参加学校组织的化学竞赛,比赛分为笔试和实验操作测试,该同学参加这两项测试的结果相互不受影响.若该同学在笔试中结果为优秀的概率为34,在实验操作中结果为优秀的概率为23,则该同学在这次测试中仅有一项测试结果为优秀的概率为()A.712B.12 C.512D.135.已知()()()1231,9,1,,3,2,0,2,1n n m n =-=-=,若{}123,,n n n 不能构成空间的一个基底,则m =()A.3B.1C.5D.76.设ABC V 的内角,,A B C 的对边分别为,,a b c ,且222a b ab c ++=,若角C 的内角平分线2CM =,则AC CB ⋅的最小值为()A.8B.4C.16D.127.抛掷一红一绿两颗质地均匀的六面体骰子,记录骰子朝上面的点数,若用x 表示红色骰子的点数,用y 表示绿色骰子的点数,用(),x y 表示一次试验结果,设事件:8E x y +=;事件F :至少有一颗点数为5;事件:4G x >;事件:4H y ≤.则下列说法正确的是()A.事件E 与事件F 为互斥事件B.事件F 与事件G 为互斥事件C.事件E 与事件G 相互独立D.事件G 与事件H 相互独立8.现有一段底面周长为12π厘米和高为12厘米的圆柱形水管,AB 是圆柱的母线,两只蜗牛分别在水管内壁爬行,一只从A 点沿上底部圆弧顺时针方向爬行π厘米后再向下爬行3厘米到达P 点,另一只从B 沿下底部圆弧逆时针方向爬行π厘米后再向上爬行3厘米爬行到达Q 点,则此时线段PQ 长(单位:厘米)为()A.B. C.6 D.12二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.有一组样本数据12,,,n x x x ,其平均数、中位数、标准差、极差分别记为1111,,,a b c d .由这组数据得到新样本数据12,,,n y y y ,其中()220241,2,,i i y x i n =-= ,其平均数、中位数、标准差、极差分别记为2222,,,a b c d ,则()A.2122024a a =- B.21b b = C.212c c = D.212d d =10.设,,Ox Oy Oz 是空间内正方向两两夹角为60o的三条数轴,向量123,,e e e分别与x 轴、y 轴.z 轴方向同向的单位向量,若空间向量a 满足()123,,a xe ye ze x y z =++∈R ,则有序实数组(),,x y z 称为向量a在斜60o 坐标系Oxyz (O 为坐标原点),记作(),,a x y z =,则下列说法正确的有()A.已知()1,2,3a =,则5= a B.已知()()1,2,1,2,4,2a b =-=-- ,则向量a∥b C.已知()()3,1,2,1,3,0a b =-= ,则0a b ⋅=D.已知()()()1,0,0,0,1,0,0,0,1OA OB OC === ,则三棱锥O ABC -的外接球体积8V =11.在圆锥PO 中,PO 为高,AB ,母线长为2,点C 为PA 的中点,圆锥底面上点M 在以AO 为直径的圆上(不含A O 、两点),点H 在PM 上,且PA OH ⊥,当点M 运动时,则()A.三棱锥M PAO -的外接球体积为定值B.直线CH 与直线PA 不可能垂直C.直线OA 与平面PAM 所成的角可能为60oD.2AH HO +<三、填空题:本题共3小题,每小题5分,共15分.12.已知3i 1-是关于x 的实系数方程2320x px q ++=的一个根,则实数p 的值为__________.13.已知向量,a b 满足()2,1,2a b a b ==+= ,则cos ,a b =______.14.ABC V 的内角,,A B C 的对边分别为,,a b c 222sin 2a b cC a b b----=,且ABC V 的面积为()34a b c ++,则2a b +的最小值为______.四、解答题:本题共5小题,第15小题13分,第16、17小题15分,第18、19小题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知()2cos cos 0c b A a B --=(1)求A ;(2)若点M 在BC 上,且满足,2BM MC AM ==,求ABC V 面积的最大值.16.某地区有小学生9000人,初中生8600人,高中生4400人,教育局组织网络“防溺水”网络知识问答,现用分层抽样的方法从中抽取220名学生,对其成绩进行统计分析,得到如下图所示的频率分布直方图所示的频率分布直方图.(1)根据频率分布直方图,估计该地区所有学生中知识问答成绩的平均数和众数;(2)成绩位列前10%的学生平台会生成“防溺水达人”优秀证书,试估计获得“防溺水达人”的成绩至少为多少分;(3)已知落在60,70内的平均成绩为67,方差是9,落在[)60,80内的平均成绩是73,方差是29,求落在[)70,80内的平均成绩和方差.(附:设两组数据的样本量、样本平均数和样本方差分别为:221122,,;,,m x s n x s .记两组数据总体的样本平均数为w ,则总体样本方差()()222221122m n s s x w s x w m n m n ⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦++)17.如图,在长方体1111ABCD A B C D -中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)当点E 在棱AB 的中点时,求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)当AE 为何值时,直线1A D 与平面1D EC 所成角的正弦值最小,并求出最小值.18.甲、乙、丙三人玩“剪刀、石头、布”游戏(剪刀赢布,布赢石头,石头赢剪刀),规定每局中:①三人出现同一种手势,每人各得1分;②三人出现两种手势,赢者得2分,输者负1分;③三人出现三种手势均得0分.当有人累计得3分及以上时,游戏结束,得分最高者获胜,已知三人之间及每局游戏互不受影响.(1)求甲在一局中得2分的概率1P ;(2)求游戏经过两局后甲恰得3分且为唯一获胜者的概率2P ;(3)求游戏经过两局就结束的概率3P .19.在空间直角坐标系O xyz -中,己知向量(),,u a b c = ,点()0000,,P x y z .若直线l 以u为方向向量且经过点0P ,则直线l 的标准式方程可表示为()0000x x y y z z abc a b c---==≠;若平面α以u为法向量且经过点0P ,则平面α的点法式方程表示为()()()0000a x x b y y c z z -+-+-=.(1)已知直线l 的标准式方程为112x z-==,平面1α50y z +-+=,求直线l 与平面1α所成角的余弦值;(2)已知平面2α的点法式方程可表示为2320x y z ++-=,平面外一点()1,2,1P ,点P 到平面2α的距离;(3)(i )若集合{(,,)|||||2,||1}M x y z x y z =+≤≤,记集合M 中所有点构成的几何体为S ,求几何体S 的体积;(ii )若集合(){,,|2,2,2}N x y z x y y z z x =+≤+≤+≤.记集合N 中所有点构成的几何体为T ,求几何体T 相邻两个面(有公共棱)所成二面角的大小.1.B【分析】化简得()()1i 2i (2)(2)i m m m ++=-++,根据题意列出不等式组求解即可.【详解】解:因为()()1i 2i (2)(2)i m m m ++=-++,又因为此复数在第二象限,所以2020m m -<⎧⎨+>⎩,解得2m >.故选:B.2.D【分析】由平行六面体的性质和空间向量的线性运算即可求解;【详解】如图:由平行六面体的性质可得()()11111111122222BO BB B O AA BD AA AD AB c b a a b c =+=+=+-=+-=-++,故选:D.3.B【分析】根据题意,利用棱台的体积公式,准确运算,即可求解.【详解】由题意,正四棱台的上底面边长约为8米,下底面边长约为12米,高约为15米,可得正四棱台的上底面面积为64平方米,下底面面积为144平方米,则塔楼主体的体积约为1(641441515203V =++⨯=立方米.故选:B.4.C【分析】根据独立事件的概率公式与互斥事件的概率加法公式可求概率.【详解】根据题意可得该同学在这次测试中仅有一项测试结果为优秀的概率为:12315434312⨯+⨯=.5.B【分析】直接利用基底的定义和共面向量求出结果.【详解】若{}123,,n n n不能构成空间的一个基底,123,,n n n ∴共面,∴存在,λμ,使123n n n λμ=+,即1093212m λλμλμ-=+⎧⎪=-+⎨⎪=+⎩,解得131m λμ=-⎧⎪=⎨⎪=⎩,故选:B .6.A【分析】先根据222a b ab c ++=,结合余弦定理求C ,再根据ABC ACM BCM S S S =+ ,结合面积公式得到2()ab b a =+≥,进而求出ab 的最小值,再根据数量积定义求AC CB ⋅.【详解】因为222a b ab c ++=,所以2221cos 22a b c C ab +-==-,所以2π3C =,由ABC ACM BCM S S S =+ ,所以12π1π1πsin sin sin 232323ab b CM a CM =⋅⋅+⋅⋅,化简得到22ab b a =+,所以2()ab b a =+≥,则16ab ≥,当且仅当4a b ==时,等号成立,所以π1cos 832AC CB AC CB ab ⋅=⋅=≥ ,所以AC CB ⋅的最小值为8.故选:A .7.D【分析】分别写出事件E 、F 、G 、H 所包含的基本事件,根据互斥事件的定义判断A ,B ;根据独立事件的定义判断C ,D.【详解】解:由题意可知{(2,6),(3,5),(4,4),(5,3),(6,2)}E =;{(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(1,5),(2,5),(3,5),(4,5),(6,5)}F =;{(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}G =;{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),H =(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4)};对于A ,因为()(){}3,5,5,3E F ⋂=,所以事件E 与事件F 不是互斥事件,故错误;对于B ,因为(5,1),(5,2),(5,3),(}){5,4),(5,5,(5,6),(6,5)G F ⋂=,所以事件G 与事件F 不是互斥事件,故错误;对于C ,因为{(5,3),(6,2)}E G ⋂=,5121(),()36363P E P G ===,21()()()3618P E G P E P G ⋂==≠,所以事件E 与事件G 不相互独立,故错误;对于D ,因为{(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4)}G H ⋂=,242121(),()363363P H P G ====,82()()()369P H G P H P G ⋂===,所以事件E 与事件G 相互独立,故正确.故选:D.8.A【分析】根据已知条件建系结合弧长得出角及点的坐标,最后应用空间向量两点间距离计算.【详解】应用圆柱的特征取上下底面的圆心1,,OO BO 为,z y 轴,再过O 作OB 的垂线为x 轴,如图建系,过Q 向圆O 作垂线垂足为1Q ,1πBQ =,设圆O 半径为,2π12πr r =,所以6r =,所以111π6π,6BQ BOQ BOQ =∠⨯=∠=,则()()13,,3,Q Q --,同理,过P 向圆O 作垂线垂足为,则()()13,,3,P P ----,所以PQ ==.故选:A.9.ACD【分析】根据新旧数据间样本的数字特征的关系对选项进行分析,从而确定正确答案.【详解】依题意,平均数2122024a a =-,中位数2122024b b =-,标准差212c c =,极差212d d =,所以ACD 选项正确,B 选项错误.故选:ACD 10.AB【分析】先明确1231e e e === ,12132312e e e e e e ⋅=⋅=⋅= .根据()22a a = 求a,判断A 的真假;根据2b a =-判断B 的真假;计算a b ⋅ 判断C 的真假;判断三棱锥O ABC -的形状,求其外接球半径及体积,判断D 的真假.【详解】由题意:1231e e e === ,12132312e e e e e e ⋅=⋅=⋅= .对A :因为12323a e e e =++ ⇒()2212323a e e e =++ 222123121323494612e e e e e e e e e =+++⋅+⋅+⋅ 149236=+++++25=,所以5a =.故A 正确;对B :因为1232a e e e =-++ ,123242b e e e =-- ,所以2b a =-,所以//a b .故B 正确;对C :12332a e e e =-+ ,123b e e =+,因为()()12312323a b e e e e e ⋅=-+⋅+ 22112122132339326e e e e e e e e e e =+⋅-⋅-+⋅+⋅ 91331322=+--++8=0≠,故C 错误;对D :由题意,三棱锥O ABC -是边长为1的正四面体.如图:过O 作OE ⊥平面ABC ,垂足为E ,则E 在ABC V 的中线AD 上,且:2:1AE ED =,因为ABC S =!,32AD =,所以33AE =,63OE ==.设正四面体O ABC -外接球球心为G ,则点G 在OE 上,且G 亦为正四面体O ABC -内切球球心,设GO R =,GE r =.则22313R r R r ⎧+=⎪⎪⎨⎪=+⎪⎩⇒4=R ,所以正四面体O ABC -外接球的体积为:34π3V R=34ππ38R ==.故D 错误.故选:AB 11.AD 【解析】【分析】由条件结合线面垂直判定定理证明AM ⊥平面POM ,由此证明AM PM ⊥,再证明点C 为三棱锥M PAO -的外接球球心,判断A ,证明PA ⊥平面OHC ,由此证明PA CH ⊥,判断B ;证明OH ⊥平面PAM ,由此可得OAH ∠为直线OA 与平面PAM 所成的角,解三角形求其正弦,判断C ,证明OH AH ⊥,解三角形求AH HO +,结合基本不等式求其范围,判断D.【详解】连接,,,,,OM AM AH OC CM CH ,对于A ,易知⊥PO 平面AMB ,AM⊂平面AMB ,所以AM PO ⊥,因为点M 在以AO 为直径的圆上(不含A 、O ),所以AM OM ⊥,OM PO O = ,OM ⊂平面POM ,PO ⊂平面POM ,所以AM ⊥平面POM ,又PM⊂平面POM ,所以AM PM ⊥,又PO AO ⊥,C 为PA 的中点,2PA =,所以1CO CA CP CM ====,所以点C 为三棱锥M PAO -的外接球的球心,所以三棱锥M PAO -的外接球的半径为=1,所以三棱锥M PAO -的外接球体积为定值,A 正确;由已知,PO AO ⊥,2PA =,AO =所以PO AO==所以POA 为等腰三角形,连接OC ,又C 为PA 的中点,故PA OC ⊥,又PA OH ⊥,OH OC O ⋂=,OH ⊂平面OHC ,OC ⊂平面OHC ,则PA ⊥平面OHC ,又CH ⊂平面OHC ,所以PA CH ⊥,故B 错误.因为AM ⊥平面POM ,又OH ⊂平面POM ,所以AM OH ⊥,又PA OH ⊥,PA AM A = ,AM⊂平面PAM ,PA ⊂平面PAM ,则OH ⊥平面PAM ,所以OA 在平面PAM 上的射影为AH ,所以OAH ∠为直线OA 与平面PAM 所成的角,设OM x=,则PM =OH PM OM PO ⋅=⋅,所以OH =,所以sin OHOAH OA∠==,令60OAH ∠=2=,解得x =,即OM =,与OM OA <矛盾,C 错误;对于D 中,因为OH ⊥平面PAM ,AH ⊂平面PAM ,所以OHAH ⊥,又OH=OA =,所以AH ==,所以xAH HO ++==,0x <<由基本不等式可得22222x x ⎛⎫++< ⎪ ⎪⎝⎭,即x +<,所以2AH HO +<,D 正确.故选:AD【点睛】关键点点睛:解决多面体的外接球问题的关键在于由条件确定其外接球的球心的位置,由此确定外接球的半径.12.3【分析】将3i 1-代入方程2320x px q ++=求解即可.【详解】3i 1-代入方程2320x px q ++=,得()()233i 123i 10p q -+-+=,化简得()()242618i 0p q p --++-=,故24206180p q p --+=⎧⎨-=⎩,解得330p q =⎧⎨=⎩,故填:313.18##0.125【分析】先利用坐标运算求解23a b += ,根据数量积的运算律结合模的公式列式求得14a b ⋅= ,从而利用数量积的定义求解即可.【详解】因为()2a b += ,所以23a b +=,又2,1a b ==,所以23a b +=,所以14a b ⋅= ,所以1cos ,8a b a b a b ⋅==⋅.故答案为:1814.6+【分析】根据三角恒等变换以及余弦定理可得π3C =,即可利用面积可得()222230a t a t -++-=有根,即可利用判别式求解.222sin 2a b c C a b b----=可得2222sin 22C ba b a b c --=--,即222s 22c i o n s ab C C ba a b c ==-+-,由于0ab ≠cos 1C C -=π1sin 62C ⎛⎫⇒-= ⎪⎝⎭,由于()0,πC ∈,故ππ5π,666C ⎛⎫-∈- ⎪⎝⎭,因此ππ66C -=,故π3C =,2222221cos 22a b c C a b c ab ab +-==⇒+-=,ABC V 的面积为()34a b c ++,故()31sin 42a b c ab C a b c ab ++=⇒++=,由于2c ab a b a b b =-->-⇒>,2c ab a b b a a =-->-⇒>,故26a b +>,将c ab a b =--代入222a b c ab +-=可得()222a b ab a b ab +---=,化简得()32ab a b +=+,将其代入()32ab a b +=+,且可得()222230a t a t -++-=,则()()2Δ448230t t t =++--≥,解得6t ≥+,或06t <≤-故最小值为6+.故答案为:6+【点睛】关键点点睛:由()32ab a b +=+可得()222230a t a t -++-=有实数根,利用判别式求解.15.(1)π3(2)433【分析】(1)利用正弦定理、三角恒等变换,结合三角形内角的取值范围、特殊角的三角函数值求解即可;(2)利用向量的线性运算、余弦定理、基本不等式、三角形面积公式即可求解.【小问1详解】()2cos cos 0c b A a B --= ,由正弦定理得()2sin sin cos sin cos 0C B A A B --=,2sin cos (sin cos cos sin )0C A B A B A ∴-+=,2sin cos sin()0C A A B ∴-+=,2sin cos sin C A C ∴=,()0,πC ∈ ,sin 0C ∴≠,1cos 2A ∴=,()0,πA ∈ ,π3A ∴=.【小问2详解】BM MC = ,1()2AM AB AC ∴=+ ,2221(2)4AM AB AB AC AC ∴=+⋅+ ,又2AM =,221π4(2cos 43c b bc ∴=++⋅,221623c b bc bc bc bc ∴=++≥+=,163bc ∴≤,当且仅当3b c ==时,等号成立,ABC ∴ 的面积1116sin 22323S bc A =≤⨯⨯=,即ABC V 面积的最大值为433.16.(1)平均数为71,众数为75.(2)88.(3)平均数为76,方差为12.【解析】【分析】(1)在频率分布直方图中,平均数等于每组的组中值乘以每组的频率之和;众数是最高矩形横坐标的中点,据此求解.(2)依题意可知题目所求是第90%分位数,先判断第90%分位数落在哪个区间再求解即可;(3)先求出每组的比例,再根据分层随机抽样的平均数及方差求解即可.【小问1详解】一至六组的频率分别为0.10,0.15,0.15,0.30,0.25,0.05,平均数450.10550.15650.15750.30850.25950.0571=⨯+⨯+⨯+⨯+⨯+⨯=.由图可知,众数为75.以样本估计总体,该地区所有学生中知识问答成绩的平均数为71分,众数为75分.【小问2详解】前4组的频率之和为0.100.150.150.300.700.90+++=<,前5组的频率之和为0.700.250.950.90+=>,第90%分位数落在第5组,设为x ,则()0.70800.0250.90x +-⨯=,解得88x =.“防溺水达人”的成绩至少为88分.【小问3详解】[60,70)的频率为0.15,[70,80)的频率为0.30,所以[60,70)的频率与[60,80)的频率之比为0.1510.150.303=+[)70,80的频率与[)60,80的频率之比为0.3020.150.303=+设[)70,80内的平均成绩和方差分别为222x s ,依题意有212736733x =⨯+⨯,解得276,x =()222212299(6773)767333s ⎡⎤⎡⎤=⨯+-+⨯+-⎣⎦⎣⎦,解得2212s =,所以[)70,80内的平均成绩为76,方差为12.17.1)66(2)当2AE =时,直线1A D 与平面1D EC所成角的正弦值最小,最小值为5【解析】【分析】(1)以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立空间直角坐标系,求得平面1D EC 的一个法向量,平面1DCD 的一个法向量,利用向量法可求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)设AE m =,可求得平面1D EC 的一个法向量,直线的方向向量1DA,利用向量法可得sin θ=.【小问1详解】以D 为坐标原点,1,,DA DC DD所在直线为坐标轴建立如图所示的空间直角坐标系,当点E 在棱AB 的中点时,则1(0,0,1),(1,1,0),(0,2,0),(0,0,0),(1,0,0)E C D A D ,则1(1,1,1),(1,1,0),(1,0,0)ED EC DA =--=-=,设平面1D EC 的一个法向量为(,,)n x y z =,则1·0·0n ED x y z n EC x y ⎧=--+=⎪⎨=-+=⎪⎩ ,令1x =,则1,2y z ==,所以平面1D EC 的一个法向量为(1,1,2)n =,又平面1DCD 的一个法向量为(1,0,0)DA =,所以·cos ,6·DA n DA n DA n===,所以平面1D EC 与平面1DCD所成的夹角的余弦值为6;【小问2详解】设AE m =,则11(0,0,1),(1,,0),(0,2,0),(0,0,0),(1,0,1)E m C D A D ,则11(1,,1),(1,2,0),(02),(1,0,1)ED m EC m m DA =--=--≤≤=,设平面1D EC 的一个法向量为(,,)n x y z =,则1·0·(2)0n ED x my z n EC x m y ⎧=--+=⎪⎨=-+-=⎪⎩ ,令1y =,则2,2x m z =-=,所以平面1D EC 的一个法向量为(2,1,2)n m =-,设直线1A D 与平面1D EC 所成的角为θ,则11||sin ||||n DA n DA θ=== 令4[2,4]m t -=∈,则sin θ====,当2t =时,sin θ取得最小值,最小值为5.18.(1)13(2)281(3)49【分析】(1)根据题意可画出树状图,得到甲得2分情况有9种,从而可求解;(2)游戏经过两局后甲恰得3分且为唯一获胜者的情况有2种:①第一局甲得2分,第二局甲得1分,则第一局乙丙得负一分,第二局得1分,②第一局甲得1分,第二局甲得2分,则第一局乙丙得1分,第二局乙丙得负1分,然后求出每种情况的概率从而可求解;(3)游戏经过两局就结束总共有4种情况:①仅1人得3分,②有2人得分为3分,③仅1人得4分,④有2人分别得4分,然后求出每种情况的概率从而可求解.【小问1详解】根据题意,画出树状图,如图:所以每局中共有27种情况,其中甲在一局中得2分的情况有(出手势顺序按甲乙丙):(剪刀、剪刀、布)、(剪刀、布、剪刀)、(剪刀、布、布)、(石头、石头、剪刀)、(石头、剪刀、石头)、(石头、剪刀、剪刀)、(布、布、石头)、(布、石头、布)、(布、石头、石头)、一共有9种情况,所以甲在一局中得2分的概率191 273P==.【小问2详解】游戏经过两局后甲恰得3分且为唯一获胜者的情况有2种:①第一局甲得2分,第二局甲得1分:则乙第一局得负1分,第二局得1分;则丙第一局得负1分,第二局得1分;由(1)中树状图可知满足情况有:第一局:(剪刀、布、布)、(石头、剪刀、剪刀)、(布、石头、石头)、第二局:(剪刀、剪刀、剪刀)、(布、布、布)、(石头、石头、石头)此时概率为331272781⨯=种情况,②第一局甲得1分,第二局甲得2分,则第一局乙丙得1分,第二局乙丙得负1分,则乙第一局得1分,第二局得负1分;则丙第一局得1分,第二局得负1分;由(1)中树状图可知满足情况有:第一局:(剪刀、剪刀、剪刀)、(布、布、布)、(石头、石头、石头)第二局:(剪刀、布、布)、(石头、剪刀、剪刀)、(布、石头、石头)、此时概率为331272781⨯=,综上所述:游戏经过两局后甲恰得3分且为唯一获胜者的概率2112818181P =+=.【小问3详解】游戏经过两局就结束总共有4种情况:①仅1人得3分,记事件为A ,则()2238127P A =⨯=;②有2人得分为3分,记事件为B ,()33232272727P B ⎛⎫=⨯⨯⨯= ⎪⎝⎭③仅1人得4分,记事件C :一人得4分,另两人各负2分:3313272727⎛⎫⨯⨯=⎪⎝⎭,一人得4分,一人得负2分,一人得1分:334322272727⎡⎤⎛⎫⨯⨯⨯⨯= ⎪⎢⎥⎝⎭⎣⎦,一人得4分,另两人各1分:33232272727⎛⎫⨯⨯⨯=⎪⎝⎭,()142727272727P C =++=;④有2人分别得4分,记为事件D :则()3313272727P D ⎛⎫=⨯⨯=⎪⎝⎭综上所述:游戏经过两局就结束的概率322714272727279P =+++=.19.(1)10(2)2(3)(i )16;(ii )2π3【分析】(1)利用题中概念分别计算出直线方向向量与平面法向量,然后利用线面角与直线方向向量和平面法向量所成角的关系计算即可;(2)先计算平面法向量,找到平面上一点A 然后利用向量的投影计算即可;(3)(i )先建立等式,然后画出所表示的面,计算所围成的图形的面积即可;(ii )因为是一个完全对称的图形,只需计算第一卦限内相邻面的二面角,我们需要画出第一卦限内图像,得到其二面角为钝角;【小问1详解】由题可知,直线l的一个方向向量坐标为()1,2m = ,平面1α的一个法向量为)1n =- ,设直线l 与平面1α所成角为β,则有·10sin 10m n m n β===,所以cos 10β=,直线l 与平面1α所成角的余弦值为10.【小问2详解】由题可知平面2α的法向量为()22,3,1n =,且过点()0,0,2A ,因为()1,2,1P ,所以()1,2,1AP =-,所以点P 到平面2α的距离为22·2n AP n ==.【小问3详解】(i )建立空间直角坐标系,先分别画平面2,0,02,0,02,0,02,0,011x y x y x y x y x y x y x y x y z z +=>>⎧⎪-=><⎪⎪-+=⎨--=<<⎪⎪=⎪=-⎩,然后得到几何体S为21几何体S是底面边长为的正方形,高为2的长方体,故几何体S的体积为216=,(ii )由(i )可知,(){,,|2,2,2}N x y z x y y z z x =+≤+≤+≤的图像是一个完全对称的图像,所以我们只需讨论第一卦限的相邻两个平面的二面角即可,此时0,0,0x y z >>>,得{}(,,)2,2,2,0,0,0N x y z x y y z z x x y z =+≤+≤+≤>>>,画出第一卦限图像,显然其二面角为钝角,计算平面2,2x y y z +=+=得二面角,所以两个平面的法向量分别为()()231,1,0,0,1,1n n == ,所以其二面角的余弦值为2323·12n n n n -=- ,所以二面角为2π3【点睛】思路点睛:我们需要按照解析式画出平面,在空间中三点确定一个平面,可以直接找三个点即可,找到的点,最好是三个平面的交点,一般直接建立方程求解即可.。

河南省创新发展联盟2024-2025学年高二上学期9月月考试题 化学含解析

河南省创新发展联盟2024-2025学年高二上学期9月月考试题 化学含解析

2024-2025年度上学期河南省高二年级第一次联考化学(答案在最后)本试卷满分100分,考试用时75分钟。

注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.本试卷主要考试内容:人教版选择性必修1第一章至第二章。

5.可能用到的相对原子质量:H1C12N14O16Si28一、选择题:本题共14小题,每小题3分,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.古代典籍中蕴含丰富的化学知识,下列古诗词的描述中存在吸热反应的是()A .李白——日照香炉生紫烟B .王安石——爆竹声中一岁除C .李商隐——蜡炬成灰泪始干D .苏轼——投泥泼水愈光明2.生活中常采用一些措施,以改变化学反应速率,下列做法属于温度对化学反应速率影响的是()A .肉制品放冰箱中保存B .洗衣粉加酶更易除奶溃、汗渍C .医用酒精通常比白酒燃烧更旺D .青皮香蕉中加一个熟苹果,可催熟香蕉3.已知:反应()()()()2X g 5Y g 4Z g 2W g ++=。

若反应速率分别用()X v 、()Y v 、()Z v 、()W v 表示,则下列关系错误的是()A .()()5Y W 2v v =B .()()4Y 5Z v v =C .()()5X 2Y v v =D .()()1Z W 2v v =4.乙烯是一种重要的基本化工原料,主要用于制造塑料、合成橡胶、合成纤维等。

利用2CO 氧化乙烷制备乙烯的反应为262242C H (g)CO (g)C H (g)CO(g)H O(g)+++ 0H ∆>,该反应达到平衡后,下列措施不能提高24C H 的平衡产率的是()A .升高温度B .移除部分24C H C .压缩容器体积D .增大2CO 的浓度5.肼(24N H )又称为联氨,在航空航天领域,可用作燃料和推进剂,它具有能量高、密度大、可贮存等优点。

2022年9月至10年9月全国计算机等级考试二级C笔试试题及答案

2022年9月至10年9月全国计算机等级考试二级C笔试试题及答案

2022年9月至10年9月全国计算机等级考试二级C笔试试题及答案1)一个栈的初始状态为空。

现将元素1、2、3、4、5、A、B、C、D、E依次入栈,然后再依次出栈,则元素出栈的顺序是()。

A)123456ABCDEB)EDCBA54321C)ABCDE12345D)54321EDCBA(2)下列叙述中正确的是()。

A)循环队列有队头和队尾两个指针,因此,循环队列是非线性结构B)在循环队列中,只需要队头指针就能反映队列中元素的动态变化情况C)在循环队列中,只需要队尾指针就能反映队列中元素的动态变化情况D)循环队列中元素的个数是由队头指针和队尾指针共同决定(3)在长度为n的有序线性表中进行二分查找,最坏情况下需要比较的次数是()。

A)O(n)B)O(n2)C)O(log2n)D)O(nlog2n)(4)下列叙述中正确的是()。

A)顺序存储结构的存储一定是连续的,链式存储结构的存储空间不一定是连续的B)顺序存储结构只针对线性结构,链式存储结构只针对非线性结构C)顺序存储结构能存储有序表,链式存储结构不能存储有序表D)链式存储结构比顺序存储结构节省存储空间(5)数据流图中带有箭头的线段表示的是()。

A)控制流C)模块调用B)事件驱动D)数据流(6)在软件开发中,需求分析阶段可以使用的工具是()。

A)N-S图C)PAD图B)DFD图D)程序流程图(7)在面向对象方法中,不属于“对象”基本特点的是()。

A)一致性C)多态性B)分类性D)标识唯一性(9)在数据管理技术发展的三个阶段中,数据共享最好的是()。

A)人工管理阶段C)数据库系统阶段(10)有三个关系R、S和T如下:由关系R和S通过运算得到关系T,则所使用的运算为()。

A)笛卡尔积B)交C)并D)自然连接(11)在下列原型所示的C++函数中,按“传值”方式传递参数的是()。

A)voidf1(int某);B)voidf2(int某某);C)voidf3(contint某某);D)voidf4(int&某)(12)在C++中,编译系统自动为一个类生成缺省构造函数的条件是()。

绵阳南山中学2024-2025学年高三上学期9月月考数学试题(含答案)

绵阳南山中学2024-2025学年高三上学期9月月考数学试题(含答案)

2024年9月绵阳南山中学2024-2025学年秋高三上9月月考试题数 学一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合{}2A x =∈≤,{}23B x x =-≤≤,则A B =( )A .{}03x x ≤≤B .{}24x x -≤≤C .{}0,1,2,3D .{}2,1,0,1,2,3,4--2.若命题p :x R ∃∈,2220x x ++≤,则命题p 的否定是( ) A .x R ∃∈,2220x x ++> B .x R ∀∈,2220x x ++< C .x R ∀∈,2220x x ++>D .x R ∀∈,2220x x ++≤3.若0a b c <<<,则下列不等式一定成立的是( )A .11c c a b-<- B .2a b c +>C .2ab c >D .ac bc >4.记等差数列{}n a 的前n 项和为n S ,若57a =,102a =,则14S =( ) A .49B .63C .70D .1265.已知函数1()ln(1)f x x x b=+-为偶函数,则b =( ) A .0 B .14C .12D .16.已知把物体放在空气中冷却时,若物体原来的温度是1θ℃,空气的温度是0θ℃,则mi n t 后物体的温度θ℃满足公式()010e ktθθθθ-=+-(其中k 是一个随着物体与空气的接触状况而定的正常数).某天小明同学将温度是80℃的牛奶放在20℃空气中,冷却2min 后牛奶的温度是50℃,则下列说法正确的是( )A .ln2k =B .牛奶的温度从50℃降至35℃还需4minC .2ln2k =D .牛奶的温度从50℃降至35℃还需2min 7.根据变量Y 和x 的成对样本数据,由一元线性回归模型()()20,Y bx a eE e D e σ=++⎧⎨==⎩得到经验回归模型ˆy bx a =+,求得残差图.对于以下四幅残差图,满足一元线性回归模型中对随机误差假设的是( )A .B .C .D .8.已知函数22,0,()414,0,x x f x x x ⎧⎪=⎨-++<⎪⎩…若存在唯一的整数x ,使得()10f x x a -<-成立,则所有满足条件的整数a 的取值集合为( ) A .{2,1,0,1}--B .{2,1,0}--C .{1,0,1,2}-D .{1,0,1}-二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.) 9.下列函数中,是增函数的是( ) A .()22xxf x -=-B .()1f x x=-C .()3f x x x =+D .()cos f x x x =-10.某制药公司为了研究某种治疗高血压的药物在饭前和饭后服用的药效差异,随机抽取了200名高血压患者开展试验,其中100名患者饭前服药,另外100名患者饭后服药,随后观察药效,将试验数据绘制成如图所示的等高条形图,已知22()()()()()n ad bc a b c d a c b d χ-=++++,且()26.6350.01P χ>=,则下列说法正确的是( )A .饭前服药的患者中,药效强的频率为45B .药效弱的患者中,饭后服药的频率为710C .在犯错误的概率不超过0.01的条件下,可以认为这种药物饭前和饭后服用的药效有差异D .在犯错误的概率不超过0.01的条件下,不能认为这种药物饭前和饭后服用的药效有差异11.已知函数()f x (x R ∈)是奇函数,()g x 是()f x 的导函数(x R ∈),()12f =且有()f x 满足()()222f x f x +=-,则下列说法正确的是( )A .(2022)0f =B .函数()g x 为偶函数C .(1)1g =D .函数()g x 的周期为4 三、填空题(本题共3小题,每小题5分,共15分.把答案填在题中的横线上.) 12.若1cos 3α=,()0,α∈π,则sin 2α= . 13.函数1()2sin (440)f x x x x x=--≤≤≠且的所有零点的和等于 . 14.对任意的(0,)x ∈+∞,不等式()2ln2100x x a x ax a ⎛⎫-+-++≤ ⎪⎝⎭恒成立,则实数 a = .四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.) 15.(13分)ABC V 中,内角,,A B C 的对边分别为,,a b c ,且5,7a b ==. (1)若8c =,求B ;(2)若ABC V 的面积为,求c .16.(15分)在数列{}n a 中,n S 是其前n 项和,且364n n S a -=. (1)求数列{}n a 的通项公式;(2)若n +∀∈N ,144n S λλ-<≤+恒成立,求λ的取值范围.17.(15分)某生物兴趣小组研究某种植物的生长,每天测量幼苗的高度,设其中一株幼苗从观察之日起,第x 天的高度为 c m y ,测得一些数据图如下表所示:(1)由表中数据可看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以证明; (2)求y 关于x 的回归直线方程,并预测第7天这株幼苗的高度. 参考数据:()5521140, 5.53i i i i i x y y y ===-=∑∑.参考公式:相关系数()()niix x y y r --=∑ˆy bx a =+ 中斜率和截距的最小二乘估计公式分别为()()()121ˆˆˆ,nii nii ix x yy bay bx x x ==--==--∑∑.18.(17分)函数32()231f x x ax =-+.(1)若a =1,求函数()f x 在1x =-处的切线方程;(2)证明:存在实数a 使得曲线()y f x =关于点(1,3)-成中心对称图形; (3)讨论函数()f x 零点的个数.19.(17分)已知()21e 4e 52x x f x ax =-+--.(1)当3a =时,求()f x 的单调递增区间; (2)若()f x 有两个极值点1x ,2x . (i )求a 的取值范围;(ii )证明:()()12120f x f x x x +++<.数学参考答案及评分标准二、 多选题12、913、0 14四、解答题 15.(1)由余弦定理知2221cos 22a cb B ac +-== …………………………………………………….……..3分又()0,B ∈π故3B π=; ……………………………………………………….…..6分(2)由三角形的面积公式1sin 2S ab C ==从而sin C =…………………………………….……..8分若(0,)2C π∈,1cos 7C ==,8c ==……………10分若(,)2C π∈π,1cos 7C ==-,c ==12分从而8 c =或 …………………………………..13分 16.(1)因为364n n S a -=,当1n =时,11364S a -=,解得132a =;………………………………………………...2分当2n ≥时,11364n n S a ---=,所以11330n n n n S a S a ----=+,所以112n n a a -=-;………4分所以 是以32为首项,12-为公比的等比数列,所以11322n n a -⎛⎫=⨯- ⎪⎝⎭. …………………………………………………………………….6分(2)由(1)可得6411,326464113326411,32n nn n n n a S n ⎧⎡⎤⎛⎫-⎪⎢⎥ ⎪⎝⎭⎡⎤⎪⎢⎥+⎣⎦⎛⎫==--=⎢⎥⎨ ⎪⎝⎭⎡⎤⎢⎥⎪⎣⎦⎛⎫+⎢⎥ ⎪⎪⎝⎭⎢⎥⎣⎦⎩为偶数为奇数, 又12x y ⎛⎫= ⎪⎝⎭在R 上单调递减,则12xy ⎛⎫=- ⎪⎝⎭在R 上单调递增,所以当n 为偶数时,264164111163232n ⎡⎤⎡⎤⎛⎫⎛⎫-≥-=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,当n 为奇数时,64164111323232n⎡⎤⎡⎤⎛⎫⎛⎫+≤+=⎢⎥ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦,………………………………………10分 所以当1n =时n S 取得最大值为32,当2n =时n S 取得最小值为16, 因为n +∀∈N ,144n S λλ-<≤+恒成立,所以1163244λλ-<⎧⎨≤+⎩,解得717λ≤<,………………………………………………… …...14分所以λ的取值范围为[)7,17. …………………………………………………………...15分17.(1)由1(12345)35x =++++=,1(1.3 1.7 2.2 2.8 3.5) 2.35y =++++=,()52110ii x x =-=∑,……………………… …….3分所以()()55niii ix x y y x y xyr ---==∑∑5.50.9955.53==≈≈ ……………………………………....7分因为r 与1非常接近,故可用线性回归模型拟合y 与x 的关系.(2)由题意可得:()515215 5.50.55, 2.30.5530.6510ˆˆˆi ii ii x y xyba y bx x x ==-====-=-⨯=-∑∑,….11分所以y 关于x 的回归直线方程为ˆ0.550.65yx =+. ………………………………………….…………..13分 当7x =时,ˆ0.5570.65 4.5y=⨯+=, 由此预测当年份序号为第7天这株幼苗的高度为4.5cm ……………………………..…15分 18.(1)2()666(1)f x x x x x '==--(1)12,(1)4f f '-=-=-………………………………………………………………..….2分故()f x 在1x =-处的切线方程为412(1)y x +=+,即128y x =+…………………4分 (2) (1)33f a =-,若存在这样的a ,使得(1,3)-为()f x 的对称中心,则333a -=-,2a = …………………………………………………….……6分 现在只需证明当2a =时()(2)6f x f x +-=-,事实上,32322()(2)2612(2)6(2)1(1212)(2424)6f x f x x x x x x x +-=+++-+-+=-+--于是()(2)6f x f x +-=-………………………………………………………………….8分 即存在实数2a =使得(1,(1))f 是()f x 的对称中心. ………………………………………. .9分 (3)2()666()f x x ax x x a '=-=-, 3.1)当0a >时,()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减, ………………………………………………..10分则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,而(1)130f a -=--<,根据零点存在定理()f x 在(,0)-∞上有一个零点; i)若01a <<,即3()10f a a =->, ()f x 在(0,)+∞无零点,从而()f x 在R 上有1个零点;………………………………………………………….11分 ii)若1a >,即3()10f a a =-<,(0)()0f f a <,()f x 在(0,)a 有一个零点,3(4)1610,()(4)0f a a f a f a =+><,故()f x 在(,)a +∞有一个零点,从而()f x 在R 上有3个零点;……………………………………………………………12分 iii)若1a =,即3()10f a a =-=,()f x 在(0,)+∞有一个零点,从而()f x 在R 上有2个零点;……………………………………………………………..13分 3.2)当0a =时,()f x 在R 上单调递增,(0)10f =>, x →-∞时,()f x →-∞,从而()f x 在R 上有一个零点; …………………………………………………….....14分3.3)当0a <时,()(),0,x a ∈-⋃+∞∞时()0f x '>,故()f x 在()(),,0,a -+∞∞上单调递增,(,0)x a ∈时,()0f x '<,()f x 单调递减. ………………………….15分 而3()10f a a =->,(0)0f >,故()f x 在(,)a +∞无零点,又2(21)(21)(2)1f a a a -=--+,由2(21)1,22a a ->-<-,故(21)0f a -<,(21)()0f a f a -<,从而()f x 在(,)a -∞有一个零点,从而()f x 在R 上有一个零点.………………………………………………..…..16分 综上:当1a <时,()f x 在R 上只有1个零点;1a =时,()f x 在R 上有2个零点;1a >时()f x 在R 上有3个零点。

广东省广州市第六中学2015届高三9月第二次月考数学(理)试题 Word版含答案

广东省广州市第六中学2015届高三9月第二次月考数学(理)试题 Word版含答案

2. 已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切, 其中真命题的序号是( ).A .①②③B .①②C .①③D .②③ 3. 不等式11()()023x x --> 的解集为( ) A .⎭⎬⎫⎩⎨⎧<<2131x xB .⎭⎬⎫⎩⎨⎧>21x x C .⎭⎬⎫⎩⎨⎧<31x x D .⎭⎬⎫⎩⎨⎧><2131x x x 或 4.总体由编号为01,02,…,19,20的20个个体组成。

利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为 ( )A .08B .07C .02D .01 5. 已知向量,m n 的夹角为6π,且||3m =,||2n =,在∆ABC 中,,3AB m n AC m n =+=-,D 为BC 边的中点,则||AD =( )A .1B .2C .3D .47816 6572 0802 6314 0702 4369 9728 01983204 9234 4934 8200 3623 4869 6938 74816.已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( ).A .221520x y -= B .221205x y -= C .2233125100x y -= D .2233110025x y -= 7. 在数列{}n a 中,若对任意的*n N ∈均有12n n n a a a ++++为定值,且79982,3,4a a a ===,则数列{}n a 的前100项的和100S =( )A .132B .299C .68D .998. 将2n 个正整数1、2、3、 、2n (2n ≥)任意排成n 行n 列的数表.对于某一个数表,计算各行和各列中的任意两个数a 、b (a b >)的比值ab,称这些比值中的最小值为这个数表的“特征值”.当2n =时,数表的所有可能的“特征值”最大值为( )A .3B .2C .43D .32二、填空题:本大题共7小题,每小题5分,满分30分。

99年9月全国计算机二级FoxBASE笔试及答案(1)-计算机等级考试试题

99年9月全国计算机二级FoxBASE笔试及答案(1)-计算机等级考试试题

99年9月全国计算机二级FoxBASE笔试及答案(1)-计算机等级考试试题---------------------------------------一、选择题((1)-(40)每小题1分,(41)-(50)每小题2分,共60分)下列各题A),B),C),D)四个选项中,只有一个选项是正确的,请将正确选项涂写在答题卡相应位置上,答在试卷上不得分。

(1)十进制数1385转换成十六制数为A)568 B)569 C)D85 D)D55(2)下列叙述中正确的是A)计算机病毒只能传染给可执行文件B)计算机软件是指存储在软盘中的程序C)计算机每次启动的过程之所以相同,是因为RAM 中的所有信息在关机后不会丢失D)硬盘虽然装在主机箱内,但它属于外存(3)一个字长的二进制位数是A)8 B)16C)32 D)随计算机系统而不同的(4)CPU主要由运算器与控制器组成,下列说法中正确的是A)运算器主要负责分析指令,并根据指令要求作相应的运算B)运算器主要完成对数据的运算,包括算术运算和逻辑运算C)控制器主要负责分析指令,并根据指令要求作相应的运算D)控制器直接控制计算机系统的输入与输出操作(5)下列叙述中正确的是A)将数字信号变换成便于在模拟通信线路中传输的信号称为调制B)以原封不动的形式将来自终端的信息送入通信线路称为调制解调C)在计算机网络中,一种传输介质不能传送多路信号D)在计算机局域网中,只能共享软件资源,而不能共享硬件资源(6)各种网络传输介质A)具有相同的传输速率和相同的传输距离B)具有不同的传输速率和不同的传输距离C)具有相同的传输速率和不同的传输距离D)具有不同的传输速率和相同的传输距离(7)多媒体计算机系统的两大组成部分是A)多媒体功能卡和多媒体主机B)多媒体通信软件和多媒体开发工具C)多媒体输入设备和多媒体输出设备D)多媒体计算机硬件系统和多媒体计算机软件系统(8)按通信距离划分,计算机网络可以分为局域网和广域网。

2011年 9月全国计算机等级考试二级笔试试卷与答案

2011年 9月全国计算机等级考试二级笔试试卷与答案

2011年9月全国计算机等级考试二级笔试试卷Visual Basic语言程序设计(考试时间90 分钟,满分100分)一、选择题(每小题2分,共70分)下列各题A)、B)、C)、D)四个选项中,只有一个选项是正确的。

请将正确选项填涂在答题卡相应位置上,答在试卷上不得分。

(1)下列叙述中正确的是()。

A)算法就是程序B)设计算法时只需要考虑数据结构的设计C)设计算法时只需要考虑结果的可靠性D)以上三种说法都不对(2)下列关于线性链表的叙述中,正确的是A)各数据结点的存储空间可以不连续,但它们的存储顺序与逻辑顺序必须一致B)各数据结点的存储顺序与逻辑顺序可以不一致,但它们的存储空间必须连续C)进行插入与删除时,不需要移动表中的元素D)以上三种说法都不对(3)下列关于二叉树的叙述中,正确的是A)叶子结点总是比度为2的结点少一个B)叶子结点总是比度为2的结点多一个C)叶子结点数是度为2的结点数的两倍D)度为2的结点数是度为1的结点数的两倍(4)软件按功能可以分为应用软件、系统软件和支撑软件(或工具软件)。

下面属于应用软件的是A)学生成绩管理系统B)C语言编译程序C)UNIX操作系统D)数据库管理系统(5)某系统总体结构图如下图所示:< xmlnamespace prefix ="v" ns ="urn:schemas-microsoft-com:vml" />该系统总体结构图的深度是A)7 B)< xmlnamespace prefix ="st1" ns="urn:schemas-microsoft-com:office:smarttags" />6 C)3 D)2(6)程序调试的任务是A)设计测试用例B)验证程序的正确性C)发现程序中的错误D)诊断和改正程序中的错误(7)下列关于数据库设计的叙述中,正确的是A)在需求分析阶段建立数据字典B)在概念设计阶段建立数据字典C)在逻辑设计阶段建立数据字典D)在物理设计阶段建立数据字典(8)数据库系统的三级模式不包括A)概念模式B)内模式C)外模式D)数据模式(9)有三个关系R、S和T如下:R S T则由关系R和S得到关系T的操作是A)自然连接B)差C)交D)并(10)下列选项中属于面向对象设计方法主要特征的是A)继承B)自顶向下C)模块化D)逐步求精(11)以下描述中错误的是A)窗体的标题通过其Caption属性设置B)窗体的名称(Name属性)可以在运行期间修改C)窗体的背景图形通过其Picture属性设置D)窗体最小化时的图标通过其Icon属性设置(12)在设计阶段,当按Ctrl+R键时,所打开的窗口是A)代码窗口B)工具箱窗口C)工程资源管理器窗口D)属性窗口(13)设有如下变量声明语句:Dim a, b As Boolean则下面叙述中正确的是A)a和b都是布尔型变量B)a是变体型变量,b是布尔型变量C)a是整型变量,b是布尔型变量D)a和b都是变体型变量(14)下列可以作为Visual Basic变量名的是A)A#A B)4ABC C)?xy D)Print_Text(15)假定一个滚动条的LargeChange属性值为100,则100表示A)单击滚动条箭头和滚动框之间某位置时滚动框位置的变化量B)滚动框位置的最大值C)拖动滚动框时滚动框位置的变化量D)单击滚动条箭头时滚动框位置的变化量(16)在窗体上画一个命令按钮,然后编写如下事件过程:Private Sub Command1_Click()MsgBox Str(123 + 321)End Sub程序运行后,单击命令按钮,则在信息框中显示的提示信息为A)字符串“123+321”B)字符串“444”C)数值“444”D)空白(17)假定有以下程序:Private Sub Form_Click()Do Until a >= 5x = a * bPrint b; xa = a + bb = b + aLoopEnd Sub程序运行后,单击窗体,输出结果是A) 1 1 B) 1 1 C) 1 1 D) 1 12 3 2 4 3 8 3 6(18)在窗体上画一个名称为List1的列表框,列表框中显示若干城市的名称。

云南师范大学附属中学2024-2025学年高三上学期9月月考数学试题

云南师范大学附属中学2024-2025学年高三上学期9月月考数学试题

云南师范大学附属中学2024-2025学年高三上学期9月月考数学试题一、单选题1.已知集合{13},{(2)(4)0}A xx B x x x =≤≤=--<∣∣,则A B =I ( ) A .(2,3]B .[1,2)C .(,4)-∞D .[1,4)2.已知命题2:,10p z z ∃∈+<C ,则p 的否定是( ) A .2,10z z ∀∈+<C B .2,10z z ∀∈+≥C C .2,10z z ∃∈+<CD .2,10z z ∃∈+≥C3.正项等差数列{}n a 的公差为d ,已知14a =,且135,2,a a a -三项成等比数列,则d =( ) A .7B .5C .3D .14.若sin160m ︒=,则︒=sin 40( )A .2m -B .2-C .2-D .25.已知向量(1,2),||a a b =+r r r (2)b b a ⊥-r r r ,则cos ,a b 〈〉=rr ( )A .B .C D6.函数)()ln f x kx =是奇函数且在R 上单调递增,则k 的取值集合为( )A .{}1-B .{0}C .{1}D .{1,1}-7.函数π()3sin ,06f x x ωω⎛⎫=+> ⎪⎝⎭,若()(2π)f x f ≤对x ∈R 恒成立,且()f x 在π13π,66⎡⎤⎢⎥⎣⎦上有3条对称轴,则ω=( ) A .16B .76C .136 D .16或768.设椭圆2222:1(0)x y E a b a b +=>>的右焦点为F ,过坐标原点O 的直线与E 交于A ,B 两点,点C 满足23AF FC =u u u r u u u r ,若0,0AB OC AC BF ⋅=⋅=u u u r u u u r u u u r u u u r ,则E 的离心率为( )A B C D二、多选题9.数列{}n a 的前n 项和为n S ,已知22()n S kn n k =-∈R ,则下列结论正确的是( ) A .{}n a 为等差数列B .{}n a 不可能为常数列C .若{}n a 为递增数列,则0k >D .若{}n S 为递增数列,则1k >10.甲、乙两班各有50位同学参加某科目考试(满分100分),考后分别以110.820y x =+、220.7525y x =+的方式赋分,其中12,x x 分别表示甲、乙两班原始考分,12,y y 分别表示甲、乙两班考后赋分.已知赋分后两班的平均分均为60分,标准差分别为16分和15分,则( )A .甲班原始分数的平均数比乙班原始分数的平均数高B .甲班原始分数的标准差比乙班原始分数的标准差高C .甲班每位同学赋分后的分数不低于原始分数D .若甲班王同学赋分后的分数比乙班李同学赋分后的分数高,则王同学的原始分数比李同学的原始分数高11.已知函数()f x 及其导函数()f x '的定义域为R ,若(1)f x +与()f x '均为偶函数,且(1)(1)2f f -+=,则下列结论正确的是( ) A .(1)0f '= B .4是()f x '的一个周期 C .(2024)0f =D .()f x 的图象关于点(2,1)对称三、填空题12.曲线()e xf x x =-在0x =处的切线方程为.13.若复数cos 21sin isin (0π)2z θλθθθ⎛⎫=+-+<< ⎪⎝⎭在复平面内对应的点位于直线y x =上,则λ的最大值为.14.过抛物线2:3C y x =的焦点作直线l 交C 于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于M ,N 两点,若||12AB =,则||MN =.四、解答题15.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知22cos 0a b c A -+=.(1)求角C ;(2)若AB 边上的高为1,ABC V ABC V 的周长. 16.如图,PC 是圆台12O O 的一条母线,ABC V 是圆2O 的内接三角形,AB 为圆2O 的直径,4,AB AC ==(1)证明:AB PC ⊥;(2)若圆台12O O 的高为3,体积为7π,求直线AB 与平面PBC 夹角的正弦值. 17.已知函数()ln f x x ax =+.(1)若()0f x ≤在(0,)x ∈+∞恒成立,求a 的取值范围;(2)若()1,()e ()xa g x f f x ==-,证明:()g x 存在唯一极小值点01,12x ⎛⎫∈ ⎪⎝⎭,且()02g x >.18.动点(,)M x y 到直线1:l y 与直线2:l y =的距离之积等于34,且|||y x .记点M 的轨迹方程为Γ. (1)求Γ的方程;(2)过Γ上的点P 作圆22:(4)1Q x y +-=的切线PT ,T 为切点,求||PT 的最小值; (3)已知点40,3G ⎛⎫⎪⎝⎭,直线:2(0)l y kx k =+>交Γ于点A ,B ,Γ上是否存在点C 满足0GA GB GC ++=u u u r u u u r u u u r r若存在,求出点C 的坐标;若不存在,说明理由.19.设n ∈N ,数对(),n n a b 按如下方式生成:()00,(0,0)a b =,抛掷一枚均匀的硬币,当硬币的正面朝上时,若n n a b >,则()()11,1,1n n n n a b a b ++=++,否则()()11,1,n n n n a b a b ++=+;当硬币的反面朝上时,若n n b a >,则()()11,1,1n n n n a b a b ++=++,否则()()11,,1n n n n a b a b ++=+.抛掷n 次硬币后,记n n a b =的概率为n P . (1)写出()22,a b 的所有可能情况,并求12,P P ;(2)证明:13n P ⎧⎫-⎨⎬⎩⎭是等比数列,并求n P ;(3)设抛掷n 次硬币后n a 的期望为n E ,求n E .。

贵州省贵阳市第一中学2024-2025学年高三上学期9月月考试题 数学 (解析版)

贵州省贵阳市第一中学2024-2025学年高三上学期9月月考试题 数学 (解析版)

数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号、在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则( )A. B. C. D.2.下列函数在其定义域内单调递增的是( )A. B.C. D.3.已知等差数列满足,则( )A.2B.4C.6D.84.已知点是抛物线上一点,若到抛物线焦点的距离为5,且到轴的距离为4,则( )A.1或2B.2或4C.2或8D.4或85.已知函数的定义域为.记的定义域为集合的定义域为集合.则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知函数的定义域为.设函数,函数.若是偶函数,是奇函数,则的最小值为( )A.B.C.D.7.从的二项展开式中随机取出不同的两项,则这两项的乘积为有理项的概率为( ){}{}2230,1,2,3,4A xx x B =-->=∣A B ⋂={}1,2{}1,2,3{}3,4{}41y x=-2ln y x =32y x =e xy x ={}n a 376432,6a a a a +=-=1a =A ()2:20C y px p =>A A x p =()23f x -[]2,3()f x (),21xA f -B x A ∈x B ∈()f x R ()()e xg x f x -=+()()5e xh x f x =-()g x ()h x ()f x e 2e51x ⎫⎪⎭A.B. C. D.8.已知圆,设其与轴、轴正半轴分别交于,两点.已知另一圆的半径为,且与圆相外切,则的最大值为( )A.20B.C.10D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.离散型随机变量的分布列如下表所示,是非零实数,则下列说法正确的是( )20242025A.B.服从两点分布C.D.10.已知函数,下列说法正确的是( )A.的定义域为,当且仅当B.的值域为,当且仅当C.的最大值为2,当且仅当D.有极值,当且仅当11.设定义在上的可导函数和的导函数分别为和,满足,且为奇函数,则下列说法正确的是( )A.B.的图象关于直线对称C.的一个周期是4D.三、填空题(本大题共3小题,每小题5分,共15分)12.过点作曲线且的切线,则切点的纵坐标为__________.13.今年暑期旅游旺季,贵州以凉爽的气候条件和丰富的旅游资源为依托,吸引了各地游客前来游玩.由安25351323221:220C x y x y +--=x y M N 2C 1C 22C M C N ⋅X ,m n X Pm n1m n +=X ()20242025E X <<()D X mn=()()214log 21f x ax ax =-+()f x R 01a <<()f x R 1a …()f x 1516a =()f x 1a <R ()f x ()g x ()f x '()g x '()()()()11,3g x f x f x g x --=''=+()1g x +()00f =()g x 2x =()f x 20251()0k g k ==∑()0,0(0x y a a =>1)a ≠顺黄果树瀑布、荔波小七孔、西江千户苗寨、赤水丹霞、兴义万峰林、铜仁梵净山6个景点谐音组成了贵州文旅的拳头产品“黄小西吃晚饭”.小明和家人计划游览以上6个景点,若铜仁梵净山不安排在首末位置,且荔波小七孔和西江千户苗寨安排在相邻位置,则一共有__________种不同的游览顺序方案.(用数字作答)14.已知函数若存在实数且,使得,则的最大值为__________.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)下图中的一系列三角形图案称为谢尔宾斯基三角形.图(1)是一个面积为1的实心正三角形,分别连接这个正三角形三边的中点,将原三角形分成4个小正三角形,并去掉中间的小正三角形得到图(2),再对图(2)中的每个实心小正三角形重复以上操作得到图(3),再对图(3)中的每个实心小正三角形重复以上操作得到图(4),…,依此类推得到个图形.记第个图形中实心三角形的个数为,第n 个图形中实心区域的面积为.(1)写出数列和的通项公式;(2)设,证明.16.(本小题满分15分)如图,在三棱台中,和都为等腰直角三角形,为线段的中点,为线段上的点.(1)若点为线段的中点,求证:平面;(2)若平面分三棱台所成两部分几何体的体积比为,求二面角的正弦值.()223,0,ln ,0,x x x f x x x ⎧++=⎨>⎩…123,,x x x 123x x x <<()()()123f x f x f x ==()()()112233x f x x f x x f x ++n n n a n b {}n a {}n b 121121n n n n n c a b a b a b a b --=++++ 43n n n a c a <…111A B C ABC -111A B C V ABC V 111112,4,90,CC C A CA ACC BCC CBA G ∠∠∠====== AC H BC H BC 1A B ∥1C GH 1C GH 111A B C ABC -2:511C GH B --17.(本小题满分15分)已知双曲线与双曲线的离心率相同,且经过点的焦距为.(1)分别求和的方程;(2)已知直线与的左、右两支相交于点,与的左、右两支相交于点,D,,判断直线与圆的位置关系.18.(本小题满分17分)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关;单位:只指标值抗体小于60不小于60合计有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率;(ii )以(i )中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记100个人注射2次疫苗后产生抗体的数量为随机变量.求及取最大值时的值.()2222:10,0x y M a b a b -=>>2222:12x y N m m-=M ()2,2,N M N l M ,A B N C AB CD=l 222:O x y a +=[)[)[)[)[]0,20,20,40,40,60,60,80,80,10022⨯0.01α=P P X ()E X ()P X k =k参考公式:(其中为样本容量)参考数据:0.1000.0500.0100.0052.7063.8416.6357.87919.(本小题满分17分)三角函数是解决数学问题的重要工具.三倍角公式是三角学中的重要公式之一,某数学学习小组研究得到了以下的三倍角公式:①;②.根据以上研究结论,回答:(1)在①和②中任选一个进行证明;(2)已知函数有三个零点且.(i )求的取值范围;(ii )若,证明:.()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++αx α3sin33sin 4sin θθθ=-3cos34cos 3cos θθθ=-()323f x x ax a =-+123,,x x x 123x x x <<a 1231x x x =-222113x x x x -=-贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号12345678答案DCBCBCAA【解析】1.由题,或,则,故选D.2.对于A 选项,的定义域为,该函数在和上单调递增,在定义域内不单调;对于B 选项,的定义域为,该函数在上单调递减,在上单调递增,在定义域内不单调;对于C 选项,,该函数在定义域上单调递增;对于D 选项,的定义域为,当时,;当时,,在上单调递减,在上单调递增,因此该函数在定义域内不单调,故选C.3.,故选B.4.设点,则整理得,解得或,故选C.5.的定义域为.当时,的定义域为,即.令,解得的定义域为,即.“”是“”的必要不充分条件,故选B.{1A xx =<-∣{}3},1,2,3,4x B >={}4A B ⋂=1y x=-()(),00,∞∞-⋃+(),0∞-()0,∞+2ln y x =()(),00,∞∞-⋃+(),0∞-()0,∞+32y x ==[)0,∞+e x y x =().1e xy x =+'R (),1x ∞∈--0y '<()1,x ∞∈-+0y '>x e y x ∴=(),1∞--()1,∞-+53756415232,16,26,3,44a a a a d a a d a a d =+===-===-= ()00,A x y 200002,5,24,y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩582p p ⎛⎫-= ⎪⎝⎭2p =8p =()23f x - []2,323x ……()1233,x f x -∴……[]1,3[]1,3A =1213x -……()12,21xx f ∴-……[]1,2[]1,2B =,B A ⊆∴ x A ∈x B ∈6.由题,解得,所以,即时,等号成立,C.7.设的二项展开式的通项公式为,,所以二项展开式共6项.当时的项为无理项;当时的项为有理项.两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为,故选A.8.由题,,即圆心为,且,为的直径.与相外切,.由中线关系,有,当且仅当时,等号成立,所以的最大值为20,故选A.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号91011答案ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,,正确;对于D 选项,令,则服从两点分布,,,正确,故选ACD.10.令,对于A 选项,的定义域为或,故A 错误;对于B 选项,的值域为在定义域内的值域为()()()()()()()(),e e ,5e 5e ,x xx xg x g x f x f x h x h x f x f x --⎧⎧=-+=-+⎪⎪⇒⎨⎨=---=--+⎪⎪⎩⎩()3e 2e x xf x -=+()3e 2e xxf x -=+…3e 2e x x -=12ln 23x =min ()f x ∴=51x ⎫⎪⎭53521551C C ,0,1,2kkk k kk T x k x --+⎛⎫=== ⎪⎝⎭3,4,50,2,4k =1,3,5k =223326C C 2C 5+=221:(1)(1)2C x y -+-=()11,1C ()()2,0,0,2M N MN 1C 1C 2C 12C C ∴=+=()()2222222222121222218240,202C M C NC M C N C C C MC M C N ++=+=⨯+=∴⋅=…22C M C N =22C M C N ⋅()()()202420252024120252024.01,20242025E X m n n n n n E X =+=-+=+<<∴<< 2024Y X =-Y ()()1D Y n n mn =-=()()()2024D X D Y D Y mn ∴=+==()2221,Δ44g x ax ax a a =-+=-()f x 0a ⇔=R 0,01Δ0a a >⎧⇔<⎨<⎩…()f x ()g x ⇔R,故B 正确;对于C 选项,的最大值为在定义域内的最小值为,故C 正确;对于D 选项,有极值在定义域内有极值且,故D 选项错误,故选BC.11.对于A 选项,因为为奇函数,所以,又由,可得,故A 错误;对于B 选项,由可得为常数,又由,可得,则,令,得,所以,所以的图象关于直线对称,故B 正确;对于C 选项,因为为奇函数,所以,所以,所以是一个周期为4的周期函数,,所以也是一个周期为4的周期函数,故C 正确;对于D 选项,因为为奇函数,所以,又,又是周期为4的周期函数,所以,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号121314答案144【解析】12.设切点坐标为切线方程为.将代入得,可得切点纵坐标为.13.先对小七孔和千户苗寨两个相邻元素捆绑共有种方法,再安排梵净山的位置共有种方法,再排其()0,0,1Δ0a a ∞>⎧+⇔⇔⎨⎩……()f x ()2g x ⇔()0,11511616116a a g >⎧⎪⇔⇔=⎨=⎪⎩()f x ()g x ⇔()0,110a a g ≠⎧⇔⇔<⎨>⎩0a ≠()1g x +()10g =()()11g x f x --=()()()101,01g f f -==-()()3f x g x '=+'()()3,f x g x C C =++()()11g x f x --=()()11g x f x --=()()131g x g x C --+-=1x =-()()221g g C --=1C =-()()()13,g x g x g x -=+2x =()1g x +()()()311g x g x g x +=-=-+()()()()()2,42g x g x g x g x g x +=-+=-+=()g x ()()()()()()31,47131f x g x f x g x g x f x =+-+=+-=+-=()f x ()1g x +()()()()10,204g g g g ==-=-()()310g g ==()g x 20251()(1)0k g k g ===∑e33e 6-(),,ln ,txt a y a a ='∴ ln x y a a x =⋅(),tt aln tta a t a ⋅=1log e,ln a t a==∴e log e t a a a ==22A 13C余元素共有种排法,故共有种不同的方案.14.设,由的函数图象知,,又,.令在上单调递增,则,的最大值为.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列是首项为1,公比为3的等比数列,因此;数列是首项为1,公比为的等比数列,因此,.(2)证明:由(1)可得因为,所以,所以.16.(本小题满分15分)(1)证明:如图1,连接,设,连接,44A 214234A C A 144⋅⋅=()()()123f x f x f x t ===()f x 23t <…1232,ln x x x t +=-= ()()()3112233e ,2e t t x x f x x f x x f x t t =∴++=-+()()()()2e ,23,1e 20,t t t t t t t t t ϕϕϕ'=-+<=+->∴…(]2,3()3max ()33e 6t ϕϕ==-()()()112233x f x x f x x f x ∴++33e 6-{}n a 11133n n n a --=⨯={}n b 341133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭1210121121121333333334444n n n n n n n n n c a b a b a b a b ------⎛⎫⎛⎫⎛⎫⎛⎫=++++=⋅+⋅++⋅+⋅ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12101111134444n n n ---⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦121114134311414n nn n --⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=⋅=⋅⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-2114314411334n n nnn nc a --⎡⎤⎛⎫⋅⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥⎪⎝⎭⎢⎥⎣⎦413n n c a <…43n n n a c a <…1AC 11AC C G O ⋂=1,HO A G三棱台,则,又,四边形为平行四边形,则.点是的中点,.又平面平面,平面.(2)解:因为平面分三棱台所成两部分几何体的体积比为,所以,即,化简得,此时点与点重合.,且都在平面,则平面,111A B C ABC -11AC ∥AC 122CG AC ==∴11AC CG 1CO OA = H BC 1BA ∴∥OH OH ⊂11,C HG A B ⊄1C HG 1A B ∴∥1C HG 1C GH 111A B C ABC -2:511127C GHC AB V V B C ABC -=-()1111121373GHC ABC AB C S CC S S CC ⋅⋅=⋅⋅+⋅V V V 12GHC ABC S S =V V H B 1190C CA BCC ∠∠== 11,,C C BC CC AC BC AC C ∴⊥⊥⋂=ABC 1CC ⊥ABC又为等腰直角三角形,则.又由(1)知,则平面,建立如图2所示的坐标系则,设平面的法向量,则令,解得,设平面的法向量,则令,解得.设二面角的平面角为,,所以,所以二面角.17.(本小题满分15分)解:(1)由题意可知双曲线的焦距为,解得,即双曲线.因为双曲线与双曲线的离心率相同,不妨设双曲线的方程为,因为双曲线经过点,所以,解得,则双曲线的方程为.ABC V BG AC ⊥1A G ∥1CC 1A G ⊥ABC ,G xyz -()()()()2,0,0,0,2,0,0,0,0,0,2,0H A G C -()()110,2,2,1,1,2C B --1C HG ()()()1,,,0,2,2,2,0,0n x y z GC GH ==-= 220,20,y z x -+=⎧⎨=⎩1y =()0,1,1n = 1B GH ()()1,,,1,1,2m a b c GB ==- 20,20,a b c a -+=⎧⎨=⎩2b =()0,2,1m = 11C GH B --θcos cos ,m n m n m n θ⋅=<>=== sin θ==11C GH B --N =21m =22:12y N x -=M N M 222y x λ-=M ()2,242λ-=2λ=M 22124x y -=(2)易知直线的斜率存在,不妨设直线的方程为,联立消去并整理得此时可得,当时,由韦达定理得;当时,由韦达定理得,则,化简可得,由(1)可知圆,则圆心到直线的距离,所以直线与圆相切或相交.18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为:在内有(只);在)内有(只);在)内有(只);在)内有(只);在内有(只)由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只l l ()()()()11223344,,,,,,,,y kx t A x y B x y C x y D x y =+22,,2y kx t y x λ=+⎧⎪⎨-=⎪⎩y ()2222220,k x ktx t λ----=()()222222Δ44220,20,2k t k tt k λλ⎧=+-+>⎪⎨--<⎪-⎩22k <2λ=212122224,22kt t x x x x k k--+==--1λ=234342222,22kt t x x x x k k--+==--ABCD ====222t k +=22:2O x y +=O l d ====l O [)0,200.00252020010⨯⨯=[20,400.006252020025⨯⨯=[40,600.008752020035⨯⨯=[60,800.025********⨯⨯=[]80,1000.00752020030⨯⨯=10253570++=指标值抗体小于60不小于60合计有抗体50110160没有抗体202040合计70130200零假设为:注射疫苗后小白鼠产生抗体与指标值不小于60无关联.根据列联表中数据,得.根据的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.(2)(i )令事件“小白鼠第一次注射疫苗产生抗体”,事件“小白鼠第二次注射疫苗产生抗体”,事件“小白鼠注射2次疫苗后产生抗体”.记事件发生的概率分别为,则,.所以一只小白鼠注射2次疫苗后产生抗体的概率.(ii )由题意,知随机变量,所以.又,设时,最大,所以解得,因为是整数,所以.19.(本小题满分17分)(1)若选①,证明如下:若选②,证明如下:.0H 220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯0.01α=A =B =C =,,A B C ()()(),,P A P B P C ()()160200.8,0.520040P A P B ====()1P C =-()()10.20.50.9P A P B =-⨯=0.9P =()100,0.9X B ~()1000.990E X np ==⨯=()()C 0.90.10,1,2,,k k n k n P X k k n -==⨯⨯= 0k k =()P X k =00000000000010011910010010011101100100C 0.90.1C 0.90.1,C 0.90.1C 0.90.1,k k k k k k k k k k k k -++-----⎧⨯⨯≥⨯⨯⎪⎨⨯⨯≥⨯⨯⎪⎩089.990.9k ……0k 090k =()()22sin3sin 2sin2cos cos2sin 2sin cos 12sin sin θθθθθθθθθθθ=+=+=+-()()2232sin 1sin 12sin sin 3sin 4sin θθθθθθ=-+-=-()()22cos3cos 2cos2cos sin2sin 2cos 1cos 2sin cos θθθθθθθθθθθ=+=-=--()3232cos cos 21cos cos 4cos 3cos θθθθθθ=---=-(2)(i )解:,当时,恒成立,所以在上单调递增,至多有一个零点;当时,令,得;令,得令,得或所以在上单调递减,在上单调递增.有三个零点,则即解得,当时,,且,所以在上有唯一一个零点,同理所以在上有唯一一个零点.又在上有唯一一个零点,所以有三个零点,综上可知的取值范围为.(ii )证明:设,则.又,所以.此时,方程的三个根均在内,方程变形为,令,则由三倍角公式.因为,所以.()233f x x a =-'0a …()0f x '…()f x (),∞∞-+0a >()0f x '=x =()0f x '<x <<()0f x '>x <x >()f x ((),,∞∞-+()f x (0,0,f f ⎧>⎪⎨<⎪⎩2220,20,a a ⎧+>⎪⎨-<⎪⎩04a <<04a <<4a +>()()()()32224(4)3445160f a a a a a a a a a +=+-++=++++>()f x )4a +()2220,g a -<-=-=-<()f x (-()f x (()f x a ()0,4()()()()321233f x x ax a x x x x x x =-+=---()212301f a x x x ==-=04a <<1a =()()()()210,130,110,230f f f f -=-<-=>=-<=>3310x x -+=()2,2-3310x x -+=3134222x x ⎛⎫=⋅-⋅ ⎪⎝⎭ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭31sin33sin 4sin 2θθθ=-=3π3π3,22θ⎛⎫∈- ⎪⎝⎭7ππ5π7ππ5π3,,,,,666181818θθ=-=-因为,所以,所以.123x x x <<1237ππ5π2sin ,2sin ,2sin 181818x x x =-==222221π7ππ7π4sin 4sin 21cos 21cos 181899x x ⎛⎫⎛⎫-=-=--- ⎪ ⎪⎝⎭⎝⎭137ππ5π7π2cos 2cos 2sin 2sin 991818x x =-=--=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档