泰州市八年级上学期期末数学试卷 (解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰州市八年级上学期期末数学试卷 (解析版) 一、选择题
1.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )
A .31y x =-+
B .32y x =-+
C .31y x =--
D .32y x =--
2.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )
A .362
B .332
C .6
D .3
3.如图,数轴上的点P 表示的数可能是( )
A .3
B .21+
C .71-
D .51+ 4.一次函数y=-5x+3的图象经过的象限是( )
A .一、二、三
B .二、三、四
C .一、二、四
D .一、三、四 5.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )
A .18
B .22.5
C .36
D .45 6.若等腰三角形的一个内角为92°,则它的顶角的度数为( )
A .92°
B .88°
C .44°
D .88°或44° 7.下到图形中,不是轴对称图形的是( )
A .
B .
C .
D .
8.若3n +3n +3n =19
,则n =( )
A .﹣3
B .﹣2
C .﹣1
D .0 9.到ABC ∆的三顶点距离相等的点是ABC ∆的是( ) A .三条中线的交点
B .三条角平分线的交点
C .三条高线的交点
D .三条边的垂直平分线的交点 10.某篮球运动员的身高为1.96cm ,用四舍五人法将1.96精确到0.1的近似值为( )
A .2
B .1.9
C .2.0
D .1.90 二、填空题
11.17.85精确到十分位是_____.
12.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______.
13.使3x -有意义的x 的取值范围是__________.
14.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.
15.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.
16.如图,在△ABC 中,∠ACB=90°,AC=BC=4,O 是BC 的中点,P 是射线AO 上的一个动点,则当∠BPC=90°时,AP 的长为______.
17.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =
34
x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.
18.若正比例函数y=kx 的图象经过点(2,4),则k=_____.
19.如图,△ABC 中,AB =AC ,AB 的垂直平分线分别交边AB ,BC 于D ,E 点,且AC =EC ,则∠BAC =_____.
20.如图,在ABC ∆中,AC AD BD ==,28B ∠=,则CAD ∠的度数为__________.
三、解答题
21.如图,在四边形ABCD 中,90ABC ∠=︒,过点B 作BE CD ⊥,垂足为点E ,过点A 作AF BE ⊥,垂足为点F ,且BE AF =.
(1)求证:ABF BCE ∆≅∆;
(2)连接BD ,且BD 平分ABE ∠交AF 于点G .求证:BCD ∆是等腰三角形.
22.已知2y +与x 成正比,当x =1时,y =﹣6.
(1)求y 与x 之间的函数关系式;
(2)若点(a ,2)在这个函数图象上,求a 的值.
23.已知:如图,点A 是线段CB 上一点,△ABD 、△ACE 都是等边三角形,AD 与BE 相交于点G ,AE 与CD 相交于点F .求证:△AGF 是等边三角形.
24.已知,如图,//AB CD ,E 是AB 的中点,CE DE =,求证:AC BD =.
25.解方程 3
(1)8x -=-
四、压轴题
26.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.
(1)当∠A =44°时,求∠BPD 的度数;
(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式;
(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.
27.如图,在平面直角坐标系中,直线334
y x =-+分别交,x y 轴于A B ,两点,C 为线段AB 的中点,(,0)D t 是线段OA 上一动点(不与A 点重合),射线//BF x 轴,延长DC 交BF 于点E .
(1)求证:AD BE =;
(2)连接BD ,记BDE 的面积为S ,求S 关于t 的函数关系式;
(3)是否存在t 的值,使得BDE 是以BD 为腰的等腰三角形?若存在,求出所有符合条件的t 的值;若不存在,请说明理由.
28.(1)填空
①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;
②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.
(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.
29.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC 是等边三角形,点D 是BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线于点E .试探究AD 与DE 的数量关系.
操作发现:(1)小明同学过点D 作DF ∥AC 交AB 于F ,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD 与DE 的数量关系,并进行证明.
类比探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外),其他条件不变,试猜想AD 与DE 之间的数量关系,并证明你的结论.
拓展应用:(3)当点D 在线段BC 的延长线上,且满足CD =BC ,在图3中补全图形,直接判断△ADE 的形状(不要求证明).
30.如图已知ABC 中,,8B C AB AC ∠=∠==厘米,6BC =厘来,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,设运动时间为t (秒).
(1)用含t 的代数式表示线段PC 的长度;
(2)若点,P Q 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由; (3)若点,P Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等?
(4)若点Q 以(3)中的运动速度从点C 出发,点v 以原来的运动速度从点B 同时出发,都顺时针沿三边运动,求经过多长时间,点P 与点Q 第一次在ABC 的哪条边上相遇?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
根据左加右减,上加下减的平移规律解题.
【详解】
解:把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为3(2)4y x =-++,
整理得:32y x =--,
故选D.
【点睛】
本题考查了直线的平移变换,属于简单题,熟悉直线的平移规律是解题关键.
2.D
解析:D
【解析】
分析:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,利用轴对称的性质得
MP=MC ,NP=ND ,∠BOP=∠BOD ,∠AOP=∠AOC ,所以
∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,然后利用含30度的直角三角形三边的关系计算出CD 即可.
详解:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,
则MP=MC ,NP=ND ,∠BOP=∠BOD ,∠AOP=∠AOC ,
∴PN+PM+MN=ND+MN+MC=DC ,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°, ∴此时△PMN 周长最小,
作OH ⊥CD 于H ,则CH=DH ,
∵∠OCH=30°,
∴OH=12OC=2
OH=
32
, ∴CD=2CH=3.
故选D .
点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.
3.B
解析:B
【解析】
【分析】
先换算出每项的值,全部保留三位小数,然后观察数轴上P点的位置,逐项判断即可开.【详解】
3≈1.7322≈1.4145 2.2367≈2.646,
所以A项≈1.732,B项≈2.414,C项≈1.646,D项≈3.236
观察数轴上P点的位置,B项正确.
故选B.
【点睛】
本题主要考查实数与数轴上的点的对应关系,掌握实数与数轴之间一一对应的关系,估算出每个二次根式的值是解题的关键.
4.C
解析:C
【解析】
试题分析:直线y=﹣5x+3与y轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.
故选C.
考点:一次函数的图象和性质.
5.B
解析:B
【解析】
【分析】
易得BE=DE,利用勾股定理求得DE的长,利用三角形的面积公式可得阴影部分的面积.【详解】
根据翻折的性质可知:∠EBD=∠DBC.
又∵AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴BE=DE.设BE=DE=x,∴AE=12﹣x.∵四边形ABCD是矩形,∴∠A=90°,∴AE2+AB2=BE2,即(12﹣x)2+62=x2,x=7.5,
∴S△EDB=1
2
×7.5×6=22.5.
故选B.
【点睛】
本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE的长是解决本题的关键.
6.A
解析:A
【解析】
【分析】
已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.
【详解】
解:(1)若等腰三角形一个底角为92°,因为92°+92°=184°>180°,所以这种情况不可能出现,舍去;
(2)等腰三角形的顶角为92°.
因此这个等腰三角形的顶角的度数为92°.
故选A.
【点睛】
本题考查了等腰三角形的性质.如果已知等腰三角形的一个内角要求它的顶角,需要分该内角是顶角和这个内角是底角两种情况讨论.本题能根据92°角是钝角判断出92°只能是顶角是解题关键.
7.C
解析:C
【解析】
【分析】
根据轴对称图形的定义,依次对各选项进行判断即可. 轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.
【详解】
解:A、是轴对称图形,故此选项错误;
B、是轴对称图形,故此选项错误;
C、不是轴对称图形,故此选项正确;
D、是轴对称图形,故此选项错误;
故选:C.
【点睛】
此题主要考查了轴对称图形,熟记轴对称图形的定义,并能依据定义判断一个图形是不是
轴对称图形是解决此题的关键.
8.A
解析:A
【解析】
【分析】
直接利用负整数指数幂的性质结合同底数幂的乘法运算法则将原式变形得出答案.
【详解】 解:13339
n n n ++=, 1233n +-∴=,
则12n +=-,
解得:3n =-.
故选:A .
【点睛】
此题主要考查了负整数指数幂的性质以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.
9.D
解析:D
【解析】
【分析】
根据垂直平分线的性质进行判断即可;
【详解】
∵到△ABC 的三个顶点的距离相等,
∴这个点在这个三角形三条边的垂直平分线上,
即这点是三条垂直平分线的交点.
故答案选D .
【点睛】
本题主要考查了垂直平分线的性质,准确理解性质是解题的关键.
10.C
解析:C
【解析】
【分析】
根据四舍五入法可以将1.96精确到0.1,本题得以解决.
【详解】
1.96≈
2.0(精确到0.1),
故选:C .
【点睛】
此题主要考查有理数的近似值,熟练掌握,即可解题.
二、填空题
11.9.
【解析】
【分析】
把百分位上的数字5进行四舍五入即可.
【详解】
17.85精确到十分位是17.9
故答案为:17.9.
【点睛】
本题考查了近似数和有效数字:“精确到第几位”和“有几个有效
解析:9.
【解析】
【分析】
把百分位上的数字5进行四舍五入即可.
【详解】
17.85精确到十分位是17.9
故答案为:17.9.
【点睛】
本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.
12.7
【解析】
【分析】
根据关于x轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m,n即可解决.
【详解】
解:∵和点关于轴对称,
∴m=2,-5+n=0,
∴m=2,n=5,
∴m+
解析:7
【解析】
【分析】
根据关于x轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m,n即可解决.
【详解】
解:∵(,5)A m -和点(2,)B n 关于x 轴对称,
∴m=2,-5+n=0,
∴m=2,n=5,
∴m+n=7.
故答案为7.
【点睛】
本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x 轴对称的点的坐标特征,要与关于y 轴对称的点的坐标特征相区别.
13.【解析】
【分析】
根据以上信息可得到关于不等式x-3≥0,求解便能得到x 的取值范围.
【详解】
根据题意,得
x-3≥0,
解得x≥3.
故答案为
【点睛】
考查二次根式有意义的条件:二次根式的
解析:3x ≥
【解析】
【分析】
根据以上信息可得到关于不等式x-3≥0,求解便能得到x 的取值范围.
【详解】
根据题意,得
x-3≥0,
解得x≥3.
故答案为3x ≥
【点睛】
考查二次根式有意义的条件:二次根式的被开方数是非负数;
14.(-1,-3)
【解析】
【分析】
让点A 的横坐标减4,纵坐标减2即可得到平移后的坐标.
【详解】
点A (2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的
横坐标为2−3=−1;纵坐标
解析:(-1,-3)
【解析】
【分析】
让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.
【详解】
点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为
2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),
故填:(-1,-3).
【点睛】
本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.
15.【解析】
【分析】
根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,
解析:【解析】
【分析】
根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,根据全等三角形的性质得到
A′C=BD=2,A′O=4,然后在Rt△A′OE中根据勾股定理列出方程求解即可.
【详解】
解:如图,
∵四边形OABC是矩形,
∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,
∵CD=3DB,
∴CD=6,BD=2,
∴CD=AB,
∵将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,
∴A′D=AD,A′E=AE,
在Rt△A′CD与Rt△DBA中,
CD AB A D AD '=⎧⎨=⎩
, ∴Rt △A′CD ≌Rt △DBA (HL ),
∴A′C=BD=2,
∴A′O=4,
∵A′O 2+OE 2=A′E 2,
∴42+OE 2=(8-OE )2,
∴OE=3,
故答案是:3.
【点睛】
本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.
16.22
【解析】
【分析】
在Rt△AOC 中利用勾股定理即可求出AO 的长度,再根据直角三角形中斜边上的中线等于斜边的一半即可求出OP 的长度,由线段间的关系即可得出AP 的长度.
【详解】
解:依照题意画
解析:±2
【解析】
【分析】
在Rt △AOC 中利用勾股定理即可求出AO 的长度,再根据直角三角形中斜边上的中线等于斜边的一半即可求出OP 的长度,由线段间的关系即可得出AP 的长度.
【详解】
解:依照题意画出图形,如图所示.
∵∠ACB=90°,AC=BC=4,O 是BC 的中点,
∴CO=BO=
12
BC=2, ∵∠BPC=90°,O 是BC 的中点, ∴OP=12
BC=2,
∴AP=AO-OP=,或AP=AO+OP=
故答案为:±2.
【点睛】
本题考查了直角三角形斜边上的中线以及勾股定理,根据直角三角形中斜边上的中线等于斜边的一半求出OP的长度是解题的关键.
17.【解析】
【分析】
认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案
【详解】
解:如图,过点P作PM⊥AB,
解析:28 5
【解析】
【分析】
认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案
【详解】
解:如图,过点P作PM⊥AB,则:∠PMB=90°,
当PM⊥AB时,PM最短,
因为直线y=3
4
x﹣3与x轴、y轴分别交于点A,B,
可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,22
345
+=,
∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,
∴△PBM∽△ABO,∴PB PM
AB AO
=,
即:7
54
PM =,
所以可得:PM=28
5
.
18.2
【解析】
解析:2
【解析】
4=22
k k
⇒=
19.108°
【解析】
【分析】
连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.
【详解】
连接AE,如图所示:
∵AB
解析:108°
【解析】
【分析】
连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.
【详解】
连接AE,如图所示:
∵AB=AC,
∴∠B=∠C,
∵AB的垂直平分线分别交边AB,BC于D,E点,
∴AE=BE,
∴∠B=∠BAE,
∵AC=EC,
∴∠EAC=∠AEC,
设∠B=x°,则∠EAC=∠AEC=2x°,则∠BAC=3x°,
在△AEC中,
x+2x+2x=180,
解得:x=36,
∴∠BAC=3x°=108°,
故答案为:108°.
【点睛】
此题主要考查等腰三角形的性质,解题关键是利用三角形内角和构建方程.
20.68°
【解析】
【分析】
由在△ABC中,AC=AD=BD,∠B=28°,根据等腰三角形的性质,即可求得∠ADC的度数,接着求得∠C的度数,可得结论.
【详解】
解:∵AD=BD,
∴∠BAD=∠
解析:68°
【解析】
【分析】
由在△ABC中,AC=AD=BD,∠B=28°,根据等腰三角形的性质,即可求得∠ADC的度数,接着求得∠C的度数,可得结论.
【详解】
解:∵AD=BD,
∴∠BAD=∠B=28°,
∴∠ADC=∠B+∠BAD=28°+28°=56°,
∵AD=AC,
∴∠C=∠ADC=56°,
∴∠CAD=180°-∠ADC-∠C=180°-56°-56°=68°,
故答案为:68°.
【点睛】
此题考查了等腰三角形的性质与三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.
三、解答题
21.(1)详见解析;(2)详见解析.
【解析】
【分析】
(1)根据ASA证明ΔABF≌ΔBCE即可;
(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.
【详解】
(1)∵BE⊥CD,AF⊥BE,
∴∠BEC=∠AFB=90°,
∴∠ABE+∠BAF=90°.
∵∠ABC=90°,
∴∠ABE+∠EBC=90°,
∴∠BAF=∠EBC.
在ΔABF和ΔBCE中,
∵∠AFB=∠BEC,AF=BE,∠BAF=∠EBC,
∴ΔABF≌ΔBCE.
(2)∵∠ABC=90°,
∴∠ABD+∠DBC=90°.
∵∠BED=90°,
∴∠DBE+∠BDE=90°.
∵BD分∠ABE,
∴∠ABD=∠DBE,
∴∠DBC=∠BDE,
∴BC=CD,
即ΔBCD是等腰三角形.
【点睛】
本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明
ΔABF≌ΔBCE.
22.(1)y=-4x-2;(2)a=-1.
【解析】
【分析】
(1)设y+2=kx,将x=1、y=-6代入y+2=kx可得k的值;
(2)将点(a,2)的坐标代入函数的解析式求a的值.
【详解】
解:(1)∵y+2与x成正比,
∴设y+2=kx,
将x=1、y=-6代入y+2=kx得-6+2=k×1,
∴k=-4,
∴y=-4x-2
(2)∵点(a,2)在函数y=-4x-2图象上,
∴2=-4a-2,
∴a=-1.
【点睛】
本题主要考查函数解析式的求法.如果事先知道函数的形式,可先设函数的解析式,再采用待定系数法求解.
23.见解析
【解析】
【分析】
由等边三角形可得AD=AB,AE=AC,∠BAE=∠DAC=120°,再由两边夹一角即可判定
△BAE≌△DAC,可得∠1=∠2,进而可得出△BAG≌△DAF,AG=AF,则可得△AGF是等边三角形.
【详解】
证明:∵△ABD,△ACE都是等边三角形,
∴AD=AB,AE=AC,
∴∠DAE=∠BAD=∠CAE=60°
∴∠BAE=∠DAC=120°,
在△BAE和△DAC中
AD=AB,∠BAE=∠DAC,AE=AC,
∴△BAE≌△DAC.
∴∠1=∠2
在△BAG和△DAF中
∠1=∠2,AB=AD,∠BAD=∠DAE,
∴△BAG≌△DAF,
∴AG=AF,又∠DAE=60°,
∴△AGF是等边三角形.
【点睛】
本题主要考查了全等三角形的判定及性质,以及等边三角形的性质和判定,解答本题的关键是明确题意,利用数形结合的思想解答.
24.见解析
【解析】
【分析】
由CE=DE易得∠ECD=∠EDC,结合AB∥CD易得∠AEC=∠BED,由此再结合AE=BE,CE=DE 即可证得△AEC≌△BED,由此即可得到AC=BD.
【详解】
,
∵CE DE
∴ECD EDC ∠=∠,
∵//AB CD ,
∴AEC ECD ∠=∠,BED EDC ∠=∠,
∴AEC BED ∠=∠,
又∵E 是AB 的中点,
∴AE BE =,
在AEC 和BED 中,AE BE AEC BED CE DE =⎧⎪∠=∠⎨⎪=⎩
,
∴AEC ≌BED .
∴AC BD =.
【点睛】
熟悉“等腰三角形的性质、平行线的性质和全等三角形的判定方法”是解答本题的关键. 25.x=-1
【解析】
【分析】
把(x-1)看作一个整体,利用立方根的定义解答即可.
【详解】
解:∵(x-1)3=-8,
∴x-1=-2,
∴x=-1.
【点睛】
本题考查了利用立方根的定义求未知数的值,熟记概念是解题的关键.
四、压轴题
26.(1)56°;(2)y=454x +
;(3)36°或1807
°. 【解析】
【分析】
(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;
(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;
(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454
x +
解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,
∴∠ABC=∠ACB=(180-44)÷2=68°,
∵CD ⊥AB ,
∴∠BDC=90°,
∵BE 平分∠ABC ,
∴∠ABE=∠CBE=34°,
∴∠BPD =90-34=56°;
(2)∵∠A =x °,
∴∠ABC=(180°-x°)÷2=(902x -
)°, 由(1)可得:∠ABP=12∠ABC=(454
x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -
)°=(454x +)°, 即y 与 x 的关系式为y=454
x +
; (3)①若EP=EC ,
则∠ECP=∠EPC=y , 而∠ABC=∠ACB=902
x -
,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454
x +, ∴902x -+902x --(454
x +)=90°, 解得:x=36°;
②若PC=PE ,
则∠PCE=∠PEC=(180-y )÷2=902
y -, 由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=
1807
°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,
由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454
x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807
°.
【点睛】
本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.
27.(1)详见解析;(2)36(04)2BDE t t S -+≤<=;(3)存在,当78t =或43
时,使得BDE 是以BD 为腰的等腰三角形.
【解析】
【分析】
(1)先判断出EBC DAC ∠=∠,CEB CDA ∠=∠,再判断出BC AC =,进而判断出△BCE ≌△ACD ,即可得出结论;
(2)先确定出点A ,B 坐标,再表示出AD ,即可得出结论;
(3)分两种情况:当BD BE =时,利用勾股定理建立方程2223(4)t t +=-,即可得出结论;当BD DE =时,先判断出Rt △OBD ≌Rt △MED ,得出DM OD t ==,再用OM BE =建立方程求解即可得出结论.
【详解】
解:(1)证明:
射线//BF x 轴, EBC DAC ∴∠=∠,CEB CDA ∠=∠, 又C 为线段AB 的中点,
BC AC ∴=,
在△BCE 和△ACD 中,
CEB CDA EBC DAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△BCE ≌△ACD (AAS ),
BE AD ∴=;
(2)解:在直线334
y x =-+中, 令0x =,则3y =,
令0y =,则4x =,
A ∴点坐标为(4,0),
B 点坐标为(0,3), D 点坐标为(,0)t ,
4AD t BE ∴=-=, 113(4)36(04)222
BDE ABD B S S AD y t t t ∴==⋅=-⨯=-+<;
(3)当BD BE =时,
在Rt OBD ∆中,90BOD ∠=︒,
由勾股定理得:222OB OD DB +=,
即2223(4)t t +=-
解得:78
t =; 当BD DE =时,
过点E 作EM x ⊥轴于M ,
90BOD EMD ∴∠=∠=︒,
//BF OA ,
OB ME ∴=
在Rt △OBD 和Rt △MED 中,
==BD DE OB ME
⎧⎨⎩, ∴Rt △OBD ≌Rt △MED (HL ),
OD DM t ∴==,
由OM BE =得:24t t =- 解得:43t =
, 综上所述,当78t =或43
时,使得△BDE 是以BD 为腰的等腰三角形.
【点睛】
本题是一次函数综合题,主要考查了平行线的性质,全等三角形的判定和性质,勾股定理,用方程的思想解决问题是解本题的关键.
28.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.
【解析】
【分析】
(1)①如图①知1112EMC BMC ∠=∠,1112
C MF C MC ∠=∠得 ()1112
EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=
∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.
(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出
11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.
②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出
()112906090A MC ︒︒︒-+∠=,即可求出解.
(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.
【详解】
解:(1)①如图①中,
1112EMC BMC ∠=∠,1112
C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=
∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22
EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=
∠+∠=⨯=, 故答案为45︒.
(2)①如图③中由折叠可知,
11,CMF FMC BME EMB ∠=∠∠=∠,
1111C MF EMB EMF C MB ∠+∠-∠=∠,
11CMF BME EMF C MB ∴∠+∠-∠=∠,
11()BMC EMF EMF C MB ∴∠-∠-∠=∠,
111808020C MB ︒︒︒∴-=∠=;
②如图④中根据折叠可知,
11,CMF C MF ABE A BE ∠=∠∠=∠,
112290CMF ABE A MC ︒∠+∠+∠=,
112()90CMF ABE A MC ︒∴∠+∠+∠=,
()1129090EMF AMC ︒︒∴-∠+∠=,
()11
2906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;
(3)如图⑤-1中,由折叠可知,a ββγ-=-,
2a γβ∴+=;
如图⑤-2中,由折叠可知,a ββγ-=+,
2a γβ∴-=.
【点睛】
本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.
29.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角形,
【解析】
【分析】
(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC ∆∆≌即可得解; (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE ∆∆≌即可得解; (3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.
【详解】
(1)如下图,数量关系:AD =DE .
证明:∵ABC ∆是等边三角形
∴AB =BC ,60B BAC BCA ∠∠∠︒===
∵DF ∥AC
∴BFD BAC ∠∠=,∠BDF =∠BCA
∴60B BFD BDF ∠∠∠︒===
∴BDF
∆是等边三角形,120
AFD
∠︒
=
∴DF=BD
∵点D是BC的中点
∴BD=CD
∴DF=CD
∵CE是等边ABC
∆的外角平分线
∴120
DCE AFD
∠︒∠
==
∵ABC
∆是等边三角形,点D是BC的中点∴AD⊥BC
∴90
ADC
∠︒
=
∵60
BDF ADE
∠∠︒
==
∴30
ADF EDC
∠∠︒
==
在ADF
∆与EDC
∆中
AFD ECD
DF CD
ADF EDC
∠∠
⎧
⎪
⎨
⎪∠∠
⎩
=
=
=
∴()
ADF EDC ASA
∆∆
≌
∴AD=DE;
(2)结论:AD=DE.
证明:如下图,过点D作DF∥AC,交AB于F ∵ABC
∆是等边三角形
∴AB=BC,60
B BA
C BCA
∠∠∠︒
===
∵DF∥AC
∴BFD BAC BDF BCA
∠∠∠∠
=,=
∴60
B BFD BDF
∠∠∠︒
===
∴BDF
∆是等边三角形,120
AFD
∠︒
=
∴BF=BD
∴AF=DC
∵CE是等边ABC
∆的外角平分线
∴120
DCE AFD
∠︒∠
==
∵∠ADC是ABD
∆的外角
∴60
ADC B FAD FAD
∠∠∠︒∠
=+=+
∵60
ADC ADE CDE CDE ∠∠∠︒∠
=+=+
∴∠FAD=∠CDE
在AFD
∆与DCE
∆中
AFD DCE
AF CD
FAD EDC
∠∠
⎧
⎪
⎨
⎪∠∠
⎩
=
=
=
∴()
AFD DCE ASA
∆∆
≌
∴AD=DE;
(3)如下图,ADE
∆是等边三角形.
证明:∵BC CD
=
∴AC CD
=
∵CE平分ACD
∠
∴CE垂直平分AD
∴AE=DE
∵60
ADE
∠=︒
∴ADE
∆是等边三角形.
【点睛】
本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.
30.(1)6-2t;(2)全等,理由见解析;(3)
8
3
;(4)经过24s后,点P与点Q第一次在ABC的BC边上相遇
【解析】
【分析】
(1)根据题意求出BP,由PC=BC-BP,即可求得;
(2)根据时间和速度的关系分别求出两个三角形中,点运动轨迹的边长,由∠B=∠C,利用SAS判定BPD
△和CQP全等即可;
(3)根据全等三角形的判定条件探求边之间的关系,得出BP=PC,再根据路程=速度×时间公式,求点P的运动时间,然后求点Q的运动速度即得;
(4)求出点P、Q的路程,根据三角形ABC的三边长度,即可得出答案.
【详解】
(1)由题意知,BP=2t,则
PC=BC-BP=6-2t,
故答案为:6-2t;
(2)全等,理由如下:
∵p Q V V =,t=1,
∴BP=2=CQ ,
∵AB=8cm ,点D 为AB 的中点,
∴BD=4(cm ),
又∵PC=BC-BP=6-2=4(cm ),
在BPD △和CQP 中
BD PC B C BP CQ =⎧⎪∠=∠⎨⎪=⎩
∴BPD △≌CQP (SAS )
故答案为:全等.
(3)∵p Q V V ≠,
∴BP CQ ≠,
又∵BPD △≌CPQ ,∠B=∠C ,
∴BP=PC=3cm ,CQ=BD=4cm ,
∴点,P Q 运动时间322
BP t ==(s ), ∴48332
Q CQ V t
===(cm/s ), 故答案为:83
; (4)设经过t 秒时,P 、Q 第一次相遇,
∵2/p V cm s =,8/3Q V cm s =
, ∴2t+8+8=83t ,
解得:t=24
此时点Q 走了824643⨯=(cm ),
∵ABC 的周长为:8+8+6=22(cm ),
∴6422220÷=,
∴20-8-8=4(cm ),
经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇,
故答案为:24s ,在 BC 边上相遇.
【点睛】
考查了全等三角形的判定和性质,路程,速度,时间的关系,全等三角形中的动点问题,
动点的追及问题,熟记三角形性质和判定,熟练掌握全等的判定依据和动点的运动规律是解题的关键,注意动点中追及问题的方向.。