深圳平湖培新学校初中部数学轴对称填空选择中考真题汇编[解析版]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳平湖培新学校初中部数学轴对称填空选择中考真题汇编[解析版]
一、八年级数学全等三角形填空题(难)
1.如图,已知△ABC和△ADE均为等边三角形,点O是AC的中点,点D在射线BO上,连
结OE,EC,则∠ACE=_____°;若AB=1,则OE的最小值=_____.
【答案】301 4
【解析】【分析】
根据等边三角形的性质可得OC=1
2
AC,∠ABD=30°,根据"SAS"可证△ABD≌△ACE,可
得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE 的最小值.
【详解】
解:∵△ABC的等边三角形,点O是AC的中点,
∴OC=1
2
AC,∠ABD=30°
∵△ABC和△ADE均为等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)
∴∠ACE=30°=∠ABD
当OE⊥EC时,OE的长度最小,
∵∠OEC=90°,∠ACE=30°
∴OE最小值=1
2
OC=
1
4
AB=
1
4
故答案为:30,1 4
【点睛】
本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键.
2.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于
E ,交AC 于
F ,过点O 作OD ⊥AC 于D ,下列四个结论:
①EF =BE +CF ;
②∠BOC =90°+12
∠A ; ③点O 到△ABC 各边的距离相等;
④设OD =m ,AE +AF =n ,则AEF S mn ∆=.
其中正确的结论是____.(填序号)
【答案】①②③
【解析】
【分析】
由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形的内角和定理,即可求出②∠BOC =90°+12
∠A 正确;由平行线的性质和角平分线的定义可得△BEO 和△CFO 是等腰三角形可得①EF =BE +CF 正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故③正确;由角平分线定理与三角形的面积求法,设OD=m ,AE+AF=n,则△AEF 的面积=
12mn ,④错误. 【详解】
在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,
∴∠OBC=12∠ABC ,∠OCB=12
∠ACB ,∠A+∠ABC+∠ACB=180°, ∴∠OBC+∠OCB=90°-12
∠A , ∴∠BOC=180°-(∠OBC+∠OCB )=90°,故②∠BOC =90°+
12∠A 正确; 在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,
∴∠OBC=∠EOB ,∠OCB=∠OCF ,
∵EF ∥BC ,
∴∠OBC=∠EOB ,∠OCB=∠FOC ,
∠EOB=∠OBE,∠FOC=∠OCF ,
∴BE=OE,CF=OF,
∴EF=OE+OF=BE+CF ,
即①EF =BE +CF 正确;
过点O 作OM ⊥AB 于M ,作ON ⊥BC 于点N ,连接AO ,
∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,
∴ON=OD=OM=m,即③点O到△ABC各边的距离相等正确;
∴S△AEF=S△AOE+ S△AOF=1
2
AE·OM+
1
2
AF·OD=
1
2
OD·(AE+AF)=
1
2
mn,故④错误;
故选①②③
【点睛】
此题主要考查角平分线的性质,解题的关键是熟知等腰三角形的判定与性质.
3.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,FG∥BC,FH∥AC,下列结论:①AE=AF;②AF=FH;③AG=CE;④AB+FG=BC,其中正确的结论有________________.(填序号)
【答案】①②③④
【解析】
①正确.
∵∠BAC=90°
∴∠ABE+∠AEB=90°
∴∠ABE=90°-∠AEB
∵AD⊥BC
∴∠ADB=90°
∴∠DBE+∠BFD=90°
∴∠DBE=90-∠BFD
∵∠BFD=∠AFE
∴∠DBE=90°-∠AFE
∵BE平分∠ABC
∴∠ABE=∠DBE
∴90°-∠AEB=90°-∠AFE
∴∠AEB=∠AFE
∴AE=AF
②正确.
∵∠BAC=90°
∴∠BAF+∠DAC=90°
∴∠BAF=90°-∠DAC
∵AD ⊥BC
∴∠ADC=90°
∴∠C+∠DAC=90°
∴∠C=90°-∠DAC
∴∠C=∠BAF
∵FH ∥AC
∴∠C=∠BHF
∴∠BAF=∠BHF
在△ABF 和△HBF 中
ABE CBE BAF BHF BF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△ABF ≌△HBF
∴AF=FH
③正确.
∵AE=AF ,AF=FH
∴AE=FH
∵FG ∥BC ,FH ∥AC
∴四边形FHCG 是平行四边形
∴FH=GC
∴AE=GC
∴AE+EG=GC+EG
∴AG=CE
④正确.
∵四边形FHCG 是平行四边形
∴FG=HC
∵△ABF ≌△HBF
∴AB=HB
∴AB+FG=HB+HC=BC
故正确的答案有①②③④.
4.如图,直角三角形ABC 与直角三角形BDE 中,点B,C,D 在同一条直线上,已知AC=AE=CD ,∠BAC 和∠ACB 的角平分线交于点F ,连DF,EF,分别交AB 、BC 于M 、N ,已知点F 到△ABC 三边距离为3,则△BMN 的周长为____________.
【答案】6
【解析】
【分析】
由角平分线和三角形的内角和定理可得∠AFC=135°,由△AFC≌△DFC可得
∠DFC=∠AFC=135°,可得∠AFD=90°.同理可得∠CFE=90°,可求得∠MFN=45°,过点F作FP⊥AB于点P,FQ⊥BC于点Q,由正方形的半角模型可得MN=MP+NQ,由此即可得出答案.
【详解】
解:过点F作FP⊥AB于点P,FQ⊥BC于点Q,过点F作FG⊥FM,交BC于点G.
∵点F是∠BAC和∠BCA的角平分线交点,
∴FP=FQ=3,
∵∠ABC=90°,
∴四边形BPFQ是正方形,
∴BP=BQ=3.
在Rt△ABC中,∠BAC+∠BCA=90°,
∵AF、CF是角平分线,
∴∠FAC+∠FCA=45°,
∴∠AFC=180°-45°=135°.
易证△AFC≌△DFC(SAS),
∴∠AFC=∠DFC=135°,
∴∠ADF=90°,
同理可得∠EFC=90°,
∴∠MFN=360°-90°-90°-135°=45°.
∵∠PFM+∠MFN=90°,∠MFN+∠QFG=90°,
∴∠PMF=∠QFG,
∵∠FPM=∠FQG=90°,FP=FQ,
∴△FPM≌△FQG(ASA),
∴PM=QG,FM=FG.
在△FMN和△FGN中
45
FM FG
MFN GFN
FN FN
=
⎧
⎪
∠=∠=
⎨
⎪=
⎩
∴△FMN≌△FGN(SAS),
∴MN=NG,
∴MN=NG=NQ+QG=PM+QN,
∴△BMN的周长为:
BM+BN+MN
= BM+BN+ PM+QN
=BP+BQ
=3+3
=6.
故答案为:6.
【点睛】
本题是一道全等三角形的综合题,主要考查了全等三角形的判定和性质的应用,角平分线的性质,以及全等三角形常用辅助线的作法,作出辅助线,准确的找出全等三角形是解决此题的关键.
5.如图,在△ABC中,AB=AC,点D是BC的中点,点E是△ABC内一点,若
∠AEB=∠CED=90°,AE=BE,CE=DE=2,则图中阴影部分的面积等于__________.
【答案】4
【解析】
【分析】
作DG⊥BE于G,CF⊥AE于F,可证△DEG≌△CEF,可得DG=CF,则是S△BDE=S△AEC,由D 是BC中点可得S△BED=2,即可求得阴影部分面积.
【详解】
作DG⊥BE于G,CF⊥AE于F,
∴∠DGE=∠CFE=90°,
∵∠AEB=∠DEC=90°,
∴∠GED+∠DEF=90°,∠DEF+∠CEF=90°,
∴∠GED=∠CEF ,
又∵DE=EC ,
∴△GDE ≌△FCE ,
∴DG=CF ,
∵S △BED =
12BE•DG ,S △BED =12
AE•CF ,AE=BE , ∴S △BED =S △BED ,
∵D 是BC 的中点, ∴S △BDE =S △EDC =
1222
⨯⨯=2, ∴S 阴影=2+2=4,
故答案为4.
【点睛】
本题考查了全等三角形的判定与性质,正确添加辅助线构造全等三角形是解题的关键.
6.如图,ABC ∆中,090,,102ACB AC BC AB ∠===,点G 为AC 中点,连接BG ,CE BG ⊥于F ,交AB 于E ,连接GE ,点H 为AB 中点,连接FH ,以下结论:①ACE ABG ∠=∠;②5CF =
;③AGE CGB ∠=∠;④FH 平分BFE ∠。
其中
正确的结论的序号为___________。
【答案】③④
【解析】
【分析】
作AP ⊥AC 交CE 的延长线于P ,连接CH .构造全等三角形,证明△CAP ≌△BCG (ASA ),△EAG ≌△EAP (SAS ),即可分步判断①②③,利用四点共圆可以证明④正确.
【详解】
解:如图,作AP ⊥AC 交CE 的延长线于P ,连接CH .
∵CE ⊥BG ,
∴∠CFB=∠ACB=90°,
∵∠ACE+∠BCE=90°,∠CBG+∠BCE=90°,
∴∠ACE=∠CBG ,
∵BG 是△ABC 的中线,AB >BC ,
∴∠ABG≠∠CBG ,
∴∠ACE≠∠ABG ,故①错误,
∵∠ACP=∠CBG ,AC=BC ,∠CAP=∠BCG=90°,
∴△CAP ≌△BCG (ASA ),
∴CG=PA=AG ,∠BGC=∠P ,
∵AG=AP ,∠EAG=∠EAP=45°,AE=AE ,
∴△EAG ≌△EAP (SAS ),
∴∠AGE=∠P ,
∴∠AGE=∠CGB ,故③正确, ∵90,,102ACB AC BC AB ∠===,
∴△ABC 是等腰直角三角形,
∴AC=BC=10,
∴AG=CG=5, ∴2251055BG =+=, ∵••12•12
CG CB CF = , ∴25CF =
∵CA=CB ,∠ACB=90°,AH=HB ,
∴∠BCH=∠ACH=45°,
∵∠CFB=∠CHB=90°,
∴C ,F ,H ,B 四点共圆,
∴∠HFB=∠BCH=45°,
∴∠EFH=∠HFB=45°,
∴FH 平分∠BFE ,故④正确,
综上所述,正确的只有③④.
故答案为:③④ 【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,考查了直角三角形中勾股定理的运用,熟悉各项性质是解题的关键.
7.已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=6,DE//AB 交BC 于点E.若在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请写出相应的BF 的长:BF =_________
【答案】23或43.
【解析】
【分析】
过点D 作DF 1∥BE ,求出四边形BEDF 1是菱形,根据菱形的对边相等可得BE=DF 1,然后根据等底等高的三角形的面积相等可知点F 1为所求的点,过点D 作DF 2⊥BD ,求出∠F 1DF 2=60°,从而得到△DF 1F 2是等边三角形,然后求出DF 1=DF 2,再求出∠CDF 1=∠CDF 2,利用“边角边”证明△CDF 1和△CDF 2全等,根据全等三角形的面积相等可得点F 2也是所求的点,然后在等腰△BDE 中求出BE 的长,即可得解.
【详解】
如图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形,
所以BE=DF 1,且BE 、DF 1上的高相等,
此时S △DCF1=S △BDE ;
过点D 作DF 2⊥BD ,
∵∠ABC=60°,F 1D ∥BE ,
∴∠F 2F 1D=∠ABC=60°,
∵BF 1=DF 1,∠F 1BD=
12
∠ABC=30°,∠F 2DB=90°, ∴∠F 1DF 2=∠ABC=60°,
∴△DF 1F 2是等边三角形,
∴DF 1=DF 2, ∵BD=CD ,∠ABC=60°,点D 是角平分线上一点,
∴∠DBC=∠DCB=12
×60°=30°, ∴∠CDF 1=180°-∠BCD=180°-30°=150°,
∠CDF 2=360°-150°-60°=150°,
∴∠CDF 1=∠CDF 2,
∵在△CDF 1和△CDF 2中,
1212DF DF CDF CDF CD CD ⎧⎪∠∠⎨⎪⎩
=== , ∴△CDF 1≌△CDF 2(SAS ),
∴点F 2也是所求的点,
∵∠ABC=60°,点D 是角平分线上一点,DE ∥AB ,
∴∠DBC=∠BDE=∠ABD=
12×60°=30°, 又∵BD=6,
∴BE=12×6÷cos30°
=3÷2
∴BF 1=BF 2=BF 1+F 1F 2
故BF 的长为
故答案为:
【点睛】
本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F 有两个.
8.如图,三角形△ABO 中,∠OAB =∠AOB=15°,点B 在x 轴的正半轴,坐标为B (6,0).OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA+MN 的最小值是______.
【答案】3
【解析】
【分析】
在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.易证△N’OM≌△NOM,可得MN’=MN,则MA+MN的最小值即为MA+MN’的最小值,由于A点固定,故当N’点与D点重合时,MA+MN’的值最小,即MA+MN的值最小.
【详解】
解:在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.
∵O N’=ON,∠N’OM=∠NOM,OM=OM,
∴△N’OM≌△NOM,
∴MN’=MN,
∴MA+MN=MA+MN’,
∵A点固定,
∴MA+MN’的最小值为当N’与D点重合时的MA+MN’值,
∴MA+MN’的最小值为AD,
∵∠OAB=∠AOB=15°,OB=6,
∴∠ABD=30°,AB=6,
∴AD=0.5×6=3,
∴MA+MN的最小值为3,
故答案为3.
【点睛】
理解A点是固定点,而M和N均为动点,然后运用三点共线及点到直线的最短距离概念进行解答是本题的关键.
9.已知AD是△ABC的边BC上的中线,若AB = 4,AC = 6,则AD的取值范围是
___________.
【答案】15AD <<
【解析】
延长AD 到点E ,使DE=AD ,连接BE ,则可用SAS 证明△DAC ≌△DEB ,所以BE=AC. △ABE 中,BE-AB <AE <BE+AB ,即6-4<AE <6+4,所以2<AE <10.又AE=2AD ,所以2<2AD <10,则1<AD <5.
故答案为1<AD <5.
点睛:本题主要考查了三角形的三边关系,即三角形的两边之和大于第三边,两边之差小于第三边,当题目中有三角形的中线时,如果需要添加辅助线,一般考虑把中线延长一倍(通常称“倍中线法”),构造全等三角形,将已知条件或要解决的问题集中到一个三角形中.
10.如图,△ABC 与△DEF 为等边三角形,其边长分别为a ,b ,则△AEF 的周长为___________.
【答案】a+b
【解析】
先根据全等三角形的判定AAS 判定△AEF≌△BFD,得出AE=BF ,从而得出△AEF 的周长=AF+AE+EF=AF+BF+EF=a+b .
故答案为:a+b
二、八年级数学全等三角形选择题(难)
11.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别
在AC、BC边上运动,且保持AD CE
=,连接DE、DF、EF在此运动变化的过程中,下列结论:(1)DEF是等腰直角三角形;(2)四边形CDFE不可能为正方形,(3)DE长度的最
小值为4;(4)连接CF,CF恰好把四边形CDFE的面积分成1:2两部分,则CE=1
3
或
14
3
其中正确的结论个数是
A.1个B.2个C.3个D.4个
【答案】A
【解析】
【分析】
连接CF,证明△ADF≌△CEF,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④.
【详解】
连接CF,
∵△ABC是等腰直角三角形,
∴∠FCB=∠A=45,CF=AF=FB;
∵AD=CE,
∴△ADF≌△CEF(SAS);
∴EF=DF,∠CFE=∠AFD;
∵∠AFD+∠CFD=90∘,
∴∠CFE+∠CFD=∠EFD=90∘,
又∵EF=DF
∴△EDF是等腰直角三角形(故(1)正确).
当D. E分别为AC、BC中点时,四边形CDFE是正方形(故(2)错误).
由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;
即当DF⊥AC时,DE最小,此时
1
4
2
DF BC
== .
∴242
DE DF=故(3)错误).∵△ADF≌△CEF,
∴S△CEF=S△ADF
∴S 四边形CDFE =S △AFC ,
∵CF 恰好把四边形CDFE 的面积分成1:2两部分
∴S △CEF :S △CDF =1:2 或S △CEF :S △CDF =2:1
即S △ADF :S △CDF =1:2 或S △ADF :S △CDF =2:1
当S △ADF :S △CDF =1:2时,S △ADF=
13S △ACF =111684323⨯⨯⨯= 又∵S △ADF =
1422AD AD ⨯⨯= ∴2AD=163
∴AD=83
(故(4)错误). 故选:A.
【点睛】
本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.
12.已知111122,A B C A B C △△的周长相等,现有两个判断:①若
21212112,A A B C B A A C ==,则111222A B C A B C △≌△;②若12=A A ∠∠,1122=A C A C ,则111222A B C A B C △≌△,对于上述的两个判断,下列说法正确的是( )
A .①,②都正确
B .①,②都错误
C .①错误,②正确
D .①正确,②错误 【答案】A
【解析】
【分析】
根据SSS 即可推出△111A B C ≅△222A B C ,判断①正确;根据相似三角形的性质和判定和全等三角形的判定推出即可.
【详解】 解:①△111A B C ,△222A B C 的周长相等,1122A B A B =,1122AC A C =,
1122B C B C ∴=,
∴△111A B C ≅△222()A B C SSS ,
∴①正确;
②如图,延长11A B 到1D ,使1111B D B C =,,延长22A B 到2D ,使2222B D B C =,
∴111111A D A B B C =+,222222A D A B B C =+,
∵111122,A B C A B C △△的周长相等,1122=A C A C
∴1122A D A D =,
在△111A B D 和△222A B D 中
1122121122
==A D A D A A A C A C =⎧⎪∠∠⎨⎪⎩,
∴ △111A B D ≅△222A B D (SAS )
∴12=D D ∠∠,
∵1111B D B C =,2222B D B C =
∴1111=D D C B ∠∠,2222=D D C B ∠∠,
又∵1111111=A B C D D C B ∠∠+∠,2222222=A B C D D C B ∠∠+∠,
∴1112221==2A B C A B C D ∠∠∠,
在△111A B C 和△222A B C 中
111222121122
===A B C A B C A A A C A C ∠∠⎧⎪∠∠⎨⎪⎩, ∴△111A B C ≅△222A B C (AAS ),
∴②正确;
综上所述:①,②都正确.
故选:A .
【点睛】
本题考查了全等三角形的判定、等腰三角形的性质,能构造全等三角形、综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,而AAA 和SSA 不能判断两三角形全等.
13.在ABC 中,2,72A B ACB ∠=∠∠≠︒,CD 平分ACB ∠,P 为AB 的中点,则下列各式中正确的是( )
A .AD BC CD =-
B .AD B
C AC =- C .A
D BC AP =-
D .AD BC BD =-
【答案】B
【解析】
【分析】 可在BC 上截取CE=CA ,连接DE ,可得△ACD ≌△ECD ,得DE=AD ,进而再通过线段之间的转化得出线段之间的关系. 【详解】
解:∵∠A=2∠B , ∴∠A ﹥∠B ∴BC ﹥AC
∴可在BC 上截取CE=CA ,连接DE(如图),
∵CD 平分ACB ∠,∴∠ACD=∠BCD
又∵CD=CD,CE=CA
∴△ACD ≌△ECD ,
∴AD=ED ,∠CED=∠A=2∠B
又 ∠CED=∠B+∠BDE
∴∠B=∠BDE
∴AD=DE=BE ,
∴BC=BE+EC=AD+AC
所以AD=BC-AC
故选:B
若A选项成立,则CD=AC,
∴∠A=∠CDA=∠CDE=∠CED=2∠B=2∠EDB
∴∠CDA+∠CDE+∠EDB=180°
即5∠EDB=180°∴∠EDB=36°
∴∠A=72°,∠B=36°
∴∠ACB=72°与已知∠ACB≠72°矛盾,故选项A不正确;
假设C选项成立,则有AP=AC,作∠BAC的平分线,连接FP,
∴△CAF≌△PAF≌△PBF,
∴∠CFA=∠AFP=∠PFB=60°
∠B=30°,∠ACB=90°
当∠ACB=90°时,选项C才成立,
∴当∠ACB≠72°时,选项C不一定成立;
假设D选项成立,则AD=BC-BD
由图可知AD=BA-BD
∴AB=BC
∴∠A=∠ACB=2∠B
∴∠A+∠ACB+∠B=180°
∴∠B=36°,∠ACB=72
这与已知∠ACB≠72°矛盾,故选项D不成立.
故选:B
【点睛】
本题考查的是考查的是利用角的平分线的性质说明线段之间的关系.
,,
14.如图, AB=AC,AD=AE, BE、CD交于点O,则图中全等三角形共有()
A.五对B.四对C.三对D.二对
【答案】A
【解析】
如图,由已知条件可证:①△ABE≌△ACD;②△DBC≌△ECB;③△BDO≌△ECO;④△ABO≌△ACO;⑤△ADO≌△AEO;
∴图中共有5对全等三角形.故选A.
15.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于
点M和N,再分别以M,N为圆心,大于1
2
MN的长为半径画弧,两弧交于点P,连结AP并延长交
BC于点D,则下列说法中正确的个数是( )
①AD平分∠BAC;②作图依据是S.A.S;③∠ADC=60°;④点D在AB的垂直平分线上
A.1个B.2个C.3个D.4个
【答案】C
【解析】
①根据作图的过程可以判定AD是∠BAC的∠平分线;
②根据作图的过程可以判定出AD的依据;
③利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质求∠ADC的度数;
④利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点在AB的中垂线上.
解:如图所示,
①根据作图的过程可知,AD是∠BAC的∠平分线;
故①正确;
②根据作图的过程可知,作出AD的依据是SSS;
故②错误;
③∵在△ABC中,∠C=90°,∠B=30°,
∴∠CBA=60°.
又∵AD是∠BAC的平分线,
∴∠1=∠2=1
2
∠CAB=30°,
∴∠3=90°-∠2=60°,即∠ADC=60°.故③正确;
④∵∠1=∠B=30°,
∴AD=BD,
∴点D在AB的中垂线上.
故④正确;
故选C.
“点睛”此题主要考查的是作图-基本作图,涉及到角平分线的作法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC的度数是解题的关键.
16.如图,AC⊥BE于点C,DF⊥BE于点F,且BC=EF,如果添上一个条件后,可以直接利用“HL”来证明△ABC≌△DEF,则这个条件应该是()
A.AC=DE B.AB=DE C.∠B=∠E D.∠D=∠A
【答案】B
【解析】
在Rt△ABC与Rt△DEF中,直角边BC=EF,要利用“HL”判定全等,只需添加条件斜边
AB=DE.
故选:B.
17.如图,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H;如果∠ABC=60º,则下列结论:①∠ABP=30º;②∠APC=60º;③PB=2PH;④∠APH=∠BPC;其中正确的结论个数是()
A.1 B.2 C.3 D.4
【答案】B
【解析】
【分析】
作PM⊥BC于M,PN⊥BA于N.根据角平分线的性质定理可证得PN=PM,再根据角平分线的判定定理可得PB平分∠ABC,即可判定①;证明△PAN≌△PAH,△PCM≌△PCH,根据全等三角形的性质可得∠APN=∠APH,∠CPM=∠CPH,由此即可判定②;在Rt△PBN 中,∠PBN=30°,根据30°角直角三角形的性质即可判定③;由∠BPN=∠CPA=60°即可判定④.
【详解】
如图,作PM⊥BC于M,PN⊥BA于N.
∵∠PAH=∠PAN ,PN ⊥AD ,PH ⊥AC ,
∴PN=PH ,同理PM=PH ,
∴PN=PM ,
∴PB 平分∠ABC ,
∴∠ABP=
12
∠ABC=30°,故①正确, ∵在Rt △PAH 和Rt △PAN 中, PA PA PN PH =⎧⎨=⎩
, ∴△PAN ≌△PAH ,同理可证,△PCM ≌△PCH ,
∴∠APN=∠APH ,∠CPM=∠CPH ,
∵∠MPN=180°-∠ABC=120°,
∴∠APC=
12
∠MPN=60°,故②正确, 在Rt △PBN 中,∵∠PBN=30°, ∴PB=2PN=2PH ,故③正确,
∵∠BPN=∠CPA=60°,
∴∠CPB=∠APN=∠APH ,故④正确.
综上,正确的结论为①②③④.
故选D.
【点睛】
本题考查了角平分线的性质定理及判定定理、全等三角形的判定与性质及30°角直角三角形的性质,熟练运用相关知识是解决问题的关键.
18.如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中①∠DCF =123,1x x ==-∠BCD ;②EF =CF ;
③S △BEC =2S △CEF ;④∠DFE =3∠AEF .一定成立的是( )
A .①②
B .①③④
C .①②③
D .①②④
【答案】D
【解析】
①∵F是AD的中点,
∴AF=FD,
∵在?ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=12∠BCD,故此选项正确;延长EF,交CD延长线于M,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A=∠MDF,
∵F为AD中点,
∴AF=FD,
在△AEF和△DFM中,
∠A=∠FDMAF=DF∠AFE=∠DFM,∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FM,故②正确;
③∵EF=FM,
∴S△EFC=S△CFM,
∵MC>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△CEF错误;
④设∠FEC=x,则∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x ,
∵∠AEF=90°-x ,
∴∠DFE=3∠AEF ,故此选项正确.
故正确的有:①②④.
故选D.
19.如图,Rt ACB 中,90ACB ︒∠=,ABC 的角平分线AD 、BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H ,则下列结论:
①135APB ︒∠=;②PF PA =;③AH BD AB +=;④S 四边形
2
3ABDE S ABP =,其中正确的个数是( )
A .4
B .3
C .2
D .1
【答案】B
【解析】
【分析】 根据三角形全等的判定和性质以及三角形内角和定理逐一分析判断即可.
【详解】
解:∵在△ABC 中,∠ACB=90°,
∴∠CAB+∠ABC=90°
∵AD 、BE 分别平分∠BAC 、∠ABC ,
∴∠BAD=12CAB ∠,∠ABE=12
ABC ∠ ∴∠BAD+∠ABE=
111+=()45222
CAB ABC CAB ABC ∠∠∠+∠=︒ ∴∠APB=180°-(∠BAD+∠ABE )=135°,故①正确;
∴∠BPD=45°,
又∵PF ⊥AD ,
∴∠FPB=90°+45°=135°
∴∠APB=∠FPB
又∵∠ABP=∠FBP
BP=BP
∴△ABP ≌△FBP (ASA )
∴∠BAP=∠BFP ,AB=AB ,PA=PF ,故②正确;
在△APH 与△FPD 中
∵∠APH=∠FPD=90°
∠PAH=∠BAP=∠BFP
PA=PF
∴△APH ≌△FPD (ASA ),
∴AH=FD ,
又∵AB=FB
∴AB=FD+BD=AH+BD ,故③正确;
连接HD ,ED ,
∵△APH ≌△FPD ,△ABP ≌△FBP
∴APH FPD S S =,ABP FBP S S =,PH=PD ,
∵∠HPD=90°,
∴∠HDP=∠DHP=45°=∠BPD
∴HD ∥EP ,
∴EPH EPD S S =
∵ABP BDP AEP EPD ABDE S S S
S S =+++四边形 ()ABP AEP EPH
PBD S S S S =+++ ABP APH PBD
S S S =++ ABP FPD PBD S
S S =++ ABP FBP S S =+
2ABP S =
故④错误,
∴正确的有①②③,
故答案为:B .
【点睛】
本题考查了三角形全等的判定方法,判定两个三角形全等的方法有:SSS 、SAS 、AAS 、ASA 、HL ,注意AAA 和SAS 不能判定两个三角形全等.
20.如图,四边形ABCD 中,∠A 、∠B 、∠C 、∠D 的角平分线恰相交于一点P ,记△APD 、△APB 、△BPC 、△DPC 的面积分别为S 1、S 2、S 3、S 4,则有( )
A .1324S S S S +=+
B .1234S S S S +=+
C .1423S S S S +=+
D .13S S =
【答案】A
【解析】
【分析】
作辅助线,利用角平分线性质定理,明确8个三角形中面积两两相等即可解题.
【详解】
四边形ABCD,四个内角平分线交于一点P,即点p 到四边形各边距离相等,(角平分线性质定理),
如下图,可将四边形分成8个三角形,面积分别是a 、a 、b 、b 、c 、c 、d 、d,
则S 1=a+d, S 2=a+b, S 3=b+c, S 4=c+d,
∴S 1+S 3=a+b+c+d= S 2+S 4
故选A
【点睛】
本题考查了角平分线性质定理,作高线和理解角平分线性质定理是解题关键.
21.如图,△ABC 中,∠ABC=45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G .下列结论:
①BD=CD ;②AD+CF=BD ;③CE=12
BF ;④AE=BG .其中正确的是
A.①②B.①③C.①②③D.①②③④
【答案】C
【解析】
【分析】
根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出
CE=AE=1
2
AC,又因为BF=AC所以CE=
1
2
AC=
1
2
BF,连接CG.因为△BCD是等腰直角三角
形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.
【详解】
解:∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD.故①正确;
在Rt△DFB和Rt△DAC中,
∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
又∵∠BDF=∠CDA=90°,BD=CD,
∴△DFB≌△DAC.
∴BF=AC;DF=AD.
∵CD=CF+DF,
∴AD+CF=BD;故②正确;
在Rt△BEA和Rt△BEC中.
∵BE平分∠ABC,
∴∠ABE=∠CBE.
又∵BE=BE,∠BEA=∠BEC=90°,
∴Rt△BEA≌Rt△BEC.
∴CE=AE=1
2 AC.
又由(1),知BF=AC,
∴CE=1
2
AC=
1
2
BF;故③正确;
连接CG.
∵△BCD是等腰直角三角形,
∴BD=CD.
又DH ⊥BC ,
∴DH 垂直平分BC.∴BG=CG.
在Rt △CEG 中,
∵CG 是斜边,CE 是直角边,
∴CE<CG.
∵CE=AE ,
∴AE<BG.故④错误.
故选C.
【点睛】
本题考查了等腰直角三角形、等腰三角形的判定与性质、全等三角形的判定与性质.此类问题涉及知识点较多,需要对相关知识点有很高的熟悉度.
22.如图,点P 是AB 上任意一点,∠ABC=∠ABD ,还应补充一个条件,才能推出△APC ≌△APD .从下列条件中补充一个条件,不一定能推出△APC ≌△APD 的是( )
A .BC=BD ;
B .AC=AD ;
C .∠ACB=∠ADB ;
D .∠CAB=∠DAB
【答案】B
【解析】
根据题意,∠ABC=∠ABD ,AB 是公共边,结合选项,逐个验证得出:
A 、补充BC=BD ,先证出△BPC ≌△BPD ,后能推出△APC ≌△APD ,故正确;
B 、补充AC=AD ,不能推出△AP
C ≌△AP
D ,故错误;
C 、补充∠ACB=∠ADB ,先证出△ABC ≌△AB
D ,后能推出△APC ≌△APD ,故正确; D 、补充∠CAB=∠DAB ,先证出△ABC ≌△ABD ,后能推出△APC ≌△APD ,故正确. 故选B .
点睛:本题考查了三角形全等判定,三角形全等的判定定理:有AAS ,SSS ,ASA ,SAS .注意SSA 是不能证明三角形全等的,做题时要逐个验证,排除错误的选项.
23.已知:如图,ABC ∆、CDE ∆都是等腰三角形,且CA CB =,CD CE =,ACB DCE α∠=∠=,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.以下4个结论:①AD BE =;②180DOB α∠=-;③CMN ∆是等边三角形;④连OC ,则OC 平分AOE ∠.正确的是( )
A .①②③
B .①②④
C .①③④
D .①②③④
【答案】B
【解析】
【分析】 ①根据∠ACB=∠DCE 求出∠ACD=∠BCE,证出ACD BCE ≅△△即可得出结论,故可判断; ②根据全等求出∠CAD=∠CBE,根据三角形外角定理得∠DOB=∠OBA+∠BAO,通过等角代换能够得到∠DOB=∠CBA+∠BAC,根据三角形内角和定理即可求出∠CBA+∠BAC,即可求出∠DOB ,故可判断;
③根据已知条件可求出AM=BN,根据SAS 可求出CAM CBN ≅,推出CM=CN ,∠ACM=∠BCN,然后可求出∠MCN=∠ACB=α,故可判断CMN ∆的形状;
④在AD 上取一点P 使得DP=EO,连接CP ,根据ACD BCE ≅△△,可求出∠CEO=∠CDP ,根据SAS 可求出 CEO CDP ≅,可得∠COE=∠CPD,CP=CO,进而得到 ∠COP=∠COE ,故可判断.
【详解】
①正确,理由如下:
∵ACB DCE α∠=∠=,
∴∠ACB+∠BCD=∠DCE+∠BCD,
即∠ACD=∠BCE,
又∵CA=CB,CD=CE,
∴ACD BCE ≅△△(SAS),
∴AD=BE,
故①正确;
②正确,理由如下:
由①知,ACD BCE ≅△△,
∴∠CAD=∠CBE,
∵∠DOB 为ABO 的外角,
∴∠DOB=∠OBA+∠BAO=∠EBC+∠CBA+∠BAO=∠DAC+∠BAO+∠CBA=∠CBA+∠BAC, ∵∠CBA+∠BAC+∠ACB=180°,∠ACB=α,
∴∠CBA+∠BAC=180°-α,
即∠DOB=180°-α,
故②正确;
③错误,理由如下:
∵点M 、N 分别是线段AD 、BE 的中点,
∴AM=
12AD,BN= 12
BE, 又∵由①知,AD=BE,
∴AM=BN,
又∵∠CAD=∠CBE,CA=CB,
∴CAM CBN ≅(SAS), ∴CM=CN ,∠ACM=∠BCN,
∴∠MCN=∠MCB+∠CBN=∠MCB+∠ACM=∠ACB=α,
∴MCN △为等腰三角形且∠MCN=α,
∴MCN △不是等边三角形,
故③错误;
④正确,理由如下:
如图所示,在AD 上取一点P 使得DP=EO,连接CP ,
由①知,ACD BCE ≅△△,
∴∠CEO=∠CDP ,
又∵CE=CD,EO=DP ,
∴CEO CDP ≅(SAS),
∴∠COE=∠CPD,CP=CO,
∴∠CPO=∠COP ,
∴∠COP=∠COE,
即OC 平分∠AOE,
故④正确;
故答案为:B.
【点睛】
本题考查了三角形全等的判定和性质,三角形内角和定理和外角定理,等边三角形的判定,根据已知条件作出正确的辅助线,找出全等三角形是解题的关键.
24.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ =PQ ,PR =PS ,下面四个结论:①AS =AR ;②QP ∥AR ;③△BRP ≌△QSP ;④AP 垂直平分RS .其中正确结论的序号是( ).
A.①②B.①②③C.①②④D.①②③④
【答案】C
【解析】
【分析】
如图,连接AP,根据HL判定△APR和△APS全等,即可说明①正确;由△APR和△APS 全等可得∠RAP=∠PAC,再根据等腰三角形性质推出∠QAP=∠QPA,得到
∠QPA=∠BAP,根据平行线判定推出OP//AB,即②正确;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等;连接RS,与AP交于点D,先证
△ARD≌△ASD,即RD=SD;运用等腰三角形的性质即可判定.
【详解】
解:如图,连接AP
∵PR⊥AB,PS⊥AC,PR=PS
∴△APR≌△APS
∴AS=AR,∠RAP=∠PAC
即①正确;
又∵AQ=PQ
∴∠QAP=∠QPA
∴∠QPA=∠BAP
∴OP//AB,即②正确.
在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等,故③错误.
如图,连接PS
∵△APR≌△APS
∴AR=AS,∠RAP=∠PAC
∴AP垂直平分RS,即④正确;
故答案为C.
【点睛】
本题主要考查了全等三角形的性质和判定,角平分线性质的应用,熟练掌握全等三角形的
判定和性质是解答本题的关键
25.如图,在四边形ABCD 中,//AB CD .不能判定ABD CDB ∆≅∆的条件是( )
A .A
B CD =
B .AD B
C = C .//A
D BC D .A C ∠=∠
【答案】B
【解析】
【分析】
根据已知条件,分别添加选项进行排查,即可完成解答;注意BD 是公用边这个条件.
【详解】
解:A.若添加AB=CD,根据AB ∥CD ,则∠ABD=∠CDB ,依据SAS 可得
△ABD ≌△CDB ,故A 选项正确;
B.若添加AD=BC,根据AB ∥CD ,则∠ADB=∠CBD ,不能判定△ABD ≌△CDB ,故B 选项错误;
C.若添加//AD BC ,则四边形ABCD 是平行四边形,能判定△ABD ≌△CDB ,故C 选项正确;
D.若添加∠A=∠C ,根据AB ∥CD ,则∠ABD=∠CDB ,且BD 公用,能判定
△ABD ≌△CDB ,故D 选项正确;
故选:B.
【点睛】
本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
26.下列命题中的假命题是( )
A .等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等
B .等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等
C .等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等
D .直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等
【答案】D
【解析】
【分析】
根据等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定进行判定即可.
【详解】
解:A 、等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等,正确,是真命题;
B、等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等,正确,是真命题;
C、等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等,正确,是真命题;
D、直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等,错误,是假命题,
故答案为D.
【点睛】
本题考查了等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定,其中灵活应用所学知识是解答本题的关键.
27.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN 于点C,AD⊥MN于点D,下列结论错误的是( )
A.AD+BC=AB B.与∠CBO互余的角有两个
C.∠AOB=90°D.点O是CD的中点
【答案】B
【解析】
【分析】
根据角平分线上的点到角的两边距离相等可得AD=AE,BC=BE,利用角平分线的定义和平角的性质可得到∠AOB的度数,再利用“HL”证明Rt△AOD和Rt△AOE全等,根据全等三角形对应边相等可得OD=OE,同理可得OC=OE,然后求出∠AOB=90°,然后对各选项分析判断即可得解.
【详解】
∵点A,B分别是∠NOP,∠MOP平分线上的点,∴AD=AE,BC=BE.
∵AB=AE+BE,∴AB=AD+BC,故A选项结论正确;
与∠CBO互余的角有∠COB,∠EOB,∠OAD,∠OAE共4个,故B选项结论错误;
∵点A、B分别是∠NOP、∠MOP平分线上的点,∴∠AOE=1
2
∠EOD,∠BOC=
1
2
∠MOE,
∴∠AOB=1
2
(∠EOD+∠MOE)=
1
2
×180°=90°,故C选项结论正确;
在Rt△AOD和Rt△AOE中,
AO AO
AD AE
=
⎧
⎨
=
⎩
,∴Rt△AOD≌Rt△AOE(HL),∴OD=OE,同理
可得OC=OE,∴OC=OD=OE,∴点O是CD的中点,故D选项结论正确.故选B.
【点睛】
本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,余角的定义,熟记各性质并准确识图是解题的关键.
28.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是()
A.AH=2DF B.HE=BE C.AF=2CE D.DH=DF
【答案】A
【解析】
【分析】
通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解.
【详解】
解:∵∠BAC=45°,BD⊥AC,
∴∠CAB=∠ABD=45°,
∴AD=BD,
∵AB=AC,AE平分∠BAC,
∴CE=BE=1
2
BC,∠CAE=∠BAE=22.5°,AE⊥BC,
∴∠C+∠CAE=90°,且∠C+∠DBC=90°,
∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°,
∴△ADF≌△BDC(AAS)
∴AF=BC=2CE,故选项C不符合题意,
∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°,∴AG=BG,DG⊥AB,∠AFD=67.5°
∴∠AHG=67.5°,
∴∠DFA=∠AHG=∠DHF,
∴DH=DF,故选项D不符合题意,
连接BH,
∵AG=BG,DG⊥AB,
∴AH=BH,
∴∠HAB=∠HBA=22.5°,
∴∠EHB=45°,且AE⊥BC,
∴∠EHB=∠EBH=45°,
∴HE=BE,
故选项B不符合题意,
故选:A.
【点睛】
本题考查三角形全等的性质与判定,等腰直角三角形的性质,关键在于熟练掌握基本知识点,灵活运用知识点.
29.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.
A.1 B.1或3 C.1或7 D.3或7
【答案】C
【解析】
【分析】
分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.
【详解】
解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,
由题意得:BP=2t=2,
所以t=1,
因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,
由题意得:AP=16-2t=2,
解得t=7.
所以,当t的值为1或7秒时.△ABP和△DCE全等.
故选C.
【点睛】。