最新初中数学相交线与平行线难题汇编附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学相交线与平行线难题汇编附答案解析
一、选择题
1.如图,OC 平分AOB ∠,//CD OB .若3DC =,C 到OB 的距离是2.4,则ODC ∆的面积等于( )
A .3.6
B .4.8
C .1.8
D .7.2
【答案】A
【解析】
【分析】 由角平分线的定义可得出∠BOC=∠DOC ,由CD ∥OB ,得出∠BOC=∠DCO ,进而可证出OD=CD=3.再由角平分线的性质可知C 到OA 的距离是2.4,然后根据三角形的面积公式可求ODC ∆的面积.
【详解】
证明:∵OC 平分∠AOB ,
∴∠BOC=∠DOC .
∵CD ∥OB ,
∴∠BOC=∠DCO ,
∴∠DOC=∠DCO ,
∴OD=CD=3.
∵C 到OB 的距离是2.4,
∴C 到OA 的距离是2.4,
∴ODC ∆的面积=13 2.4=3.62
⨯⨯. 故选A .
【点睛】
本题考查了等腰三角形的判定、角平分线的定义、平行线的性质、以及角平分线的性质,利用角平分线的性质得出C 到OA 的距离是2.4是解题的关键.
2.如图,不能判断12//l l 的条件是( )
A .13∠=∠
B .24180∠+∠=︒
C .45∠=∠
D .23∠∠=
【答案】D
【解析】
【分析】
根据题意,结合图形对选项一一分析,排除错误答案.
【详解】
A、∠1=∠3正确,内错角相等两直线平行;
B、∠2+∠4=180°正确,同旁内角互补两直线平行;
C、∠4=∠5正确,同位角相等两直线平行;
D、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行.
故选:D.
【点睛】
此题考查同位角、内错角、同旁内角,解题关键在于掌握各性质定义.
3.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()
A.50°B.70°C.80°D.110°
【答案】C
【解析】
【分析】
根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.
【详解】
因为a∥b,
所以∠1=∠BAD=50°,
因为AD是∠BAC的平分线,
所以∠BAC=2∠BAD=100°,
所以∠2=180°-∠BAC=180°-100°=80°.
故本题正确答案为C.
【点睛】
本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.
4.如图,能判定EB∥AC的条件是()
A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE
【答案】D
【解析】
【分析】
在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
【详解】
A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;
B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;
C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;
D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.
【点睛】
此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
5.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()
A.40°B.50°C.60°D.70°
【答案】D
【解析】
【分析】
根据折叠的知识和直线平行判定即可解答.
【详解】
解:如图可知折叠后的图案∠ABC=∠EBC,
又因为矩形对边平行,根据直线平行内错角相等可得
∠2=∠DBC,
又因为∠2+∠ABC=180°,
所以∠EBC+∠2=180°,
即∠DBC+∠2=2∠2=180°-∠1=140°.
可求出∠2=70°.
【点睛】
掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.
6.如图,将一张矩形纸片折叠,若170∠=︒,则2∠的度数是( )
A .65︒
B .55︒
C .70︒
D .40︒
【答案】B
【解析】
【分析】
根据平行线的性质求出∠3=170∠=︒,得到∠2+∠4=110°,由折叠得到∠2=∠4即可得到∠2的度数.
【详解】
∵a ∥b ,
∴∠3=170∠=︒,
∴∠2+∠4=110°,
由折叠得∠2=∠4,
∴∠2=55︒,
故选:B.
【点睛】
此题考查平行线的性质,折叠的性质.
7.已知△ABC 中,BC=6,AC=3,CP ⊥AB ,垂足为P ,则CP 的长可能是( )
A .2
B .4
C .5
D .7
【答案】A
【解析】
试题分析:如图,根据垂线段最短可知:PC <3,∴CP 的长可能是2,故选A .
考点:垂线段最短.
8.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()
A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补
C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等
【答案】D
【解析】
【分析】
【详解】
解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;
因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.
9.下面四个图形中,∠1与∠2是对顶角的是()
A.B.
C.D.
【答案】D
【解析】
【分析】
根据对顶角的定义,可得答案.
【详解】
解:由对顶角的定义,得D选项是对顶角,
故选:D.
【点睛】
考核知识点:对顶角.理解定义是关键.
10.下列结论中:①若a=b,则a=b;②在同一平面内,若a⊥b,b//c,则a⊥c;
③直线外一点到直线的垂线段叫点到直线的距离;④|3-2|=2-3,正确的个数有( ) A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
【详解】
,则a=b
解:①若a=b0
②在同一平面内,若a⊥b,b//c,则a⊥c,正确
③直线外一点到直线的垂线段的长度叫点到直线的距离
④|3-2|=2-3,正确
正确的个数有②④两个
故选B
11.若a⊥b,c⊥d,则a与c的关系是()
A.平行B.垂直C.相交D.以上都不对
【答案】D
【解析】
【分析】
分情况讨论:①当b∥d时;②当b和d相交但不垂直时;③当b和d垂直时;即可得出a与c的关系.
【详解】
当b∥d时a∥c;
当b和d相交但不垂直时,a与c相交;
当b和d垂直时,a与c垂直;
a和c可能平行,也可能相交,还可能垂直.
故选:D.
【点睛】
本题考查了直线的位置关系,掌握平行、垂直、相交的性质是解题的关键.
12.如图,下列推理错误的是( )
A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥d
C .因为∠1=∠3,所以a ∥b
D .因为∠1=∠4,所以a ∥b
【答案】C
【解析】 分析:由平行线的判定方法得出A 、B 、C 正确,D 错误;即可得出结论.
详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c ∥d ,故正确; 根据同位角相等,两直线平行,可知因为∠3=∠4,所以c ∥d ,故正确;
因为∠1和∠3的位置不符合平行线的判定,故不正确;
根据内错角相等,两直线平行,可知因为∠1=∠4,所以a ∥b ,故正确.
故选:C.
点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.
13.如图,AB CD ∥,BF 平分ABE ∠,且BF DE P ,则ABE ∠与D ∠的关系是( )
A .2ABE D ∠=∠
B .180ABE D ∠+∠=︒
C .90ABE
D ∠=∠=︒
D .3AB
E D ∠=∠
【答案】A
【解析】
【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.
【详解】
证明:如图,延长DE 交AB 的延长线于G ,
//AB CD Q ,
D G ∴∠=∠,
//BF DE Q ,
G ABF ∴∠=∠,
D ABF ∴∠=∠,
BF Q 平分ABE ∠,
22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.
故选:A .
【点睛】
本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.
14.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )
A .35°
B .37.5°
C .45°
D .40° 【答案】B
【解析】
【分析】
根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.
【详解】
解:∵//AD BC ,30C ∠=︒
∴18030015ADC ∠=︒-︒=︒
∵:1:3ADB BDC ∠∠= ∴115037.513
ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒
故选:B .
【点睛】
本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.
15.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是( )
A .45°
B .60°
C .75°
D .82.5°
【答案】C
【解析】
【分析】直接利用平行线的性质结合已知角得出答案.
【详解】如图,作直线l 平行于直角三角板的斜边,
可得:∠3=∠2=45°,∠4=∠5=30°,
故∠1的度数是:45°+30°=75°,
故选C .
【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题关键.
16.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )
A .4
B .3
C .2
D .1
【答案】A
【解析】
【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE 32,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC 23即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.
【详解】
解:连接OB 、OC
∵ABC V 是等边三角形,点O 是ABC V 的内心,
∴∠ABC=∠ACB=60°,BO=CO,BO、CO平分∠ABC和∠ACB
∴∠OBA=∠OBC=1
2
∠ABC=30°,∠OCA=∠
OCB=
1
2
∠ACB=30°
∴∠OBA=∠OCB,∠BOC=180°-∠OBC-∠OCB=120°
∵120
FOG
∠=︒
∴∠=
FOG∠BOC
∴∠FOG-∠BOE=∠BOC-∠BOE
∴∠BOD=∠COE
在△ODB和△OEC中
BOD COE
BO CO
OBD OCE
∠=∠


=

⎪∠=∠

∴△ODB≌△OEC
∴OD=OE
∴△ODE是顶角为120°的等腰三角形,
∴ODE
V形状不变,故①正确;
过点O作OH⊥DE,则DH=EH
∵△ODE是顶角为120°的等腰三角形
∴∠ODE=∠OED=
1
2
(180°-120°)=30°
∴OH=OE·sin∠OED=
1
2
OE,EH= OE·cos∠OED=
3
OE
∴DE=2EH=3OE
∴S△ODE=
1
2
DE·OH=
3
OE2
∴OE最小时,S△ODE最小,
过点O作OE′⊥BC于E′,根据垂线段最短,OE′即为OE的最小值∴BE′=
1
2
BC=
1
2
a
在Rt△OBE′中
OE′=BE′·tan∠OBE′=
1
2
a×3
3
=
3
6
a
∴S △ODE 22 ∵△ODB ≌△OEC
∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC·OE′=212
2=142 ∴S △ODE ≤14
S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确;
∵S 四边形ODBE 2 ∴四边形ODBE 的面积始终不变,故③正确;
∵△ODB ≌△OEC
∴DB=EC
∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE
∴DE 最小时BDE V 的周长最小
∵OE
∴OE 最小时,DE 最小
而OE 的最小值为
∴DE =12a ∴BDE V 的周长的最小值为a +
12
a =1.5a ,故④正确; 综上:4个结论都正确,
故选A .
【点睛】 此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.
17.如图,在△ABC 中,AB =AC ,∠A =36°,D 、E 两点分别在边AC 、BC 上,BD 平分∠ABC ,DE ∥AB .图中的等腰三角形共有( )
A .3个
B .4个
C .5个
D .6个
【答案】C
【解析】
【分析】 已知条件,根据三角形内角和等于180,角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行判断即可.
【详解】
解:∵AB =AC ,∠A =36°,
∴∠ABC =∠C =72°,
∵BD 平分∠ABC ,
∴∠ABD =∠DBC =36°,
∴∠BDC =180°﹣36°﹣72°=72°,
∵DE ∥AB ,
∴∠EDB =∠ABD =36°,
∴∠EDC =72°﹣36°=36°,
∴∠DEC =180°﹣72°﹣36°=72°,
∴∠A =∠ABD ,∠DBE =∠BDE ,∠DEC =∠C ,∠BDC =∠C ,∠ABC =∠C , ∴△ABC 、△ABD 、△DEB 、△BDC 、△DEC 都是等腰三角形,共5个,
故选C .
【点睛】
本题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是解题的关键.
18.如图,在ABC V 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )
A .30°
B .35°
C .40°
D .45°
【答案】C
【解析】
【分析】 先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.
【详解】
∵AB AC =,且30A ∠=︒, ∴18030752
ACB ∠︒-︒=
=︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,
∴14514530115AED A ∠∠=︒-=︒-︒=︒,
∵//a b ,
∴2AED ACB ∠∠∠=+,
即21157540∠=︒-︒=︒,
故选:C .
【点睛】 本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180︒;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.
19.如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )
A .34°
B .56°
C .66°
D .54°
【答案】B
【解析】
试题分析:∵AB ∥CD ,
∴∠D=∠1=34°,
∵DE ⊥CE ,
∴∠DEC=90°,
∴∠DCE=180°﹣90°﹣34°=56°.
故选B.
考点:平行线的性质.
20.如图AD∥BC,∠B=30o,DB平分∠ADE,则∠DEC的度数为()
A.30o B.60o C.90o D.120o 【答案】B
【解析】
∵AD∥BC,
∴∠ADB=∠DBC,
∵DB平分∠ADE,
∴∠ADB=∠ADE,
∵∠B=30°,
∴∠ADB=∠BDE=30°,
则∠DEC=∠B+∠BDE=60°.
故选B.
【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.。

相关文档
最新文档