邵阳县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

邵阳县第二高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有( )
A .a >b
B .a <b
C .a=b
D .a ,b 的大小与m ,n 的值有关
2. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )
A .
B .
C .
D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.
3. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )
A .48
B .36
C .24
D .18
【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题. 4. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( ) A .4320 B .2400 C .2160 D .1320
5. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =
,若在数列{c n }
中c 8>c n (n ∈N *
,n ≠8),则实数p 的取值范围是( )
A .(11,25)
B .(12,16]
C .(12,17)
D .[16,17)
6. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0
B .1
C .2
D .3
7. 在△ABC 中,,则这个三角形一定是( )
A .等腰三角形
B .直角三角形
C .等腰直角三角
D .等腰或直角三角形
8. 若函数21,1,()ln ,1,
x x f x x x ⎧-≤=⎨>⎩则函数1
()2y f x x =+的零点个数为( )
A .1
B .2
C .3
D .4 9. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 10.如右图,在长方体
中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将
次到第次反射点之间的线
段记为

,将线段
竖直放置在同一水平线上,则大致的图形是( )
A
B
C D
11.若函数
1,0,
()
(2),0,
x x
f x
f x x
+≥

=⎨
+<

则(3)
f-的值为()
A.5 B.1-C.7-D.2 12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()
A.1 B.C.e﹣1 D.e+1
二、填空题
13.下列四个命题申是真命题的是(填所有真命题的序号)
①“p∧q为真”是“p∨q为真”的充分不必要条件;
②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;
③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;
④动圆P过定点A(﹣2,0),且在定圆B:(x﹣2)2+y2=36的内部与其相内切,则动圆圆心P的轨迹为一个椭圆.
14.设全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},若N⊆M,则实数a的取值范围是.15.如图,△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC,此图形中有个直角三角形.
16.方程22x﹣1=的解x=.
17
由表中数据算出线性回归方程为=x+.若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为万元.
18.某几何体的三视图如图所示,则该几何体的体积为
三、解答题
19.已知数列{a n }共有2k (k ≥2,k ∈Z )项,a 1=1,前n 项和为S n ,前n 项乘积为T n ,且a n+1=(a ﹣1)S n +2(n=1,
2,…,2k ﹣1),其中a=2,数列{b n }满足b n =log 2,
(Ⅰ)求数列{b n }的通项公式;
(Ⅱ)若|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|≤,求k 的值.
20.已知{}{}
22
,1,3,3,31,1A a a B a a a =+-=--+,若{}3A
B =-,求实数的值.
21.已知椭圆C :
+
=1(a >b >0)的一个长轴顶点为A (2,0),离心率为
,直线y=k (x ﹣1)与
椭圆C 交于不同的两点M ,N , (Ⅰ)求椭圆C 的方程;
(Ⅱ)当△AMN 的面积为时,求k 的值.
22.已知条件4
:11
p x ≤--,条件22:q x x a a +<-,且p 是的一个必要不充分条件,求实数 的取值范围.
23.(本小题满分12分)若二次函数()()2
0f x ax bx c a =++≠满足()()+12f x f x x -=,
且()01f =.
(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.
24.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且.
(Ⅰ)求角B 的大小;
(Ⅱ)若b=6,a+c=8,求△ABC 的面积.
邵阳县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】C
【解析】解:根据茎叶图中的数据,得; 甲得分的众数为a=85, 乙得分的中位数是b=85; 所以a=b . 故选:C .
2. 【答案】A 【



3. 【答案】C
【解析】根据分层抽样的要求可知在C 社区抽取户数为249
2
108180270360180108=⨯=++⨯.
4. 【答案】D
【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•
=388,
第二组(1,1,2,2),利用间接法,有(﹣)•=932
根据分类计数原理,可得388+932=1320种, 故选D .
【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.
5. 【答案】C
【解析】解:当a n ≤b n 时,c n =a n ,当a n >b n 时,c n =b n ,∴c n 是a n ,b n 中的较小者, ∵a n =﹣n+p ,∴{a n }是递减数列,
∵b n =2n ﹣5
,∴{b n }是递增数列,
∵c 8>c n (n ≠8),∴c 8是c n 的最大者,
则n=1,2,3,…7,8时,c n 递增,n=8,9,10,…时,c n 递减, ∴n=1,2,3,…7时,2n ﹣5
<﹣n+p
总成立,
当n=7时,2
7﹣5
<﹣7+p ,∴p >11,
n=9,10,11,…时,2n﹣5>﹣n+p总成立,
当n=9时,29﹣5>﹣9+p,成立,∴p<25,
而c8=a8或c8=b8,
若a8≤b8,即23≥p﹣8,∴p≤16,
则c8=a8=p﹣8,
∴p﹣8>b7=27﹣5,∴p>12,
故12<p≤16,
若a8>b8,即p﹣8>28﹣5,∴p>16,
∴c8=b8=23,
那么c8>c9=a9,即8>p﹣9,
∴p<17,
故16<p<17,
综上,12<p<17.
故选:C.
6.【答案】C
【解析】解:集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z}={1,2},P∩Q≠∅,
可得b的最小值为:2.
故选:C.
【点评】本题考查集合的基本运算,交集的意义,是基础题.
7.【答案】A
【解析】解:∵,
又∵cosC=,
∴=,整理可得:b2=c2,
∴解得:b=c.即三角形一定为等腰三角形.
故选:A.
8.【答案】D
【解析】
考点:函数的零点.
【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.
9. 【答案】B 【



10.【答案】C 【解析】根据题意有:
A 的坐标为:(0,0,0),
B 的坐标为(11,0,0),
C 的坐标为(11,7,0),
D 的坐标为(0,7,0); A 1的坐标为:(0,0,12),B 1的坐标为(11,0,12),C 1的坐标为(11,7,12),D 1的坐标为(0,7,12);
E 的坐标为(4,3,12) (1)l 1长度计算 所以:l 1=|AE|==13。

(2)l 2长度计算
将平面A 1B 1C 1D 1沿Z 轴正向平移AA 1个单位,得到平面A 2B 2C 2D 2;显然有:
A 2的坐标为:(0,0,24),
B 2的坐标为(11,0,24),
C 2的坐标为(11,7,24),
D 2的坐标为(0,7,24);
显然平面A 2B 2C 2D 2和平面ABCD 关于平面A 1B 1C 1D 1对称。

设AE 与的延长线与平面A 2B 2C 2D 2相交于:E 2(x E2,y E2,24) 根据相识三角形易知: x E2=2x E =2×4=8, y E2=2y E =2×3=6, 即:E 2(8,6,24)
根据坐标可知,E 2在长方形A 2B 2C 2D 2内。

11.【答案】D111] 【解析】
试题分析:()()()311112f f f -=-==+=. 考点:分段函数求值.
12.【答案】C
【解析】解:当y 1=y 2时,对于任意x 1,x 2,都有|AB|≥e 恒成立,可得: =1+ln (x 2﹣m ),x 2﹣x 1≥e ,
∴0<1+ln (x 2﹣m )≤,∴.
∵lnx ≤x ﹣1(x ≥1),考虑x 2﹣m ≥1时.
∴1+ln (x 2﹣m )≤x 2﹣m ,
令x 2﹣m ≤,
化为m ≥x ﹣e x ﹣e
,x >m+.
令f (x )=x ﹣e x ﹣e
,则
f ′(x )=1﹣e x ﹣e ,可得x=e 时,f (x )取得最大值.
∴m ≥e ﹣1. 故选:C .
二、填空题
13.【答案】 ①③④
【解析】解:①“p ∧q 为真”,则p ,q 同时为真命题,则“p ∨q 为真”,
当p 真q 假时,满足p ∨q 为真,但p ∧q 为假,则“p ∧q 为真”是“p ∨q 为真”的充分不必要条件正确,故①正确; ②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,
③设正三棱锥为P ﹣ABC ,顶点P 在底面的射影为O ,则O 为△ABC 的中心,∠PCO 为侧棱与底面所成角
∵正三棱锥的底面边长为3,∴CO=
∵侧棱长为2,∴
在直角△POC中,tan∠PCO=
∴侧棱与底面所成角的正切值为,即侧棱与底面所成角为30°,故③正确,
④如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(﹣2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,
即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|.
∴点P的轨迹是以A、B为焦点的椭圆,
故动圆圆心P的轨迹为一个椭圆,故④正确,
故答案为:①③④
14.【答案】[,1].
【解析】解:∵全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},N⊆M,
∴2a﹣1≤1 且4a≥2,解得2≥a≥,故实数a的取值范围是[,1],
故答案为[,1].
15.【答案】4
【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,
所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.
故答案为:4
【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.
16.【答案】﹣.
【解析】解:22x﹣1==2﹣2,
∴2x﹣1=﹣2,
解得x=﹣,
故答案为:﹣
【点评】本题考查了指数方程的解法,属于基础题.
17.【答案】.
【解析】解:由条件可知=(3+5+10+14)=8,=(2+3+7+12)=6,
代入回归方程,可得a=﹣,所以=x﹣,
当x=8时,y=,
估计他的年推销金额为万元.
故答案为:.
【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.
18.【答案】26
【解析】解:由三视图知几何体为为三棱柱,去掉一个三棱锥的几何体,如图:
三棱柱的高为5,底面是直角边为4,3,去掉的三棱锥,是底面是直角三角形直角边为4,3,高为2的三棱锥.
∴几何体的体积V==26.
故答案为:26.
【点评】本题考查由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及数据所对应的几何量.
三、解答题
19.【答案】
【解析】(本小题满分13分)
解:(1)当n=1时,a2=2a,则;
当2≤n≤2k﹣1时,a n+1=(a﹣1)S n+2,a n=(a﹣1)S n﹣1+2,
所以a n+1﹣a n=(a﹣1)a n,故=a,即数列{a n}是等比数列,,
∴T n=a1×a2×…×a n=2n a1+2+…+(n﹣1)=,
b n==.…
(2)令,则n≤k+,又n∈N*,故当n≤k时,,
当n≥k+1时,.…
|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|
=+()+…+()…
=(k+1+…+b2k)﹣(b1+…+b k)
=[+k]﹣[]
=,
由,得2k2﹣6k+3≤0,解得,…
又k≥2,且k∈N*,所以k=2.…
【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用.
20.【答案】
2
3
a=-.
【解析】
考点:集合的运算.
21.【答案】
【解析】解:(Ⅰ)∵椭圆一个顶点为A (2,0),离心率为,

∴b=
∴椭圆C 的方程为;
(Ⅱ)直线y=k (x ﹣1)与椭圆C 联立,消元可得(1+2k 2)x 2﹣4k 2x+2k 2
﹣4=0
设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=,
∴|MN|=
=
∵A (2,0)到直线y=k (x ﹣1)的距离为
∴△AMN 的面积S=
∵△AMN 的面积为,
∴ ∴k=±1.
【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,解题的关键是正确求出|MN|.
22.【答案】[]1,2-. 【解析】
试题分析:先化简条件p 得31x -≤<,分三种情况化简条件,由p 是的一个必要不充分条件,可分三种情况列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.
试题解析:由
4
11
x ≤--得:31p x -≤<,由22x x a a +<-得()()10x a x a +--<⎡⎤⎣⎦,当12a =时,:q ∅;当12a <时,():1,q a a --;当1
2a >时,():,1q a a --
由题意得,p 是的一个必要不充分条件,
当12a =时,满足条件;当12a <时,()[)1,3,1a a --⊆-得11,2a ⎡⎫∈-⎪⎢⎣⎭,
当12a >时,()[),13,1a a --⊆-得1,22a ⎛⎤
∈ ⎥⎝⎦
综上,[]1,2a ∈-.
考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.
【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断p 是的什么
条件,需要从两方面分析:一是由条件p 能否推得条件,二是由条件能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.本题的解答是根据集合思想解不等式求解的. 23.【答案】(1)()2=+1f x x x -;(2)1m <-. 【解析】
试题分析:(1)根据二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=,利用多项式相等,即可求解,a b 的值,得到函数的解析式;(2)由[]()1,1,x f x m ∈->恒成立,转化为2
31m x x <-+,设
()2g 31x x x =-+,只需()min m g x <,即可而求解实数m 的取值范围.
试题解析:(1) ()()20f x ax bx c a =++≠ 满足()01,1f c ==
()()()()2
212,112f x f x x a x b x ax bx x +-=+++--=,解得1,1a b ==-,
故()2=+1f x x x -.
考点:函数的解析式;函数的恒成立问题.
【方法点晴】本题主要考查了函数解析式的求解、函数的恒成立问题,其中解答中涉及到一元二次函数的性质、多项式相等问题、以及不等式的恒成立问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,推理与运算能力,以及转化与化归思想,试题有一定的难度,属于中档试题,其中正确把不等式的恒成立问题转化为函数的最值问题是解答的关键. 24.【答案】
【解析】解:(Ⅰ)由2bsinA=a ,以及正弦定理
,得sinB=

又∵B 为锐角,
∴B=
,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
(Ⅱ)由余弦定理b 2=a 2+c 2
﹣2accosB , ∴a 2+c 2
﹣ac=36,
∵a+c=8,
∴ac=,
∴S △ABC ==
.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣。

相关文档
最新文档