分式性质知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式性质知识点总结
一、分式的概念
分式是由分子和分母组成的表达式,形式为a/b,其中a为分子,b为分母,a、b为整数
且b≠0。
二、分式的分母不为0
分式的分母不为0,这是因为分母为0时,分式的值就没有意义。
分式的分母不能为0是
分式的基本性质之一。
三、分式的约分
分式的约分是指将分子和分母的公因数约去得到分式的最简形式。
如2/4的最简形式为
1/2,4/6的最简形式为2/3。
四、分式的等价
两个分式的值相等时,称它们是等价分式,即a/b = c/d,记作a/b ≡ c/d。
例如2/3 = 4/6。
五、分式的加减
当分式的分母相同时,分式的加减运算就像整数的加减一样。
当分式的分母不相同时,需
要将分式化简成通分分式后再进行加减运算。
六、分式的乘法
分式的乘法是分子相乘,分母相乘。
即(a/b) × (c/d) = (a×c)/(b×d)。
七、分式的除法
分式的除法是分子相除,分母相除。
即(a/b) ÷ (c/d) = (a×d)/(b×c)。
八、分式的倒数
一个分式的倒数是将分子与分母交换位置得到的新的分式。
例如分式a/b的倒数是b/a。
九、分式的乘方
分式的乘方是指分式本身或者分式的分子分母分别乘方。
例如(a/b)² = (a²)/(b²),(a/b)² = (a²)/(b²)。
十、分式方程
分式方程是指含有分式的方程。
解分式方程时需要化简分式并求解分式的值。
如2/x+1 = 3,则x的值为1。
十一、分式的实际应用
分式的实际应用包括比例、百分比、利润、损失、利率等,这些都是日常生活中常见的分式应用。
总结:分式是数学中常见的一种数学表达式,掌握分式的性质和运算方法对于学习代数和数学计算有着重要的意义。
要熟练掌握分式的加减乘除和方程的解法,掌握这些知识点能够帮助我们更好地理解数学问题,并且在实际生活中做出正确的数学计算。