宁化县民族中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁化县民族中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 在ABC ∆中,2
2
2
sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]
A .(0,
]6π B .[,)6ππ C. (0,]3π D .[,)3
π
π 2. 1F ,2F 分别为双曲线22
221x y a b
-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,
若12PF F ∆ )
C. 1
D. 1
【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力. 3. 在平面直角坐标系
中,向量
=(1,2),
=(2,m),若O ,A ,B 三点能构成三角形,则( )
A .
B .
C .
D .
4. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形
个数为( ) A .0
B .1
C .2
D .以上都不对
5. 函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的部分图象如图所示,则函数y=f (x )对应的
解析式为( )
A .
B .
C .
D .
6. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a
的 取值范围是( )
A .(1,)-+∞
B .(1,0)- C. (2,)-+∞ D .(2,0)- 7. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )
A .96
B .48
C .24
D .0
8. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .
14 B .18 C .23 D .112
9. 有下列四个命题:
①“若a 2+b 2=0,则a ,b 全为0”的逆否命题; ②“全等三角形的面积相等”的否命题; ③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;
④“矩形的对角线相等”的逆命题. 其中真命题为( )
A .①②
B .①③
C .②③
D .③④
10.在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( ) A .x=1 B .x= C .x=﹣1 D .x=﹣
11.复数i i -+3)1(2
的值是( )
A .i 4341+-
B .i 4341-
C .i 5351+-
D .i 5
351-
【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.
12.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数
D .标准差
二、填空题
13.若全集
,集合
,则
14.如图为长方体积木块堆成的几何体的三视图,此几何体共由 块木块堆成.
15.设p :实数x 满足不等式x 2﹣4ax+3a 2<0(a <0),q :实数x 满足不等式x 2﹣x ﹣6≤0,已知¬p 是¬q 的必要非充分条件,则实数a 的取值范围是 .
16.设函数
,若用表示不超过实数m 的最大整数,则函数
的值域为 .
17.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .
18.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都
在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .
三、解答题
19.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获
胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于
体力原因,第7场获胜的概率为.
(Ⅰ)求甲队分别以4:2,4:3获胜的概率;
(Ⅱ)设X 表示决出冠军时比赛的场数,求X 的分布列及数学期望.
20.(本小题满分12分)
已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;
(2)若与夹角为锐角,求的取值范围.
21.已知函数f (x )
=sin2x •sin φ+cos 2x •cos φ
+sin
(π﹣φ)(0<φ<π
),其图象过点(
,.)
(Ⅰ)求函数f (x )在[0,π]上的单调递减区间; (Ⅱ)若x 0∈
(,π),sinx 0
=,求f (x 0)的值.
22.设f (x )=2x 3+ax 2+bx+1的导数为f ′(x ),若函数y=f ′(x )的图象关于直线x=
﹣对称,且f ′(1)=0 (Ⅰ)求实数a ,b 的值 (Ⅱ)求函数f (x )的极值.
23.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线1C 的极坐标方程是2=
ρ,曲线2C 的参数方程是
θππθθ],2,6[,0(21sin 2,
1∈>⎪⎩
⎪
⎨⎧+==t t y x 是参数).
(Ⅰ)写出曲线1C 的直角坐标方程和曲线2C 的普通方程; (Ⅱ)求t 的取值范围,使得1C ,2C 没有公共点.
24.已知椭圆Γ:(a>b>0)过点A(0,2),离心率为,过点A的直线l与椭圆交于另一点
M.
(I)求椭圆Γ的方程;
(II)是否存在直线l,使得以AM为直径的圆C,经过椭圆Γ的右焦点F且与直线x﹣2y﹣2=0相切?若存在,求出直线l的方程;若不存在,请说明理由.
宁化县民族中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】C 【
解
析
】
考点:三角形中正余弦定理的运用. 2. 【答案】D
【解析】∵120PF PF ⋅=,∴12PF
PF ⊥,即12PF F ∆为直角三角形,∴2222
12124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-,
2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径
12122PF PF F F r c +-=
=,外接圆半径R c =.c =,整理,得
2()4c
a
=+1e =,故选D. 3. 【答案】B
【解析】【知识点】平面向量坐标运算
【试题解析】若O ,A ,B 三点能构成三角形,则O ,A ,B 三点不共线。
若O ,A ,B 三点共线,有:-m=4,m=-4. 故要使O ,A ,B 三点不共线,则。
故答案为:B 4. 【答案】B 【解析】解:∵a=3,,A=60°,
∴由正弦定理可得:sinB==
=1,
∴B=90°,
即满足条件的三角形个数为1个. 故选:B .
【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.
5. 【答案】A
【解析】解:由函数的图象可得A=1, =•
=
﹣
,
解得ω=2,
再把点(,1)代入函数的解析式可得 sin (2×
+φ)=1,
结合,可得φ=
,
故有
,
故选:A .
6. 【答案】A
【解析】
考
点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.
【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的
大小).
7. 【答案】
B
【解析】
排列、组合的实际应用;空间中直线与直线之间的位置关系.
【专题】计算题;压轴题.
【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.
【解答】解:8种化工产品分4组,设四棱锥的顶点是P ,底面四边形的个顶点为A 、B 、C 、D .
分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,
(PA 、DC ;PB 、AD ;PC 、AB ;PD 、BC )或(PA 、BC ;PD 、AB ;PC 、AD ;PB 、DC )
那么安全存放的不同方法种数为2A 44
=48.
故选B .
【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖. 8. 【答案】C 【解析】
试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202
303
-=-.故本题答案选C. 考点:几何概型. 9. 【答案】B
【解析】解:①由于“若a 2+b 2
=0,则a ,b 全为0”是真命题,因此其逆否命题是真命题;
②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;
③若x 2+2x+q=0有实根,则△=4﹣4q ≥0,解得q ≤1,因此“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题是真命题;
④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.
综上可得:真命题为:①③.
故选:B .
【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.
10.【答案】C
【解析】解:由题意可得抛物线y 2=2px (p >0)开口向右, 焦点坐标(,0),准线方程x=﹣,
由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5, 即4﹣(﹣)=5,解之可得p=2 故抛物线的准线方程为x=﹣1. 故选:C .
【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题.
11.【答案】C
【解析】i i i i i i i i i i 5
3
511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+.
12.【答案】D
【解析】解:A 样本数据:82,84,84,86,86,86,88,88,88,88. B 样本数据84,86,86,88,88,88,90,90,90,90 众数分别为88,90,不相等,A 错. 平均数86,88不相等,B 错. 中位数分别为86,88,不相等,C 错
A 样本方差S 2= [(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,
B 样本方差S 2= [(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D 正确
故选D .
【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.
二、填空题
13.【答案】{|0<<1} 【解析】∵
,∴
{|0<<1}。
14.【答案】 4
【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,
故后排有三个,故此几何体共有4个木块组成. 故答案为:4.
15.【答案】.
【解析】解:∵x2﹣4ax+3a2<0(a<0),∴(x﹣a)(x﹣3a)<0,
则3a<x<a,(a<0),
由x2﹣x﹣6≤0得﹣2≤x≤3,
∵¬p是¬q的必要非充分条件,
∴q是p的必要非充分条件,
即,即≤a<0,
故答案为:
16.【答案】{0,1}.
【解析】解:
=[﹣]+[+]
=[﹣]+[+],
∵0<<1,
∴﹣<﹣<,<+<,
①当0<<时,
0<﹣<,<+<1,
故y=0;
②当=时,
﹣=0, +=1,
故y=1;
③<
<1时,
﹣<﹣<0,1<
+<,
故y=﹣1+1=0;
故函数
的值域为{0,1}.
故答案为:{0,1}.
【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.
17.【答案】 2016 .
【解析】解:∵f (x )=f (2﹣x ),
∴f (x )的图象关于直线x=1对称,即f (1﹣x )=f (1+x ). ∵f (x+1)=f (x ﹣1),∴f (x+2)=f (x ), 即函数f (x )是周期为2的周期函数,
∵方程f (x )=0在[0,1]内只有一个根x=,
∴由对称性得,f ()=f ()=0,
∴函数f (x )在一个周期[0,2]上有2个零点, 即函数f (x )在每两个整数之间都有一个零点, ∴f (x )=0在区间[0,2016]内根的个数为2016, 故答案为:2016.
18.【答案】 2 .
【解析】解:如图所示, 连接A 1C 1,B 1D 1,相交于点O . 则点O 为球心,OA=
.
设正方体的边长为x ,则A 1O=
x .
在Rt △OAA 1中,由勾股定理可得: +x 2=
,
解得x=
.
∴正方体ABCD ﹣A
1B 1C 1D 1的体积V==2.
故答案为:2
.
三、解答题
19.【答案】
【解析】解:(Ⅰ)设甲队以4:2,4:3获胜的事件分别为A ,B ,
∵甲队第5,6场获胜的概率均为,第7场获胜的概率为,
∴
,
,
∴甲队以4:2,4:3获胜的概率分别为
和
.
(Ⅱ)随机变量X 的可能取值为5,6,7,
∴
,P (X=6)=
,P (X=7)=
,
∴随机变量X 的分布列为
【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力.
20.【答案】(1)2或2)(1,0)(0,3)-.
【解析】
试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围. 试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.
(2)与夹角为锐角,0a b ∙>,2
230x x -++>,13x -<<,
又因为0x =时,//a b , 所以的取值范围是(1,0)
(0,3)-.
考点:向量平行的坐标运算,向量的模与数量积.
【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是
0a b a b
⋅>且,a b 不同
向,同样两向量夹角为钝角的充要条件是0a b a b
⋅<且,a b 不反向.
21.【答案】
【解析】(本小题满分12分)φ
解:(Ⅰ)f (x )=+﹣
=+
=
)
由f (x )图象过点(
)知:
所以:φ=
所以f (x )= 令(k ∈Z )
即:
所以:函数f (x )在[0,π]上的单调区间为:
(Ⅱ)因为x 0∈(π,2π),
则:
2x 0∈(π,2π)
则: =
sin
所以
=)=
【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.
22.【答案】
【解析】解:(Ⅰ)因f (x )=2x 3+ax 2+bx+1,故f ′(x )=6x 2
+2ax+b
从而f ′(x )
=6
y=f ′(x )关于直线x=
﹣对称,
从而由条件可知﹣=
﹣,解得a=3
又由于f ′(x )=0,即6+2a+b=0,解得b=﹣12
(Ⅱ)由(Ⅰ)知f (x )=2x 3+3x 2
﹣12x+1
f ′(x )=6x 2+6x ﹣12=6(x ﹣1)(x+2) 令f ′(x )=0,得x=1或x=﹣2
当x ∈(﹣∞,﹣2)时,f ′(x )>0,f (x )在(﹣∞,﹣2)上是增函数; 当x ∈(﹣2,1)时,f ′(x )<0,f (x )在(﹣2,1)上是减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上是增函数.
从而f (x )在x=﹣2处取到极大值f (﹣2)=21,在x=1处取到极小值f (1)=﹣6.
23.【答案】
【解析】 【解析】(Ⅰ)曲线1C 的直角坐标方程是22
2
=+y x ,
曲线2C 的普通方程是)2
1
221(1+≤≤+
=t y t x …………5分 (Ⅱ)对于曲线1:C 22
2=+y x ,令1x =,则有1y =±.
故当且仅当0011
12-122t t t t >>⎧⎧⎪⎪
⎨⎨+>+<⎪⎪⎩⎩或时,1C ,2C 没有公共点, 解得1
2
t >.……10分
24.【答案】
【解析】解:(Ⅰ
)依题意得
,解得,
所以所求的椭圆方程为;
(Ⅱ)假设存在直线l,使得以AM为直径的圆C,经过椭圆后的右焦点F且与直线x﹣2y﹣2=0相切,
因为以AM为直径的圆C过点F,所以∠AFM=90°,即AF⊥AM,
又=﹣1,所以直线MF的方程为y=x﹣2,
由消去y,得3x2﹣8x=0,解得x=0或x=,
所以M(0,﹣2)或M(,),
(1)当M为(0,﹣2)时,以AM为直径的圆C为:x2+y2=4,
则圆心C到直线x﹣2y﹣2=0的距离为d==≠,
所以圆C与直线x﹣2y﹣2=0不相切;
(2)当M为(,)时,以AM为直径的圆心C为(),半径为r===,
所以圆心C到直线x﹣2y﹣2=0的距离为d==r,
所以圆心C与直线x﹣2y﹣2=0相切,此时k AF=,所以直线l的方程为y=﹣+2,即x+2y﹣4=0,
综上所述,存在满足条件的直线l,其方程为x+2y﹣4=0.
【点评】本题考直线与圆锥曲线的关系、椭圆方程的求解,考查直线与圆的位置关系,考查分类讨论思想,解决探究型问题,往往先假设存在,由此推理,若符合题意,则存在,否则不存在.。