无锡市滨湖中学七年级下册数学期末试卷测试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无锡市滨湖中学七年级下册数学期末试卷测试卷(解析版)
一、解答题
1.已知AB//CD.
(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=
∠B+∠D;
(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.
①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.
②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)
2.如图1,已AB∥CD,∠C=∠A.
(1)求证:AD∥BC;
(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.
(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,
①直接写出∠AED与∠FDC的数量关系:.
②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=
5
14
∠DEB,补全图形后,求
∠EPD的度数
3.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN.(1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°;
(2)如图2,∠BMH和∠HND的角平分线相交于点E.
①请直接写出∠MEN与∠MHN的数量关系:;
②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度
数.(可直接运用①中的结论)
4.如图,已知直线//AB 射线CD ,110CEB ∠=︒.P 是射线EB 上一动点,过点P 作//PQ EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分
ECF ∠.
(1)若点P ,F ,G 都在点E 的右侧. ①求PCG ∠的度数;
②若30EGC ECG ∠-∠=︒,求CPQ ∠的度数.(不能使用“三角形的内角和是180︒”直接解题)
(2)在点P 的运动过程中,是否存在这样的偕形,使:3:2EGC EFC ∠∠=?若存在,直接写出CPQ ∠的度数;若不存在.请说明理由.
5.如图,已知//AB CD ,CN 是BCE ∠的平分线. (1)若CM 平分BCD ∠,求MCN ∠的度数;
(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;
(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着
B 点旋转,但与CM 、CN 始终有交点,问:BP
C BQC ∠+∠的值是否发生变化?若不变,
求其值;若变化,求其变化范围.
二、解答题
6.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .
(1)如图1,点B 在两条平行线外,则A ∠与C ∠之间的数量关系为______; (2)点B 在两条平行线之间,过点B 作BD AM ⊥于点D . ①如图2,说明ABD C ∠=∠成立的理由;
②如图3,BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若
180,3FCB NCF BFC DBE ∠∠∠∠+=︒=,求EBC ∠的度数.
7.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a 从空气中射入水中,再从水中射入空气中,形成光线b ,根据光学知识有12,34∠=∠∠=∠,请判断光线a 与光线b 是否平行,并说明理由.
(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线α与水平线OC 的夹角为40︒,问如何放置平面镜MN ,可使反射光线b 正好垂直照射到井底?(即求MN 与水平线的夹角) (3)如图3,直线EF 上有两点A 、C ,分别引两条射线AB 、CD .105BAF ∠=︒,
65DCF ∠=︒,射线AB 、CD 分别绕A 点,C 点以1度/秒和3度/秒的速度同时顺时针转
动,设时间为t ,在射线CD 转动一周的时间内,是否存在某时刻,使得CD 与AB 平行?若存在,求出所有满足条件的时间t .
8.已知ABC ,//DE AB 交AC 于点E ,//DF AC 交AB 于点F .
(1)如图1,若点D 在边BC 上, ①补全图形;
②求证:A EDF ∠=∠.
(2)点G 是线段AC 上的一点,连接FG ,DG .
①若点G 是线段AE 的中点,请你在图2中补全图形,判断AFG ∠,EDG ∠,DGF ∠之间的数量关系,并证明;
②若点G 是线段EC 上的一点,请你直接写出AFG ∠,EDG ∠,DGF ∠之间的数量关系. 9.(感知)如图①,//,40,130AB CD AEP PFD ︒︒∠=∠=,求EPF ∠的度数.小明想到了以下方法:
解:如图①,过点P 作//PM AB ,
140AEP ︒∴∠=∠=(两直线平行,内错角相等)
//AB CD (已知),
//∴PM CD (平行于同一条直线的两直线平行),
2180PFD ︒∴∠+∠=(两直线平行,同旁内角互补). 130PFD ︒∠=(已知),
218013050︒︒︒∴∠=-=(等式的性质). 12405090︒︒︒∴∠+∠=+=(等式的性质).
即90EPF ︒∠=(等量代换).
(探究)如图②,//AB CD ,50,120AEP PFC ︒︒∠=∠=,求EPF ∠的度数.
(应用)如图③所示,在(探究)的条件下,PEA ∠的平分线和PFC ∠的平分线交于点
G ,则G ∠的度数是_______________︒.
10.如图1,D 是△ABC 延长线上的一点,CE //AB . (1)求证:∠ACD =∠A+∠B ;
(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.
(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.
三、解答题
11.小明在学习过程中,对教材中的一个有趣问题做如下探究:
(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;
(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角
BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则
CFE ∠与CEF ∠还相等吗?说明理由;
(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系. 12.解读基础:
(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;
(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:
应用乐园:直接运用上述两个结论解答下列各题
(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;
②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .
(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.
13.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠ (1)求EOB ∠的度数;
(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;
(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.
14.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=
()1请判断AB 与CD 的位置关系并说明理由;
()2如图2,当90E ∠=且AB 与CD 的位置关系保持不变,移动直角顶点E ,使
MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠否存在确定的数量关系?并
说明理由.
()3如图3,P 为线段AC 上一定点,点Q 为直线CD 上一动点且AB 与CD 的位置关系保持
不变,①当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?猜想结论并说明理由.②当点Q 在射线CD 的反向延长线上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?直接写出猜想结论,不需说明理由.
15.如图,△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于A 1.
(1)当∠A 为70°时, ∵∠ACD -∠ABD =∠______ ∴∠ACD -∠ABD =______°
∵BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线 ∴∠A 1CD -∠A 1BD =1
2
(∠ACD -∠ABD )
∴∠A 1=______°;
(2)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于A 2,∠A 2BC 与A 2CD 的平分线交于A 3,如此继续下去可得A 4、…、A n ,请写出∠A 与∠A n 的数量关系______;
(3)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A +∠D =230度,则∠F =______.
(4)如图3,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q +∠A 1的值为定值;②∠Q -∠A 1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.
【参考答案】
一、解答题
1.(1)见解析;(2)55°;(3) 【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图
解析:(1)见解析;(2)55°;(3)11
18022αβ︒-+
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,
60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;
②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数. 【详解】
解:(1)如图1,过点E 作//EF AB ,
则有BEF B ∠=∠,
//AB CD ,
//EF CD ∴,
FED D ∴∠=∠,
BED BEF FED B D ∴∠=∠+∠=∠+∠;
(2)①如图2,过点F 作//FE AB ,
有BFE FBA ∠=∠.
//AB CD ,
//EF CD ∴.
EFD FDC ∴∠=∠.
BFE EFD FBA FDC ∴∠+∠=∠+∠.
即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,
1
252FBA ABC ∴∠=∠=︒,1302
FDC ADC ∠=∠=︒,
55BFD FBA FDC ∴∠=∠+∠=︒.
答:BFD ∠的度数为55︒; ②如图3,过点F 作//FE AB ,
有180BFE FBA ∠+∠=︒.
180BFE FBA ∴∠=︒-∠,
//AB CD ,
//EF CD ∴.
EFD FDC ∴∠=∠.
180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.
即180BFD FBA FDC ∠=︒-∠+∠,
BF 平分ABC ∠,DF 平分ADC ∠,
11
22FBA ABC α∴∠=∠=,1122
FDC ADC β∠=∠=,
11
18018022
BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+.
答:BFD ∠的度数为11
18022αβ︒-+.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.
2.(1)见解析;(2)∠BAE+∠CDE=∠AED ,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】
(1)根据平行线的性质及判定可得结论; (2)过点E 作EF ∥AB ,根
解析:(1)见解析;(2)∠BAE +∠CDE =∠AED ,证明见解析;(3)①∠AED -∠FDC =45°,理由见解析;②50°
【分析】
(1)根据平行线的性质及判定可得结论;
(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;
(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出
2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;
②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-
∠DEB,求出∠AED=50°,即可得出∠EPD的度数.
∠PEA=5
14
【详解】
解:(1)证明:AB∥CD,
∴∠A+∠D=180°,
∵∠C=∠A,
∴∠C+∠D=180°,
∴AD∥BC;
(2)∠BAE+∠CDE=∠AED,理由如下:
如图2,过点E作EF∥AB,
∵AB∥CD
∴AB∥CD∥EF
∴∠BAE=∠AEF,∠CDE=∠DEF
即∠FEA+∠FED=∠CDE+∠BAE
∴∠BAE+∠CDE=∠AED;
(3)①∠AED-∠FDC=45°;
∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,
∴∠AEC=∠DEC+∠AEB,
∴∠AED=∠AEB,
∵DF平分∠EDC
∠DEC=2∠FDC
∴∠DEC=90°-2∠FDC,
∴2∠AED+(90°-2∠FDC)=180°,
∴∠AED-∠FDC=45°,
故答案为:∠AED-∠FDC=45°;
②如图3,
∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,
∴∠DEP=2∠F=90°,
∵∠DEA-∠PEA=5
14∠DEB=5
7
∠DEA,
∴∠PEA=2
7
∠AED,
∴∠DEP=∠PEA+∠AED=9
7
∠AED=90°,
∴∠AED=70°,
∵∠AED+∠AEC=180°,
∴∠DEC+2∠AED=180°,
∴∠DEC=40°,
∵AD∥BC,
∴∠ADE=∠DEC=40°,
在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,
即∠EPD=50°.
【点睛】
本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.
3.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°
【分析】
(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即
解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°
【分析】
(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为
180°,角与角之间的基本运算、等量代换等即可得证.
(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.
②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣1
2
(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.【详解】
解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1
∵EP∥AB且ME平分∠BMH,
∴∠MEQ=∠BME=1
2
∠BMH.
∵EP∥AB,AB∥CD,
∴EP∥CD,又NE平分∠GND,
∴∠QEN=∠DNE=1
2
∠GND.(两直线平行,内错角相等)
∴∠MEN=∠MEQ+∠QEN=1
2∠BMH+1
2
∠GND=1
2
(∠BMH+∠GND).
∴2∠MEN=∠BMH+∠GND.
∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.
∴∠GND+∠BMH﹣∠MHN=180°,
即2∠MEN﹣∠MHN=180°.
(2)①:过点H作GI∥AB.如答图2
由(1)可得∠MEN=1
2
(∠BMH+∠HND),
由图可知∠MHN=∠MHI+∠NHI,
∵GI∥AB,
∴∠AMH=∠MHI=180°﹣∠BMH,
∵GI∥AB,AB∥CD,
∴GI∥CD.
∴∠HNC=∠NHI=180°﹣∠HND.
∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,
∴∠BMH+∠HND=360°﹣∠MHN.
即2∠MEN+∠MHN=360°.
故答案为:2∠MEN+∠MHN=360°.
②:由①的结论得2∠MEN+∠MHN=360°,
∵∠H=∠MHN=140°,
∴2∠MEN=360°﹣140°=220°.
∴∠MEN=110°.
过点H作HT∥MP.如答图2
∵MP∥NQ,
∴HT∥NQ.
∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).
∵MP平分∠AMH,
∴∠PMH=1
2∠AMH=1
2
(180°﹣∠BMH).
∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.
∴∠ENQ+∠ENH+140°﹣1
2
(180°﹣∠BMH)=180°.
∵∠ENH=1
2
∠HND.
∴∠ENQ+1
2∠HND+140°﹣90°+1
2
∠BMH=180°.
∴∠ENQ+1
2
(HND+∠BMH)=130°.
∴∠ENQ+1
2
∠MEN=130°.
∴∠ENQ=130°﹣110°=20°.
【点睛】
本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.
4.(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°
解析:(1)①35°;(2)55°;(2)存在,52.5︒或7.5︒
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;
(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)①∵AB∥CD,
∴∠CEB+∠ECQ=180°,
∵∠CEB=110°,
∴∠ECQ=70°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=1
2∠QCF+1
2
∠FCE=1
2
∠ECQ=35°;
②∵AB∥CD,
∴∠QCG=∠EGC,
∵∠QCG+∠ECG=∠ECQ=70°,
∴∠EGC+∠ECG=70°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=50°,∠ECG=20°,
∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=1
2
(70°−40°)=15°,∵PQ∥CE,
∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.
(2)52.5°或7.5°,
设∠EGC=3x°,∠EFC=2x°,
①当点G、F在点E的右侧时,
∵AB∥CD,
∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,
则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,
∴∠PCF=∠PCQ=1
2∠FCQ=1
2
∠EFC=x°,
则∠ECG=∠GCF=∠PCF=∠PCD=x°,
∵∠ECD=70°,
∴4x=70°,解得x=17.5°,
∴∠CPQ=3x=52.5°;
②当点G、F在点E的左侧时,反向延长CD到H,∵∠EGC=3x°,∠EFC=2x°,
∴∠GCH =∠EGC =3x °,∠FCH =∠EFC =2x °,
∴∠ECG =∠GCF =∠GCH -∠FCH =x °,
∵∠CGF =180°-3x °,∠GCQ =70°+x °,
∴180-3x =70+x ,
解得x =27.5,
∴∠FCQ =∠ECF +∠ECQ =27.5°×2+70°=125°,
∴∠PCQ =1
2∠FCQ =62.5°,
∴∠CPQ =∠ECP =62.5°-55°=7.5°,
【点睛】
本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键. 5.(1)90°;(2)见解析;(3)不变,180°
【分析】
(1)根据邻补角的定义及角平分线的定义即可得解;
(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;
(3),过,分别作,,根据
解析:(1)90°;(2)见解析;(3)不变,180°
【分析】
(1)根据邻补角的定义及角平分线的定义即可得解;
(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;
(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.
【详解】
解(1)CN ,CM 分别平分BCE ∠和BCD ∠,
12BCN BCE ∴=∠,12
BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,
111()90222
MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒; (2)CM CN ⊥,
90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,
22180BCN BCM ∴∠+∠=︒, CN 是BCE ∠的平分线,
2BCE BCN ∴∠=∠,
2180BCE BCM ∴∠+∠=︒,
又180BCE BCD ∠+∠=︒,
2BCD BCM ∴∠=∠,
又CM 在BCD ∠的内部,
CM ∴平分BCD ∠;
(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,
则有//////QG AB PH CD ,
BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠, ⊥BP BQ ,CP CQ ⊥,
90PBQ PCQ ∴∠=∠=︒,
180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,
180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,
BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠
180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,
180BPC BQC ∴∠+∠=︒不变.
【点睛】
此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键.
二、解答题
6.(1)∠A+∠C=90°;(2)①见解析;②105°
【分析】
(1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)①过点B 作BG ∥DM ,根据平行线找角的联系即可求解;②先过点B 作BG ∥
解析:(1)∠A +∠C =90°;(2)①见解析;②105°
【分析】
(1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)①过点B 作BG ∥DM ,根据平行线找角的联系即可求解;②先过点B 作BG ∥DM ,根据角平分线的定义,得出∠ABF =∠GBF ,再设∠DBE =α,∠ABF =β,根据
∠CBF +∠BFC +∠BCF =180°,可得2α+β+3α+3α+β=180°,根据AB ⊥BC ,可得β+β+2α=90°,最后解方程组即可得到∠ABE =15°,进而得出∠EBC =∠ABE +∠ABC =15°+90°=105°.
【详解】
解:(1)如图1,AM 与BC 的交点记作点O ,
∵AM ∥CN ,
∴∠C =∠AOB ,
∵AB ⊥BC ,
∴∠A +∠AOB =90°,
∴∠A +∠C =90°;
(2)①如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,
∴∠DBG=90°,
∴∠ABD+∠ABG=90°,
∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,BG∥DM,
BG CN
//,
∴∠C=∠CBG,
∠ABD=∠C;
②如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)知∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,
则∠ABE=α,∠ABD=2α=∠CBG,
∠GBF=∠AFB=β,
∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°得:
2α+β+3α+3α+β=180°,
∵AB⊥BC,
∴β+β+2α=90°,
∴α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
【点睛】
本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.
7.(1)平行,理由见解析;(2)65°;(3)5秒或95秒
【分析】
(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;
(2)根据入射光线与镜面的夹角与反
解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒
【分析】
(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;
(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;
(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与
∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF 的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.
【详解】
解:(1)平行.理由如下:
如图1,∵∠3=∠4,
∴∠5=∠6,
∵∠1=∠2,
∴∠1+∠5=∠2+∠6,
∴a∥b(内错角相等,两直线平行);
(2)如图2:
∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,
∴∠1=∠2,
∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,
∴∠1+∠2=180°-40°-90°=50°,
∴∠1=1
×50°=25°,
2
∴MN与水平线的夹角为:25°+40°=65°,
即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.
如图①,AB与CD在EF的两侧时,
∵∠BAF=105°,∠DCF=65°,
∴∠ACD=180°-65°-3t°=115°-3t°,
∠BAC=105°-t°,
要使AB∥CD,
则∠ACD=∠BAC,
即115-3t=105-t,
解得t=5;
如图②,CD旋转到与AB都在EF的右侧时,
∵∠BAF=105°,∠DCF=65°,
∴∠DCF=360°-3t°-65°=295°-3t°,
∠BAC=105°-t°,
要使AB∥CD,
则∠DCF=∠BAC,
即295-3t=105-t,
解得t=95;
如图③,CD旋转到与AB都在EF的左侧时,
∵∠BAF=105°,∠DCF=65°,
∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,
∠BAC=t°-105°,
要使AB∥CD,
则∠DCF=∠BAC,
即3t-295=t-105,
解得t=95,
此时t>105,
∴此情况不存在.
综上所述,t为5秒或95秒时,CD与AB平行.【点睛】
本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.
8.(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF
【分析】
(1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得
∠EDF+∠AFD=180°,∠
解析:(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-
∠EDG=∠DGF
【分析】
(1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,
∠A+∠AFD=180°,进而得出∠EDF=∠A;
(2)①过G作GH∥AB,依据平行线的性质,即可得到
∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②过G作GH∥AB,依据平行线的性质,即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.
【详解】
解:(1)①如图,
②∵DE∥AB,DF∥AC,
∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,
∴∠EDF=∠A;
(2)①∠AFG+∠EDG=∠DGF.
如图2所示,过G作GH∥AB,
∵AB∥DE,
∴GH∥DE,
∴∠AFG=∠FGH,∠EDG=∠DGH,
∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;
②∠AFG-∠EDG=∠DGF.
如图所示,过G作GH∥AB,
∵AB∥DE,
∴GH∥DE,
∴∠AFG=∠FGH,∠EDG=∠DGH,
∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.
【点睛】
本题考查了平行线的判定和性质:两直线平行,内错角相等.正确的作出辅助线是解题的关键.
9.[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线
解析:[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数.
【详解】
解:[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠PFC=∠MPF=120°(两直线平行,内错角相等).
∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质).
答:∠EPF的度数为70°;
[应用]如图③所示,
∵EG是∠PEA的平分线,PG是∠PFC的平分线,
∴∠AEG=1
2∠AEP=25°,∠GCF=1
2
∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-MGE=60°-25°=35°.
答:∠G的度数是35°.
故答案为:35.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质.
10.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析.【分析】
(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;
(2)首先根据角
解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN=1
2
∠ACB;理由见解析.
【分析】
(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;
(2)首先根据角平分线的定义得出∠FCD=1
2∠ECD,∠HAF=1
2
∠HAD,进而得出∠F=
1
2
(∠HAD+∠ECD),然后根据平行线的性质得出∠HAD+∠ECD的度数,进而可得出答案;
(3)根据平行线的性质及角平分线的定义得出
1
2
QGR QGD
∠=∠,
1
2
NQG AQG
∠=∠,
180
MQG QGR
∠+∠=︒,再通过等量代换即可得出∠MQN=1
2
∠ACB.【详解】
解:(1)∵CE//AB,
∴∠ACE =∠A ,∠ECD =∠B , ∵∠ACD =∠ACE+∠ECD , ∴∠ACD =∠A+∠B ;
(2)∵CF 平分∠ECD ,FA 平分∠HAD , ∴∠FCD =1
2∠ECD ,∠HAF =1
2∠HAD ,
∴∠F =1
2∠HAD+1
2∠ECD =1
2(∠HAD+∠ECD ), ∵CH //AB , ∴∠ECD =∠B , ∵AH //BC , ∴∠B+∠HAB =180°, ∵∠BAD =70°,
110B HAD ∴∠+∠=︒,
∴∠F =1
2(∠B+∠HAD )=55°; (3)∠MQN =1
2∠ACB ,理由如下:
GR 平分QGD ∠,
1
2
QGR QGD ∴∠=∠.
GN 平分AQG ∠,
1
2NQG AQG ∴∠=∠.
//QM GR ,
180MQG QGR ∴∠+∠=︒ .
∴∠MQN =∠MQG ﹣∠NQG =180°﹣∠QGR ﹣∠NQG =180°﹣1
2(∠AQG+∠QGD )
=180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =1
2(∠CQG+∠QGC ) =12∠ACB . 【点睛】
本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.
三、解答题
11.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】
[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质
即可
解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】
[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明; [变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;
[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE ,由此可证∠M+∠CFE=90°. 【详解】
[习题回顾]证明:∵∠ACB=90°,CD 是高, ∴∠B+∠CAB=90°,∠ACD+∠CAB=90°, ∴∠B=∠ACD , ∵AE 是角平分线, ∴∠CAF=∠DAF ,
∵∠CFE=∠CAF+∠ACD ,∠CEF=∠DAF+∠B , ∴∠CEF=∠CFE ;
[变式思考]相等,理由如下: 证明:∵AF 为∠BAG 的角平分线, ∴∠GAF=∠DAF , ∵∠CAE=∠GAF , ∴∠CAE=∠DAF ,
∵CD 为AB 边上的高,∠ACB=90°, ∴∠ADC=90°, ∴∠ADF=∠ACE=90°,
∴∠DAF+∠F=90°,∠E+∠CAE=90°, ∴∠CEF=∠CFE ;
[探究延伸]∠M+∠CFE=90°,
证明:∵C 、A 、G 三点共线 AE 、AN 为角平分线, ∴∠EAN=90°, 又∵∠GAN=∠CAM , ∴∠M+∠CEF=90°,
∵∠CEF=∠EAB+∠B ,∠CFE=∠EAC+∠ACD ,∠ACD=∠B , ∴∠CEF=∠CFE , ∴∠M+∠CFE=90°. 【点睛】
本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.
12.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结
解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902
D A ∠=︒+∠;②360°;(4)124
E ∠=︒; =14
F ∠︒. 【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;
(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】
(1)D A B C ∠=∠+∠+∠.理由如下:
如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,
BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠;
(2)A D B C ∠+∠=∠+∠.理由如下:
在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,
AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;
(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC
∠和ACB ∠,∴112
2
ABC ACB DBC DCB ∠+∠=∠+∠,
1111
180()180(180)902222
D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠.
故答案为:1902
D A ∠=︒+∠. ②连结B
E . ∵
C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒.
故答案为:360︒;
(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,
26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,
402CDF CAE ∴∠=︒+∠,
4BAC CAE ∠=∠,2BDC CDF ∠=∠,1
902
GDE CDF ∴∠=︒-
∠,
26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,
33
36064(2)644012422
E GAE AGD GDE CAE CD
F ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒;
180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒
. 【点睛】
本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
13.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°. 【分析】
(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案; (2
解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为1
2;(3)∠OEC=∠OBA=60°. 【分析】
(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=1
2∠COA ,从而得出答案;
(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.
(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA ,然后列出方程求解即可. 【详解】 (1)∵CB ∥OA ∴∠C+∠COA=180° ∵∠C=100°
∴∠COA=180°-∠C=80° ∵∠FOB=∠AOB ,OE 平分∠COF
∴∠FOB+∠EOF=1
2(∠AOF+∠COF )=1
2∠COA=40°; ∴∠EOB=40°;
(2)∠OBC :∠OFC 的值不发生变化 ∵CB ∥OA
∴∠OBC=∠BOA ,∠OFC=∠FOA ∵∠FOB=∠AOB ∴∠FOA=2∠BOA ∴∠OFC=2∠OBC ∴∠OBC :∠OFC=1:2
(3)当平行移动AB 至∠OBA=60°时,∠OEC=∠OBA .
设∠AOB=x,
∵CB∥AO,
∴∠CBO=∠AOB=x,
∵CB∥OA,AB∥OC,
∴∠OAB+∠ABC=180°,∠C+∠ABC=180°
∴∠OAB=∠C=100°.
∵∠OEC=∠CBO+∠EOB=x+40°,
∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,
∴x+40°=80°-x,
∴x=20°,
∴∠OEC=∠OBA=80°-20°=60°.
【点睛】
本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.
14.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析. 【详解】
试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,
∠ACD=2∠ACE,再
解析:(1)详见解析;(2)∠BAE+1
2
∠MCD=90°,理由详见解析;(3)详见解析.
【详解】
试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,
∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论;
(2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;
(3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故
∠BAC=∠PQC+∠QPC.
试题解析:证明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,
∠ACD=2∠ACE.
∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;
(2)∠BAE+1
2
∠MCD=90°.证明如下:
过E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.
∵∠MCE=∠ECD,∴∠BAE+1
2
∠MCD=90°;
(3)①∠BAC=∠PQC+∠QPC.理由如下:
如图3:∵AB∥CD,∴∠BAC+∠ACD=180°.
∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;
②∠PQC+∠QPC+∠BAC=180°.理由如下:
如图4:∵AB∥CD,∴∠BAC=∠ACQ.
∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.
点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.15.(1)∠A;70°;35°;
(2)∠A=2n∠An
(3)25°
(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.
【分析】
(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD
解析:(1)∠A;70°;35°;
(2)∠A=2n∠A n
(3)25°
(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.
【分析】
(1)根据角平分线的定义可得∠A1BC=1
2∠ABC,∠A1CD=1
2
∠ACD,再根据三角形的一个
外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;
(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即
∠A=22∠A2,因此找出规律;
(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-
2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;
(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.
【详解】
解:(1)当∠A为70°时,
∵∠ACD-∠ABD=∠A,
∴∠ACD-∠ABD=70°,
∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,
∴∠A1CD-∠A1BD=1
2
(∠ACD-∠ABD)
∴∠A1=35°;
故答案为:A,70,35;
(2)∵A1B、A1C分别平分∠ABC和∠ACD,
∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,
而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,
∴∠BAC=2∠A1=80°,
∴∠A1=40°,
同理可得∠A1=2∠A2,
即∠BAC=22∠A2=80°,
∴∠A2=20°,
∴∠A=2n∠A n,
故答案为:∠A=2∠A n.
(3)∵∠ABC+∠DCB=360°-(∠A+∠D),
∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,
∴360°-(α+β)=180°-2∠F,
2∠F=∠A+∠D-180°,
∴∠F=1
2
(∠A+∠D)-90°,
∵∠A+∠D=230°,
∴∠F=25°;
故答案为:25°.
(4)①∠Q+∠A1的值为定值正确.
∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD-∠A1BD=
1
2
∠BAC,
∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,
∴∠QEC+∠QCE=1
2(∠AEC+∠ACE)=1
2
∠BAC,
∴∠Q=180°-(∠QEC+∠QCE)=180°-1
2
∠BAC,
∴∠Q+∠A1=180°.
【点睛】
本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.。

相关文档
最新文档