八年级数学上册第11章数的开方11.2实数第1课时实数及其性质教案新版华东师大版word版本
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.2 实数及其性质
【教学目标】
知识目标:了解无理数、实数的概念和实数的分类.
能力目标:让学生感知无理数的存在,经历数系从有理数扩展到实数的过程.通过无理数的引入,培养从特殊到一般、具体到抽象的逻辑思维能力.
情感目标:渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系.
【重点难点】
重点:了解无理数、实数的概念和实数的分类.
难点:正确理解无理数的意义.
【教学过程】
一、【情境导入 营造氛围】
在小学的时候,我们就认识一个非常特殊的数:圆周率π.它约等于 3.14,你还能说出它后面的数字吗?比一比,看谁记住的最多.
教师简介目前π值已准确算到上千亿位.
二、【检索旧知 揭示矛盾】
π是一个怎样的数呢?
引导学生回忆有理数的分类:
有理数
π肯定不是整数,那么它是一个分数吗?让学生用计算器将下列有理数化成小数形式: 41= , -32= , 7
1= 引导学生发现:任何一个有理数写成小数的形式,必定是有限小数或者无限循环小数. 形成共识:π不是一个有理数.
三、【实践体验 感受新知】
还有哪些数和π一样是无限不循环小数呢?
动手操作:让学生用课前准备的计算器动手求2的值,再利用平方关系验算所得的结果.
关注:“你发现了什么?” 学生分析议论并发表个人见解,教师给出评议后再用计算机演示计算2的情形,以增强学生对“2是一个无限不循环小数”的信服度.
学生认识了个别无理数之后建立一般概念:无限不循环小数叫做无理数.引入无理数的概念后再回到具体的个别情形去,让学生再举例一些无理数.
无理数的出现,使数系在有理数的基础上进一步扩展到实数:有理数与无理数统称为实数.
问:你能说出实数的分类吗? 四、【练习反馈 调整巩固】
1.把下列各数分别填入相应的数集里. -31π,-1322,7,327 ,0.324371, 0.5, -36.0, 39, 492, -4.0,16,0.8080080008…
实数集﹛ …﹜
无理数集﹛ …﹜
有理数集﹛ …﹜
分数集﹛ …﹜
负无理数集﹛ …﹜
2.下列各说法正确吗?请说明理由.
⑴3.14是无理数; ⑵无限小数都是无理数;
⑶无理数都是无限小数; ⑷带根号的数都是无理数;
⑸无理数都是开方开不尽的数; ⑹不循环小数都是无理数. 五、【归纳小结 】 以由学生回答,教师适时补充的方式,引导学生从以下方面进行小结:
1.无理数、实数的意义;
2.有理数与无理数的区别;.
六、板书设计:
说明:本课是在学生学习了有理数及平方根、立方根以后,接触过“2”、“π”等具体的无理数的基础上,引入了无理数的概念,从而将数从有理数扩展到实数.
数学教学是数学活动的教学,学生是数学学习的主人.在数学活动中如何体现学生的主体地位、关注他们的情感体验,是本案教学措施设计的追求.针对本节课概念性强、例题不多的特点,结合八年级学生思维较活跃,但抽象思维能力还比较薄弱的心理特征,本节课主要采用了引导发现的体验教学法.在学生已有知识经验的基础上创设教学情境,重视学生的实践操作和现代信息工具的运用,教师在教学中引导学生去发现“有理数都是有限小数或无限循环小数”、“2是无限不循环小数”、“边长为1的正方形对角线长为2”的数学事实,体验无理数的存在与数系扩展的必要.无理数概念的引入,遵循了“特殊”→“一般”→“特殊”的认知规律,在经历数系扩展的过程中实现知识的建构,渗透“数形结合”的思想.在教学中向学生提供充分从事数学活动的机会,在观察、对比、发现、讨论、探索、归纳的过程中自始至终贯穿着思维的训练.通过小组互相讨论,在合作学习中学会交流.。