最新数学七年级上册 压轴解答题综合测试卷(word含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新数学七年级上册压轴解答题综合测试卷(word含答案)
一、压轴题
1.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B 之间的距离.
(1)求AB的值;
(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;
(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.
2.某市两超市在元旦节期间分别推出如下促销方式:
甲超市:全场均按八八折优惠;
乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;
已知两家超市相同商品的标价都一样.
(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?
(2)当购物总额是多少时,甲、乙两家超市实付款相同?
(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.3.问题情境:
在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;
(应用):
(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.
(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.
(拓展):
我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.
解决下列问题:
(1)已知E(2,0),若F(﹣1,﹣2),求d(E,F);
(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,求t的值;
(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,求d(P,Q).
4.综合与实践 问题情境
在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.
图1 图2 图3 (1)问题探究
①若6AB =,2AC =,求MN 的长度;(写出计算过程) ②若AB a ,AC b =,则MN =___________;(直接写出结果) (2)继续探究
“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON . ③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)
④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果) (3)深入探究
“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线
OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)
5.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .
(1)求点C 表示的数;
(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的
长.
(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?
6.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.
(1)若8cm AC ,则EF =______cm ;
(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出
EF 的长度,如果变化,请说明理由;
(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写
出结果不需证明.
7.已知AOB ∠是锐角,2AOC BOD ∠=∠.
(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与
COD ∠互余;
①若60AOB ︒∠=,求BOD ∠的度数; ②若OD 平分BOC ∠,求BOD ∠的度数.
(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下
BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?
8.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?
通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;
情况②当点C 在点B 的左侧时, 如图2此时,AC =5.
仿照上面的解题思路,完成下列问题:
问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.
问题(2): 若2x =,3y =求x y +的值.
问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,
OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).
9.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射
线.
(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;
(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOD .当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小;
(3)在(2)的条件下,若∠AOB =10°,当∠B0C 在∠AOD 内绕着点O 以2度/秒的速度逆时针旋转t 秒时,∠AOM =
2
3
∠DON.求t 的值. 10.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.
(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;
(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.
11.射线OA 、OB 、OC 、OD 、OE 有公共端点O .
(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;
(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;
(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.
12.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
已知:点C 在直线AB 上,AC a =,BC b =,且a b ,点M 是AB 的中点,请按照
下面步骤探究线段MC 的长度。
(1)特值尝试
若10a =,6b =,且点C 在线段AB 上,求线段MC 的长度. (2)周密思考:
若10a =,6b =,则线段MC 的长度只能是(1)中的结果吗?请说明理由. (3)问题解决
类比(1)、(2)的解答思路,试探究线段MC 的长度(用含a 、b 的代数式表示).
【参考答案】***试卷处理标记,请不要删除
一、压轴题
1.(1)8;(2)4或10;(3)t的值为16
7
和
32
9
【解析】
【分析】
(1)由数轴上点B在点A的右侧,故用点B的坐标减去点A的坐标即可得到AB的值;(2)设点C表示的数为x,再根据AC=3BC,列绝对值方程并求解即可;
(3)点C位于A,B两点之间,分两种情况来讨论:点C到达B之前,即2<t<3时;点C 到达B之后,即t>3时,然后列方程并解方程再结合进行取舍即可.
【详解】
解:(1)∵数轴上两点A,B表示的数分别为﹣2,6
∴AB=6﹣(﹣2)=8
答:AB的值为8.
(2)设点C表示的数为x,由题意得
|x﹣(﹣2)|=3|x﹣6|
∴|x+2|=3|x﹣6|
∴x+2=3x﹣18或x+2=18﹣3x
∴x=10或x=4
答:点C表示的数为4或10.
(3)∵点C位于A,B两点之间,
∴点C表示的数为4,点A运动t秒后所表示的数为﹣2+t,
①点C到达B之前,即2<t<3时,点C表示的数为4+2(t﹣2)=2t
∴AC=t+2,BC=6﹣2t
∴t+2=3(2t﹣6)
解得t=16 7
②点C到达B之后,即t>3时,点C表示的数为6﹣2(t﹣3)=12﹣2t ∴AC=|﹣2+t﹣(12﹣2t)|=|3t﹣14|,BC=6﹣(12﹣2t)=2t﹣6
∴|3t﹣14|=3(2t﹣6)
解得t=32
9
或t=
4
3
,其中
4
3
<3不符合题意舍去
答:t的值为16
7
和
32
9
【点睛】
本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.
2.(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.
【解析】
【分析】
(1)根据两超市的促销方案,即可分别求出:当一次性购物标价总额是400元时,甲、乙两超市实付款;
(2)设当标价总额是x元时,甲、乙超市实付款一样.根据两超市的促销方案结合两超市实付款相等,即可得出关于x的一元一次方程,解之即可得出结论;
(3)设购物总额是x元,根据题意列方程求出购物总额,然后计算若在甲超市购物应付款,比较即可得出结论.
【详解】
(1)甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元;
(2)设购物总额是x元,由题意知x>500,列方程:
0.88x=500×0.9+0.8(x-500)
∴x=625
∴购物总额是625元时,甲、乙两家超市实付款相同.
(3)设购物总额是x元,购物总额刚好500元时,在乙超市应付款为:
500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:
500×0.9+0.8(x-500)=482
∴x=540
∴0.88x=475.2<482
∴该顾客选择不划算.
【点睛】
本题考查了一元一次方程的应用,解题的关键是:(1)根据两超市的促销方案,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)求出购物总额.
3.【应用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)5;(2)t=±2;(3)d(P,Q)的值为4或8.
【解析】
【分析】
(1)根据若y1=y2,则AB∥x轴,且线段AB的长度为|x1-x2|,代入数据即可得出结论;(2)由CD∥y轴,可设点D的坐标为(1,m),根据CD=2即可得出|0-m|=2,解之即可得出结论;
【拓展】:(1)根据两点之间的折线距离公式,代入数据即可得出结论;
(2)根据两点之间的折线距离公式结合d(E,H)=3,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;
(3)由点Q在x轴上,可设点Q的坐标为(x,0),根据三角形的面积公式结合三角形OPQ的面积为3即可求出x的值,再利用两点之间的折线距离公式即可得出结论.
【详解】
解:【应用】:
(1)AB的长度为|﹣1﹣2|=3.
故答案为:3.
(2)由CD∥y轴,可设点D的坐标为(1,m),
∵CD=2,
∴|0﹣m|=2,解得:m=±
2, ∴点D 的坐标为(1,2)或(1,﹣2). 【拓展】 :
(1)d (E ,F )=|2﹣(﹣1)|+|0﹣(﹣2)|=5. 故答案为:5.
(2)∵E (2,0),H (1,t ),d (E ,H )=3, ∴|2﹣1|+|0﹣t |=3, 解得:t =±2.
(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0), ∵三角形OPQ 的面积为3, ∴
1
2
|x |×3=3,解得:x =±2. 当点Q 的坐标为(2,0)时,d (P ,Q )=|3﹣2|+|3﹣0|=4; 当点Q 的坐标为(﹣2,0)时,d (P ,Q )=|3﹣(﹣2)|+|3﹣0|=8 综上所述,d (P ,Q )的值为4或8. 【点睛】
本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键. 4.(1)①3;②12
a ;(2)③40︒;④40;(3)12n
【解析】 【分析】
(1)①先求出BC ,再根据中点求出AM 、BN ,即可求出MN 的长; ②利用①的方法求MN 即可;
(2)③先求出∠BOC ,再利用角平分线的性质求出∠AOM ,∠BON ,即可求出∠MON ; ④利用③的方法求出∠MON 的度数;
(3)先求出∠BOC ,利用角平分线的性质分别求出∠AOM ,∠BON ,再根据角度的关系求出答案即可. 【详解】
(1)①∵6AB =,2AC =, ∴BC=AB-AC=4,
∵M 是AC 的中点,N 是BC 的中点. ∴112AM AC =
=, 1
22
BN BC ==, ∴MN=AB-AM-BN=6-1-2=3; ②∵AB a ,AC b =, ∴BC=AB-AC=a-b ,
∵M 是AC 的中点,N 是BC 的中点.
∴12AM b =
,1
()2
BN a b =-, ∴MN=AB-AM-BN=11()22a b a b ---=1
2
a , 故答案为:
1
2
a ; (2)③∵80AOB ∠=︒,30AOC ∠=︒, ∴∠BOC=∠AOB-∠AOC=50︒,
∵OM ,ON 分别平分AOC ∠和BOC ∠, ∴∠AOM=15︒,∠BON=25︒, ∴∠MON=∠AOB-∠AOM-∠BON=40︒; ④∵80AOB ∠=︒,AOC m ∠=︒, ∴∠BOC=(80-m)︒,
∵OM ,ON 分别平分AOC ∠和BOC ∠,
∴∠AOM=12m ,∠BON=(40-1
2
m )︒, ∴∠MON=∠AOB-∠AOM-∠BON=40︒,
故答案为:40;
(3)∵AOB n ∠=︒,AOC m ∠=︒, ∴∠BOC=∠AOC-∠AOB=(m-n)︒,
∵AOC ∠和BOC ∠的角平分线分别是OM ,ON , ∴∠AOM=
12m ,∠CON=1
()2
m n -, ∴∠MON=∠AOC-∠AOM-∠CON=111
()222
m m m n n ---=, 故答案为:1
2
n .
【点睛】
此题考查线段的和差计算,角度的和差计算,线段中点的性质,角平分线的性质,解题中注意规律性解题思想的总结和运用. 5.(1)2;(2)52x MC =+;(3)当2
5
x =-或6x =时,有2AP CM PC -=成立. 【解析】 【分析】
(1)根据中点的定义,即可求出点C 的坐标;
(2)先表示出点M 的数,然后利用线段上两点之间的距离,即可表示出MC 的长度; (3)分别求出AP ,MC 和PC 的长度,结合题意,分为三种情况进行讨论,即可求出x 的值. 【详解】
解:(1)点A 表示的数为10-,点B 表示的数为14, ∴线段AB=14(10)24--=, ∴点C 表示的数为:142422-÷=; (2)根据题意, 点M 表示的数为:
142
x
+, ∴线段MC 的长度为:142522
x x
+-=+; (3)根据题意,
线段AP 的长度为:10x +, 线段MC 的长度为:52
x +
, 线段PC 的长度为:2x -, ∵2AP CM PC -=, ∴10(5)222
x x x +-+=-, 整理得:15242
x x -=
+, ①当点P 在点C 的左边时,2x <,则20x ->, ∴15242
x x -=
+, 解得:2
5
x =-
; ②当点P 与点C 重合时,2x =, ∴
15
042
x +=, 解得:10x =-(不符合题意,舍去); ③当点P 在点C 的右边时,2x >,则20x -<, ∴15
242
x x -=
+, 解得:6x =. ∴当2
5
x =-或6x =时,有2AP CM PC -=成立. 【点睛】
本题考查了数轴上的动点的问题,数轴上两点之间的距离,解一元一次方程,以及绝对值的意义,解题的关键是掌握数轴上两点之间的距离.
6.(1)17cm EF =;(2)EF 的长度不变,17cm EF =;(3)
()1
2
EOF AOB COD ∠=
∠+∠.
【解析】
【分析】
(1)根据已知条件求出BD=18cm ,再利用E 、F 分别是AC 、BD 的中点,
分别求出AE 、BF 的长度,即可得到EF ;
(2)根据中点得到12EC AC =,12DF DB =,由EF EC CD DF =++推导得出EF=()12
AB CD +,将AB 、CD 的值代入即可求出结果; (3)由OE 、OF 分别平分AOC ∠和BOD ∠得到12COE AOC ∠=
∠, 12
DOF BOD ∠=∠,即可列得EOF COE COD DOF ∠=∠+∠+∠,通过推导得出()12EOF AOB COD ∠=
∠+∠. 【详解】
(1)∵30cm AB =,4cm CD =,8cm AC ,
∴308418BD AB AC CD =--=--=cm ,
∵E 、F 分别是AC 、BD 的中点, ∴142AE AC ==cm , 192
BF BD ==cm , ∴304917EF AB AE BF =--=--=cm ,
故17cm EF =;
(2)EF 的长度不变. 17cm EF =
∵E 、F 分别是AC 、BD 的中点, ∴12
EC AC =,12DF DB = ∴EF EC CD DF =++
1122
AC CD BD =++ 1()2
AC BD CD =++ ()12
AB CD CD =-+ ()117cm 2
AB CD =+= (3)∵OE 、OF 分别平分AOC ∠和BOD ∠, ∴12COE AOC ∠=∠, 12
DOF BOD ∠=∠, ∴EOF COE COD DOF ∠=∠+∠+∠,
1122
AOC COD BOD =∠+∠+∠, 1()2
AOC BOD COD =∠+∠+∠, 1()2
AOB COD COD =∠-∠+∠, ()12
AOB COD =∠+∠, ∴()12
EOF AOB COD ∠=∠+∠. 【点睛】
此题考查线段的和差、角的和差计算,解题中会看图形,根据图中线段或角的大小关系得到和差关系,由此即可正确解题.
7.(1)①10°,②18°;(2)圆圆的说法正确,理由见解析.
【解析】
【分析】
(1)①根据∠AOB 与∠COD 互余求出∠COD ,再利用角度的和差关系求出
∠AOC+∠BOD=30°,最后根据∠AOC=2∠BOD 即可求出∠BOD ;
②设∠BOD=x ,根据角平分线表示出∠COD 和∠BOC ,根据∠AOC=2∠BOD 表示出∠AOC ,最后根据∠AOB 与∠COD 互余建立方程求解即可;
(2)分两种情况讨论:OC 靠近OA 时与OC 靠近OB 时,画出图形分类计算判断即可.
【详解】
解:(1)①∵∠AOB 与∠COD 互余,且∠AOB=60°,
∴∠COD=90°-∠AOB=30°,
∴∠AOC+∠BOD=∠AOB -∠COD=60°-30°=30°,
∵∠AOC=2∠BOD ,
∴2∠BOD+∠BOD=30°,
∴∠BOD=10°;
②设∠BOD=x ,
∵OD 平分∠BOC ,
∴∠BOD=∠COD=x ,∠BOC=2∠BOD=2x ,
∵∠AOC=2∠BOD ,
∴∠AOC=2x ,
∴∠AOB=∠AOC+∠COD +∠BOD=4x ,
∵∠AOB 与∠COD 互余,
∴∠AOB+∠COD=90°,即4x+x =90°,
∴x =18°,即∠BOD=18°;
(2)圆圆的说法正确,理由如下:
当OC 靠近OB 时,如图所示,
∵∠AOB与∠COD互补,
∴∠AOB+∠COD=180°,
∵∠AOB=∠AOD+∠BOD,∠COD=∠BOC+∠BOD,
∴∠AOD+∠BOD+∠BOC+∠BOD=180°,
∵∠AOC=∠AOD+∠BOD+∠BOC,
∴∠AOC+∠BOD=180°,
∵∠AOC=2∠BOD,
∴2∠BOD+∠BOD=180°,
∴∠BOD=60°;
当OC靠近OA时,如图所示,
∵∠AOB与∠COD互补,
∴∠AOB+∠COD=180°,
∵∠AOB=∠AOD+∠BOD,∠COD=∠AOC+∠AOD,
∴∠AOD+∠BOD+∠AOC+∠AOD=180°,
∵∠AOC=2∠BOD,
∴∠AOD+∠BOD+2∠BOD +∠AOD=180°,即3∠BOD+2∠AOD=180°,
∵∠AOD不确定,
∴∠BOD也不确定,
综上所述,当OC靠近OB时,∠BOD的度数为60°,当OC靠近OA时,∠BOD的度数不确定,所以圆圆的说法正确.
【点睛】
本题考查角的计算,正确找出角之间的关系,分情况画出图形解答是解题的关键.
+的值为1,-1,5,-5;问题(3)8.问题(1)点C表示的数是8或-4;问题(2)x y
∠=;见解析.
BOD
BOD
∠= , 30
150
【解析】
【分析】 问题(1)分两种情况进行讨论,当C 在B 的左侧以及当C 在B 的右侧,并依据BC=2AB 进行分析计算.
问题(2)利用2x =,3y =得到2,3x y =±=±,再进行分类讨论代入x ,y 求值. 问题(3)根据题意画出图形,利用角的和差关系进行计算,直接写出答案.
【详解】
解:问题(1) 点C 是数轴上一点,且BC=2AB ,结合数轴可知当C 在B 的左侧以及当C 在B 的右侧分别为-4或8.
问题(2)∵2x =,3y =∴2, 3.x y =±=±
情况① 当x=2,y=3时,x y +=5,
情况② 当x=2,y=-3时,x y +=-1,
情况③ 当x=-2,y=3时,x y +=1,
情况④ 当x=-2,y=-3时,x y +=-5,
所以,x y +的值为1,-1,5,-5.
问题⑶
【点睛】
本题考查有理数与数轴,垂线的定义以及角的运算,根据题意画出图像进行分析.
9.(1)∠MON 的度数为80°;(2)∠MON 的度数为70°或90°;(3)t 的值为21.
【解析】
【分析】
(1)根据角平分线的定义进行角的计算即可;
(2)分两种情况画图形,根据角平分线的定义进行角的计算即可;
(3)根据(2)中前一种情况用含t 的式子表示角度,再根据已知条件即可求解.
【详解】
解:(1)因为∠AOD =160°,
OM 平分∠AOB ,ON 平分∠BOD ,
所以∠MOB =
12∠AOB ,∠BON =12
∠BOD , 即∠MON =∠MOB+∠BON =12∠AOB+12
∠BOD
=1
2
(∠AOB+∠BOD)
=1
2
∠AOD=80°,
答:∠MON的度数为80°;
(2)因为OM平分∠AOC,ON平分∠BOD,
所以∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,
①射线OC在OB左侧时,
如图:
∠MON=∠MOC+∠BON﹣∠BOC
=1
2
∠AOC+
1
2
∠BOD﹣∠BOC
=1
2
(∠AOC+∠BOD)﹣∠BOC
=1
2
(∠AOD+∠BOC)﹣∠BOC
=1
2
×180°﹣20°
=70°;
②射线OC在OB右侧时,
如图:
∠MON=∠MOC+∠BON+∠BOC
=1
2
∠AOC+
1
2
∠BOD+∠BOC
=1
2
(∠AOC+∠BOD)+∠BOC
=1
2
(∠AOD﹣∠BOC)+∠BOC
=
12
×140°+20° =90°; 答:∠MON 的度数为70°或90°.
(3)∵射线OB 从OA 逆时针以2°每秒的速度旋转t 秒,∠COB =20°,
∴根据(2)中的第一种情况,得
∠AOC =∠AOB+∠COB =2t°+10°+20°=2t°+30°.
∵射线OM 平分∠AOC ,
∴∠AOM =12
∠AOC =t°+15°. ∵∠BOD =∠AOD ﹣∠BOA ,∠AOD =160°,
∴∠BOD =150°﹣2t°.
∵射线ON 平分∠BOD ,
∴∠DON =12
∠BOD =75°﹣t°. 又∵∠AOM :∠DON =2:3,
∴(t+15):(75﹣t)=2:3,
解得t =21.
根据(2)中的第二中情况,观察图形可知:这种情况不可能存在∠AOB=10°.
答:t 的值为21.
【点睛】
本题考查角平分线的定义,角的计算.解决本题的关键是利用已知(已设)角,去计算或者表示未知角.
10.(1)图1中∠AOD=60°;图2中∠AOD=10°;
(2)图1中∠AOD=
n m 2+;图2中∠AOD=n m 2-. 【解析】
【分析】
(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;
(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=
n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2
+,故∠AOD=∠BOD ﹣∠AOB=
n m 2-. 【详解】
解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,
∵OD 是∠BOC 的平分线,
∴∠BOD=12
∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;
图2中∠BOC=∠AOC+∠AOB=120°,
∵OD 是∠BOC 的平分线,
∴∠BOD=12
∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;
(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,
如图1中,
∠BOC=∠AOC ﹣∠AOB=n ﹣m ,
∵OD 是∠BOC 的平分线,
∴∠BOD=
12∠BOC=n m 2
﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,
∠BOC=∠AOC+∠AOB=m+n ,
∵OD 是∠BOC 的平分线,
∴∠BOD=12∠BOC=n m 2
+, ∴∠AOD=∠BOD ﹣∠AOB=
n m 2
-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.
11.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,
∠COD,∠DOE;(2)∠BOD=54°;(3)
∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】
【分析】
(1)根据角的定义即可解决;
(2)利用角平分线的性质即可得出∠BOD=1
2∠AOC+1
2
∠COE,进而求出即可;
(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.
【详解】
(1)如图1中小于平角的角
∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.
(2)如图2,
∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),
∴∠BOD=1
2
∠AOD﹣
1
2
∠COE+
1
2
∠COE=
1
2
×108°=54°;
(3)如图3,
∠AOE=88°,∠BOD=30°,
图中所有锐角和为
∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE =4∠AOB+4∠DOE=6∠BOC+6∠COD
=4(∠AOE﹣∠BOD)+6∠BOD
=412°.
【点睛】
本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与
∠AOE、∠BOD和∠BOD的关系是解题的关键,
12.(1)2(2)8或2;(3)见解析.
【解析】
【分析】
(1)根据线段之间的和差关系求解即可;
(2)由于B点的位置不能确定,故应分当B点在线段AC的上和当B点在线段AC的延长线上两种情况进行分类讨论;
(3)由(1)(2)可知MC=1
2
(a+b)或
1
2
(a-b).
【详解】
解:解:(1)∵AC=10,BC=6,∴AB=AC+BC=16,
∵点M是AB的中点,
∴AM=1
2
AB
∴MC=AC-AM=10-8=2.
(2)线段MC的长度不只是(1)中的结果,
由于点B的位置不能确定,故应分当B点在线段AC的上和当B点在线段AC的延长线上两种情况:
①当B点在线段AC上时,
∵AC=10,BC=6,
∴AB=AC-BC=4,
∵点M是AB的中点,
∴AM=1
2
AB=2,
∴MC=AC-AM=10-2=8.
②当B点在线段AC的延长线上,
此时MC=AC-AM=10-8=2.
(3)由(1)(2)可知MC=AC-AM=AC-1
2
AB 因为当B点在线段AC的上,AB=AC-BC,
故MC=AC-1
2
(AC-BC)=
1
2
AC+
1
2
BC=
1
2
(a+b)
当B点在线段AC的延长线上,AB=AC+BC,
故MC=AC-1
2
(AC+BC)=1
2
AC-
1
2
BC=
1
2
(a-b)
【点睛】
主要考察两点之间的距离,但是要注意题目中的点不确定性,需要分情况讨论.。