最新初中数学图形的相似难题汇编含答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学图形的相似难题汇编含答案解析
一、选择题
1.要做甲、乙两个形状相同(相似)的三角形框架,已知甲三角形框架三边的长分别为50 cm 、60 cm 、80 cm ,乙三角形框架的一边长为20 cm ,则符合条件的乙三角形框架共有( ).
A .1种
B .2种
C .3种
D .4种 【答案】C
【解析】
试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm 的边可以当最短边,最长边和中间大小的边.
故选:C .
点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.
2.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点
E ,连接AC 交DE 于点
F .若3sin 5
CAB ∠=,5DF =,则AB 的长为( )
A .10
B .12
C .16
D .20
【答案】D
【解析】
【分析】 连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.
【详解】
解:连接BD ,如图,
AB Q 为直径,
90ADB ACB ∴∠=∠=︒,
AD CD =Q ,
DAC DCA ∴∠=∠,
而DCA ABD ∠=∠,
DAC ABD ∴∠=∠,
DE AB ∵⊥,
90ABD BDE ∴∠+∠=︒,
而90ADE BDE ∠+∠=︒,
ABD ADE ∴∠=∠,
ADE DAC ∴∠=∠,
5FD FA ∴==,
在Rt AEF ∆中,3sin 5
EF CAB AF ∠=
=Q , 3EF ∴=, 22534AE ∴=-=,538DE =+=,
ADE DBE ∠=∠Q ,AED BED ∠=∠,
ADE DBE ∴∆∆∽,
::DE BE AE DE ∴=,即8:4:8BE =,
16BE ∴=,
41620AB ∴=+=.
故选:D .
【点睛】
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.
3.如图,已知////AB CD EF ,:3:5AD AF =,6BC =,CE 的长为( )
A .2
B .4
C .3
D .5
【答案】B
【解析】
【分析】 根据平行线分线段成比例定理列出比例式,计算即可.
【详解】
∵AD :AF=3:5,
∴AD :DF=3:2,
∵AB∥CD∥EF,
∴AD BC
DF CE
=,即
36
2CE
=,
解得,CE=4,
故选B.
【点睛】
本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.
4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()
A.2 B.3 C.4 D.5
【答案】B
【解析】
【分析】
作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.
【详解】
解:作BD⊥x轴于D,B′E⊥x轴于E,
则BD∥B′E,
由题意得CD=2,B′C=2BC,
∵BD∥B′E,
∴△BDC∽△B′EC,

1
'2 CD BC
CE B C
==,
∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,
故选:B.
【点睛】
本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.
5.如图,点A在双曲线y═k
x
(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O
和点A为圆心,大于1
2
OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于
点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()
A.2 B.32
25
C.
43
D.
252
【答案】B
【解析】
分析:如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;
详解:如图,设OA交CF于K.
由作图可知,CF垂直平分线段OA,
∴OC=CA=1,OK=AK,
在Rt △OFC 中,

5,
∴, 由△FOC ∽△OBA ,可得
OF OC CF OB AB OA
==,
∴21OB AB ==,
∴OB=
85,AB=45, ∴A (
85,45), ∴k=3225
. 故选B .
点睛:本题考查作图-复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
6.在Rt △ABC 中,∠BAC =90°,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,使点C 落在C ′的位置,C ′D 交AB 于点Q ,则BQ AQ
的值为( )
A
B C .2 D .2
【答案】A
【解析】
【分析】 根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD =DC =BD ,AC =AC′,∠ADC =∠ADC ′=45°,CD =C′D ,进而求出∠C 、∠B 的度
数,求出其他角的度数,可得AQ =AC ,将BQ AQ 转化为BQ AC
,再由相似三角形和等腰直角三角形的边角关系得出答案.
【详解】
解:如图,过点A 作AE ⊥BC ,垂足为E ,
∵∠ADC =45°,
∴△ADE 是等腰直角三角形,即AE =DE =22AD , 在Rt △ABC 中,
∵∠BAC =90°,AD 是△ABC 的中线,
∴AD =CD =BD , 由折叠得:AC =AC ′,∠ADC =∠ADC ′=45°,CD =C ′D ,
∴∠CDC ′=45°+45°=90°,
∴∠DAC =∠DCA =(180°﹣45°)÷2=67.5°=∠C ′AD ,
∴∠B =90°﹣∠C =∠CAE =22.5°,∠BQD =90°﹣∠B =∠C ′QA =67.5°,
∴AC ′=AQ =AC ,
由△AEC ∽△BDQ 得:BQ AC
=BD AE , ∴BQ AQ =BQ AC =AD AE =2AE AE
=2. 故选:A .
【点睛】
考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.
7.如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,△PEF 、△PDC 、△PAB 的面积分别为S 、1S 、2S ,若S=2,则1S +2S =( ).
A .4
B .6
C .8
D .不能确定 【答案】C
【解析】 试题分析:过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB ,可得出四边形PQCD 与ABQP 都为平行四边形,所以△PDC ≌△CQP ,△ABP ≌△QPB ,进而确定出△PDC 与△PCQ 面积相等,△PQB 与△ABP 面积相等,再由EF 为△BPC 的中位线,利用中位线定理得到EF
∥BC ,EF=12
BC ,得出△PEF 与△PBC 相似,相似比为1:2,面积之比为1:4,所以PBC CQP QPB PDC ABP S S S S S =+=+V V V V V =1S +2S =8.
故选C .
考点:平行四边形的性质;三角形中位线定理.
8.已知正方形ABCD 的边长为5,E 在BC 边上运动,DE 的中点G ,EG 绕E 顺时针旋转90°得EF ,问CE 为多少时A 、C 、F 在一条直线上( )
A .35
B .43
C .53
D .34
【答案】C
【解析】
【分析】
首先延长BC ,做FN ⊥BC ,构造直角三角形,利用三角形相似的判定,得出Rt △FNE ∽Rt △ECD ,再利用相似比得出1 2.52NE CD =
=,运用正方形性质,得出△CNF 是等腰直角三角形,从而求出CE .
【详解】
解:过F 作BC 的垂线,交BC 延长线于N 点,
∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,
∴∠DEC=∠EFN ,
∴Rt △FNE ∽Rt △ECD ,
∵DE 的中点G ,EG 绕E 顺时针旋转90°得EF ,
∴两三角形相似比为1:2,
∴可以得到CE=2NF ,1 2.52
NE CD =
= ∵AC 平分正方形直角,
∴∠NFC=45°,
∴△CNF 是等腰直角三角形,
∴CN=NF,

2255
.
3323 CE NE
==⨯=
故选C.
【点睛】
此题主要考查了旋转的性质与正方形的性质以及相似三角形的判定等知识,求线段的长度经常运用相似三角形的知识解决,同学们应学会这种方法.
9.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若BC=4,∠CBD=30°,则DF的长为()
A.2
3
5
B.
2
3
3
C.
3
3
4
D.
4
3
5
【答案】D
【解析】
【分析】
先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.
【详解】
如图,
在Rt△BDC中,BC=4,∠DBC=30°,
∴3
连接DE,
∵∠BDC=90°,点D是BC中点,
∴DE=BE=CE=1
2
BC=2,
∵∠DCB=30°,
∴∠BDE=∠DBC=30°,∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠BDE,
∴DE∥AB,
∴△DEF∽△BAF,
∴DF DE BF AB
=,
在Rt△ABD中,∠ABD=30°,BD=23,∴AB=3,

2
3 DF
BF
=,

2
5 DF
BD
=,
∴DF=2243
23
555 BD=⨯=,
故选D.
【点睛】
此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE∥是解本题的关键.
10.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则较大多边形的周长为 )
A.48 cm B.54 cm C.56 cm D.64 cm
【答案】A
【解析】
试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.
解:两个相似多边形的面积比是9:16,
面积比是周长比的平方,
则大多边形与小多边形的相似比是4:3.
相似多边形周长的比等于相似比,
因而设大多边形的周长为x,
则有=,
解得:x=48.
大多边形的周长为48cm.
故选A.
考点:相似多边形的性质.
11.把Rt ABC
∆三边的长度都扩大为原来的3倍,则锐角A的余弦值()
A.扩大为原来的3倍B.缩小为原来的1
3
C.扩大为原来的9倍D.不变
【答案】D
【解析】
【分析】
根据相似三角形的性质解答.
【详解】
三边的长度都扩大为原来的3倍,
则所得的三角形与原三角形相似,
∴锐角A 的大小不变,
∴锐角A 的余弦值不变,
故选:D .
【点睛】
此题考查相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.
12.如图,在ABC V 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()
A .4
B .23
C .33
D .3
【答案】D
【解析】
【分析】
先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .
【详解】
解:∵//DE BC ,
∴ADE ~ABC V V ,
∵2DE BC =,
∴点D 是AB 的中点,
∵,30AF BC ADE ⊥∠=︒,33BF =
∴∠B =30°,
∴AB 6cos30BF ==︒
, ∴DF=3,
故选:D.
【点睛】
此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.
13.如图,网格中的两个三角形是位似图形,它们的位似中心是()
A.点A B.点B C.点C D.点D
【答案】D
【解析】
【分析】
利用对应点的连线都经过同一点进行判断.
【详解】
如图,位似中心为点D.
故选D.
【点睛】
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.
14.如图,正方形ABDC中,AB=6,E在CD上,DE=2,将△ADE沿AE折叠至△AFE,延长EF交BC于G,连AG、CF,下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S FCG=3,其中正确的有().
A .1个
B .2个
C .3个
D .4个
【答案】C
【解析】
【分析】 利用折叠性质和HL 定理证明Rt △ABG ≌Rt △AFG ,从而判断①;设BG=FG=x ,则CG=6-x ,GE=x+2,根据勾股定理列方程求解,从而判断②;由②求得△FGC 为等腰三角形,由此推出1802FGC FCG -∠∠=o ,由①可得1802
FGC AGB -∠∠=o ,从而判断③;过点F 作FM ⊥CE ,用平行线分线段成比例定理求得FM 的长,然后求得△ECF 和△EGC 的面积,从而求出△FCG 的面积,判断④.
【详解】
解:在正方形ABCD 中,由折叠性质可知DE=EF=2,AF=AD=AB=BC=CD=6,∠B=∠D=∠AFG=∠BCD=90°
又∵AG=AG
∴Rt △ABG ≌Rt △AFG ,故①正确;
由Rt △ABG ≌Rt △AFG
∴设BG=FG=x ,则CG=6-x ,GE=GF+EF=x+2,CE=CD-DE=4
∴在Rt △EGC 中,222
(6)4(2)x x -+=+
解得:x=3
∴BG =3,CG=6-3=3
∴BG =CG ,故②正确;
又BG =CG , ∴1802
FGC FCG -∠∠=o 又∵Rt △ABG ≌Rt △AFG ∴1802
FGC AGB -∠∠=o ∴∠FCG=∠AGB
∴AG ∥CF ,故③正确;
过点F 作FM ⊥CE ,
∴FM∥CG
∴△EFM∽△EGC
∴FM EF
GC EG
=即
2
35
FM
=
解得
6
5 FM=
∴S∆FCG=
116
344 3.6
225
ECG ECF
S S
-=⨯⨯-⨯⨯=
V V
,故④错误
正确的共3个
故选:C.
【点睛】
本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.
15.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为1
3
,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()
A.(2,1) B.(2,0) C.(3,3) D.(3,1)
【答案】A
【解析】
【分析】
根据位似变换的性质可知,△ODC∽△OBA,相似比是1
3
,根据已知数据可以求出点C的坐
标.【详解】
由题意得,△ODC∽△OBA,相似比是1
3


OD DC OB AB
=, 又OB =6,AB =3,
∴OD =2,CD =1,
∴点C 的坐标为:(2,1),
故选A .
【点睛】
本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.
16.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )
A .7 : 12
B .7 : 24
C .13 : 36
D .13 : 72
【答案】B
【解析】
【分析】 根据已知条件想办法证明BG=GH=DH ,即可解决问题;
【详解】
解:∵四边形ABCD 是平行四边形,
∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,
∵DF=CF ,BE=CE ,

12DH DF HB AB ==,12BG BE DG AD ==, ∴13
DH BG BD BD ==, ∴BG=GH=DH ,
∴S △ABG =S △AGH =S △ADH ,
∴S 平行四边形ABCD =6 S △AGH ,
∴S △AGH :ABCD S 平行四边形=1:6,
∵E 、F 分别是边BC 、CD 的中点,

12
EF BD =, ∴14EFC BCDD S S =V V ,

1
8 EFC
ABCD
S
S
=
V
四边形
,

117
6824
AGH EFC
ABCD
S S
S
+
=+=
V V
四边形
=7∶24,
故选B.
【点睛】
本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.
17.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH长为()
A.1 B.1.2 C.2 D.2.5
【答案】B
【解析】
【分析】
由AB∥GH∥CD可得:△CGH∽△CAB、△BGH∽△BDC,进而得:
GH CH
AB BC
=、
GH BH
CD BC
=,然后两式相加即可.
【详解】
解:∵AB∥GH,∴△CGH∽△CAB,∴
GH CH
AB BC
=,即
2
GH CH
BC
=①,
∵CD∥GH,∴△BGH∽△BDC,∴
GH BH
CD BC
=,即
3
GH BH
BC
=②,
①+②,得:1
23
GH GH CH BH
BC BC
+=+=,解得:
6
1.2
5
GH==.
故选:B.
【点睛】
本题考查了相似三角形的判定和性质,属于基本题型,熟练掌握相似三角形的判定和性质是解题的关键.
18.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()
A .∠ABD=∠C
B .∠ADB=∠AB
C C .AB CB B
D CD = D .AD AB AB AC
= 【答案】C
【解析】
【分析】 由∠A 是公共角,利用有两角对应相等的三角形相似,即可得A 与B 正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D 正确,继而求得答案,注意排除法在解选择题中的应用.
【详解】
∵∠A 是公共角,
∴当∠ABD=∠C 或∠ADB=∠ABC 时,△ADB ∽△ABC (有两角对应相等的三角形相似),故A 与B 正确,不符合题意要求;
当AB :AD=AC :AB 时,△ADB ∽△ABC (两组对应边的比相等且夹角对应相等的两个三角形相似),故D 正确,不符合题意要求;
AB :BD=CB :AC 时,∠A 不是夹角,故不能判定△ADB 与△ABC 相似,故C 错误,符合题意要求,
故选C .
19.如图,点D 是ABC V 的边BC 上一点,,2BAD C AC AD ∠=∠= ,如果ACD V 的面积为15,那么ABC V 的面积为( )
A .20
B .22.5
C .25
D .30
【答案】A
【解析】
【分析】
先证明C ABD BA ∽△△,再根据相似比求出ABC V 的面积即可.
【详解】
∵,BAD C B B ∠=∠=∠∠
∴C ABD BA ∽△△
∵2AC AD =
∴4S ABD S CBA =V V
∴4
3
S ACD S CBA
=
V V
∵ACD
V的面积为15

44
1520
33
S CBA S ACD
==⨯=
V V
故答案为:A.
【点睛】
本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.
20.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为()
A.9 B.12 C.14 D.18
【答案】A
【解析】
【分析】
如图,BC=2m,CE=12m,AB=1.5m,利用题意得∠ACB=∠DCE,则可判断△ACB∽△DCE,然后利用相似比计算出DE的长.
【详解】
解:如图,BC=2m,CE=12m,AB=1.5m,
由题意得∠ACB=∠DCE,
∵∠ABC=∠DEC,
∴△ACB∽△DCE,
∴AB BC
DE CE
=,即
1.5
212
DE
=,
∴DE=9.
即旗杆的高度为9m.故选A.
【点睛】
本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.。

相关文档
最新文档