人教版初中数学三角形知识点训练附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学三角形知识点训练附答案
一、选择题
1.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,以A 为圆心,任意长为半径画弧分别交
AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12
MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=o ;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=
A .1
B .2
C .3
D .4
【答案】D
【解析】
【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.
【详解】
题干中作图方法是构造角平分线,①正确;
∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线 ∴∠CAD=∠DAB=30°
∴∠ADC=60°,②正确
∵∠DAB=∠B=30°
∴△ADB 是等腰三角形
∴点D 在AB 的垂直平分线上,③正确
在Rt △CDA 中,设CD=a ,则AD=2a
在△ADB 中,DB=AD=2a
∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22
BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确
故选:D
【点睛】
本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.
2.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()
A.8cm B.10cm C.12cm D.14cm
【答案】B
【解析】
【分析】
根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.
【详解】
∵BD是∠ABC的平分线,
∴∠ABD=∠EBD.
又∵∠A=∠DEB=90°,BD是公共边,
∴△ABD≌△EBD (AAS),
∴AD=ED,AB=BE,
∴△DEC的周长是DE+EC+DC
=AD+DC+EC
=AC+EC=AB+EC
=BE+EC=BC
=10 cm.
故选B.
【点睛】
本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
3.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,
DE=2,AB=4,则AC长是()
A.4 B.3 C.6 D.2
【答案】B
【解析】
【分析】
首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.
【详解】
解:AD 是△ABC 中∠BAC 的平分线,
∠EAD=∠FAD
DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,
∴DF=DE ,
又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4,
11742222
AC ∴=⨯⨯+⨯⨯ ∴AC=3.
故答案为:B
【点睛】
本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.
4.△ABC 中,∠A :∠B :∠C =1:2:3,最小边BC =4cm ,则最长边AB 的长为( )cm
A .6
B .8
C
D .5
【答案】B
【解析】
【分析】
根据已知条件结合三角形的内角和定理求出三角形中角的度数,然后根据含30度角的直角三角形的性质进行求解即可.
【详解】
设∠A =x ,
则∠B =2x ,∠C =3x ,
由三角形内角和定理得∠A+∠B+∠C =x+2x+3x =180°,
解得x =30°,
即∠A =30°,∠C =3×30°=90°,
此三角形为直角三角形,
故AB =2BC =2×4=8cm ,
故选B .
【点睛】
本题考查了三角形内角和定理,含30度角的直角三角形的性质,熟练掌握“直角三角形中30°的角所对的直角边等于斜边的一半”是解题的关键.
5.如图,△ABC 中,AB =AC =10,BC =12,D 是BC 的中点,DE ⊥AB 于点E ,则DE 的长为( )
A.6
5
B.
8
5
C.
12
5
D.
24
5
【答案】D
【解析】
【分析】
连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.
【详解】
解:连接AD
∵AB=AC,D为BC的中点,BC=12,
∴AD⊥BC,BD=DC=6,
在Rt△ADB中,由勾股定理得:2222
1068
AB BD=+=,
∵S△ADB=1
2
×AD×BD=
1
2
×AB×DE,
∴DE=
8624
105 AD BD
AB
⨯⨯
==,
故选D.
【点睛】
本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.
6.下列长度的三根小木棒能构成三角形的是()
A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D
【解析】
【详解】
A.因为2+3=5,所以不能构成三角形,故A错误;
B.因为2+4<6,所以不能构成三角形,故B错误;
C.因为3+4<8,所以不能构成三角形,故C错误;
D .因为3+3>4,所以能构成三角形,故D 正确.
故选D .
7.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )
A .65°
B .70°
C .75°
D .80°
【答案】D
【解析】
【分析】 由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.
【详解】
解:∵AB ∥CD ,
∴∠C =∠1=45°,
∵∠3是△CDE 的一个外角,
∴∠3=∠C+∠2=45°+35°=80°,
故选:D .
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a ∥b ,b ∥c ⇒a ∥c .
8.如图,在Rt ABC ∆中,90BCA ∠=︒,CD 是高,BE 平分∠ABC 交CD 于点E ,EF ∥AC 交AB 于点F ,交BC 于点G .在结论:(1) EFD ∠=BCD ∠;(2) AD CD =;
(3)CG EG =;(4) BF BC =中,一定成立的有( )
A .1个
B .2个
C .3个
D .4个
【答案】B
【解析】
【分析】
根据两直线平行,同旁内角互补求出∠CGE=∠BCA=90°,然后根据等角的余角相等即可求出∠EFD=∠BCD ;只有△ABC 是等腰直角三角形时AD=CD ,CG=EG ;利用“角角边”证明△BCE 和△BFE 全等,然后根据全等三角形对应边相等可得BF=BC .
【详解】
∵EF ∥AC ,∠BCA=90°,
∴∠CGE=∠BCA=90°,
∴∠BCD+∠CEG=90°,
又∵CD 是高,
∴∠EFD+∠FED=90°,
∵∠CEG=∠FED (对顶角相等),
∴∠EFD=∠BCD ,故(1)正确;
只有∠A=45°,即△ABC 是等腰直角三角形时,AD=CD ,CG=EG 而立,故(2)(3)不一定成立,错误;
∵BE 平分∠ABC ,
∴∠EBC=∠EBF ,
在△BCE 和△BFE 中,
EFD BCD EBC EBF BE BE ∠∠∠∠⎧⎪⎨⎪⎩
===,
∴△BCE ≌△BFE (AAS ),
∴BF=BC ,故(4)正确,
综上所述,正确的有(1)(4)共2个.
故选:B .
【点睛】
本题主要考查了角平分线的性质,全等三角形的判定与性质,直角三角形的性质,等腰直角三角形的性质,综合题,但难度不大,熟记性质是解题的关键.
9.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )
A 13
B 5
C .22
D .4
【答案】A
【解析】
试题分析:由题意易知:∠CAB=45°,∠ACD=30°.
若旋转角度为15°,则∠ACO=30°+15°=45°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=4,则AO=OC=2.
在Rt△AOD1中,OD1=CD1-OC=3,
由勾股定理得:AD1=13.
故选A.
考点: 1.旋转;2.勾股定理.
10.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()
A.23B.13C.4 D.32
【答案】B
【解析】
【分析】
如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.
【详解】
如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;
∵△BAC是等腰直角三角形,AD⊥BC,
∴BD=CD=AD=3;
∴OD=AD-OA=2;
Rt△OBD中,根据勾股定理,得:
22
+
BD OD13
故答案为:B.
【点睛】
本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC判定点O在AD上.
11.如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC≌△AED的是()
A.BC=ED B.∠BAD=∠EAC
C.∠B=∠E D.∠BAC=∠EAD
【答案】C
【解析】
解:A.∵AB=AE,AC=AD,BC=ED,∴△ABC≌△AED(SSS),故A不符合题意;
B.∵∠BAD=∠EAC,∴∠BAC=∠EAD.∵AB=AE,∠BAC=∠EAD ,AC=AD,∴△ABC≌△AED(SAS),故B不符合题意;
C.不能判定△ABC≌△AED,故C符合题意.
D.∵AB=AE,∠BAC=∠EAD,AC=AD,∴△ABC≌△AED(SAS),故D不符合题意.
故选C.
12.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下
列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=1
2
∠
CGE.其中正确的结论是( )
A.②③B.①②④C.①③④D.①②③④
【答案】B
【解析】
【分析】
根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.
【详解】
①∵EG∥BC,
∴∠CEG=∠ACB,
又∵CD是△ABC的角平分线,
∴∠CEG=∠ACB=2∠DCB,故正确;
②∵∠A=90°,
∴∠ADC+∠ACD=90°,
∵CD 平分∠ACB ,
∴∠ACD=∠BCD ,
∴∠ADC+∠BCD=90°.
∵EG ∥BC ,且CG ⊥EG ,
∴∠GCB=90°,即∠GCD+∠BCD=90°,
∴∠ADC=∠GCD ,故正确;
③条件不足,无法证明CA 平分∠BCG ,故错误;
④∵∠EBC+∠ACB=∠AEB ,∠DCB+∠ABC=∠ADC ,
∴∠AEB+∠ADC=90°+
12
(∠ABC+∠ACB )=135°, ∴∠DFE=360°-135°-90°=135°, ∴∠DFB=45°=
12
∠CGE ,,正确. 故选B .
【点睛】
本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.
13.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )
A .130︒
B .120︒
C .110︒
D .100︒
【答案】A
【解析】
【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;
【详解】
∵四边形ABCD 是菱形,
∴∠ACD =∠ACB =12
∠BCD=25°, ∵EF 垂直平分线段BC ,
∴FB=FC ,
∴∠FBC=∠FCB=25°,
∴∠CFB=180°-25°-25°=130°,
根据对称性可知:∠CFD=∠CFB=130°,
故选:A .
【点睛】
此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
14.如图,在△ABC 中,点D 为BC 的中点,连接AD ,过点C 作CE ∥AB 交AD 的延长线于点E ,下列说法错误的是( )
A .△ABD ≌△ECD
B .连接BE ,四边形ABE
C 为平行四边形 C .DA =DE
D .C
E =CD
【答案】D
【解析】
【分析】 根据平行线的性质得出∠B=∠DCE ,∠BAD=∠E ,然后根据AAS 证得△ABD ≌△ECD ,得出AD=DE ,根据对角线互相平分得到四边形ABEC 为平行四边形,CE=AB ,即可解答.
【详解】
∵CE ∥AB ,
∴∠B=∠DCE ,∠BAD=∠E ,
在△ABD 和△ECD 中,
===B DCE BAD E BD CD ∠∠⎧⎪∠∠⎨⎪⎩
∴△ABD ≌△ECD (AAS ),
∴DA=DE ,AB=CE ,
∵AD=DE ,BD=CD ,
∴四边形ABEC 为平行四边形,
故选:D .
【点睛】
此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD ≌△ECD .
15.如图,已知A ,D,B,E 在同一条直线上,且AD = BE, AC = DF,补充下列其中一个条件后,不一定能得到△ABC ≌△DEF 的是( )
A .BC = EF
B .AC//DF
C .∠C = ∠F
D .∠BAC = ∠EDF
【答案】C
【解析】
【分析】 根据全等三角形的判定方法逐项判断即可.
【详解】
∵BE =CF ,
∴BE +EC =EC +CF ,
即BC =EF ,且AC = DF ,
∴当BC = EF 时,满足SSS ,可以判定△ABC ≌△DEF ;
当AC//DF 时,∠A=∠EDF ,满足SAS ,可以判定△ABC ≌△DEF ;
当∠C = ∠F 时,为SSA ,不能判定△ABC ≌△DEF ;
当∠BAC = ∠EDF 时,满足SAS ,可以判定△ABC ≌△DEF ,
故选C.
【点睛】
本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .
16.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )
A 51
B 51
C 31
D 31
【答案】B
【解析】
【分析】 根据ADC 2B ∠=∠,可得∠B=∠DAB ,即5BD AD ==
Rt △ADC 中根据勾股定理
可得DC=1,则51.
【详解】
解:∵∠ADC 为三角形ABD 外角
∴∠ADC=∠B+∠DAB
∵ADC 2B ∠=∠
∴∠B=∠DAB ∴5BD AD ==
在Rt △ADC 中,由勾股定理得:22DC 541AD AC =
-=-=
∴BC=BD+DC=51+
故选B
【点睛】 本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.
17.如图为一个66⨯的网格,在ABC ∆,A B C '''∆和A B C ''''''∆中,直角三角形有( )个
A .0
B .1
C .2
D .3
【答案】C
【解析】
【分析】 根据题中的网格,先运用勾股定理计算出各个三角形的边长,再根据勾股定理的逆定理判断是否为直角三角形即可.
【详解】
设网格的小正方形的边长是1,
由勾股定理(两直角边的平方等于斜边的平方)可知,
ABC ∆的三边分别是:10,5,5; 由于222
5510+=, 根据勾股定理的逆定理得:ABC ∆是直角三角形; '''A B C ∆的三边分别是:''A B 10, ''B C 5 ,''AC 13 由于()()(22
210513+?, 根据勾股定理的逆定理得:'''A B C ∆不是直角三角形;
A B C ''''''∆的三边分别是:A B ''''18B C ''''8 ,A C ''''26;
由于()()()222
18826+=, 根据勾股定理的逆定理得:A B C ''''''∆是直角三角形;
因此有两个直角等三角形;
故选C .
【点睛】
本题主要考查了勾股定理和勾股定理的逆定理,能灵活运用所学知识是解题的关键.
18.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是( )
A .25°
B .40°
C .25°或40°
D .50°
【答案】C
【解析】
∵等腰三角形有一个是50°
∴有两种可能
①是三个角为50°、50°、80°;②是三个角为50°、65°、65°分情况说明如下: ①当三个角为50°、50°、80°时,根据图①,可得其一条腰上的高与底边的夹角∠DAB=40°;
②当三个角为50°、65°、65°,根据图②,可得其一条腰上的高与底边的夹角∠DAB=25°故故选:C
① ②
点睛:本题主要考查三角形内角和定理:三角形内角和为180°.
19.如图,AA',BB'表示两根长度相同的木条,若O 是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为( )
A .8 cm
B .9 cm
C .10 cm
D .11 cm
【答案】B
【解析】
解:由题意知:OA=OA′,∠AOB=∠A′OB′,OB=OB′,∴△AOB≌△A′OB′,∴
A′B′=AB=9cm.故选B.
点睛:本题考查了全等三角形的判定及性质的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.
20.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()
A.9 cm B.10 cm C.11 cm D.12 cm
【答案】B
【解析】
【分析】
由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.
【详解】
解:连接OD,设⊙O半径OD为R,
∵AB是⊙O的直径,弦CD⊥AB于点M,
∴DM=1
2
CD=4cm,OM=R-2,
在RT△OMD中,
OD²=DM²+OM²即R²=4²+(R-2)²,
解得:R=5,
∴直径AB的长为:2×5=10cm.
故选B.
【点睛】
本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.。