高中数学常用公式知识点总结填空

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、复数 ,a为,b为;
(1)、当时,z是实数;
(2)、当时,z是虚数;
(3)、当时,z是纯虚数;
(4)、当时,z是非纯虚数;
3、复数相等的条件及应用
(1)、 ;(2)、 ;
4复数的模: ,则 =;
5、复数代数形式的四则运算
(1)、复数的加法:(a+bi)+(c+di)=;
(2)、复数的减法:(a+bi)-(c+di)=;
(5)、首尾项性质:若 是等差数列,则;
(6)、若 是等差数列,p、q、r、s为正整数,且 ,则;
3、等比数列
(1)、定义若数列 (常数),则 称等比数列;
(2)、等比数列通项公式: (n N+),其中首项是,公比是;
(3)、等比数列前n项和公式: ;
(4)、等比中项:G称a、b的等比中项,则有等式;
②点到直线的距离公式:(点 ,直线 )
③平行直线间距离公式:(直线 和直线 )
2、圆与方程
(1)、圆的一般方程:圆心为,半径为;
(2)、圆的标准方程:圆心为,半径为;
3、直线与圆的位置关系
直线 与圆 的位置关系有三种:
(1)、d>0 相离 0
(2)、d=0 相切 0
(3)、d<0 相交 0
4、椭圆
定义
高中数学常用公式及知识点
一、集合
1、N表示N+(或N*)表示Z表示
R表示Q表示C表示
2、含有n个元素的集合,其子集有个,真子集有个,非空子集
有个,非空真子集有个。
3.集合之间的关系(区分 、 、 、 、 、 、=);子集与真子集的区别
名称
ቤተ መጻሕፍቲ ባይዱ记号
意义
性质
示意图
子集

A中的任一元素都属于B
(1)A A
(2)
(2)
(3)
补集
(1) (2)
(3)
(4)
5. 充分条件与必要条件
p是q的充分条件,q是p的必要条件;
q是p的充分条件,p是q的必要条件
p是q的充要条件
小技巧:1.“大范围 小范围,小范围 大范围”
2. , (子集与推出的关系)
二、基本初等函数
1、指数幂的运算法则
= = = =
= = =
2、对数运算法则及换底公式( )
(3)若 且 ,则
(4)若 且 ,则

真子集
A B
(B A)
,且B中至少有一元素不属于A
(1) (A为非空子集)
(2)若 且 ,则
集合
相等
A中的任一元素都属于B,B中的任一元素都属于A
(1)A B
(2)B A
4.集合的运算(交集、并集、补集):
名称
记号
意义
性质
示意图
交集

(1)
(2)
(3)
并集

(1)
图形
标准方程
范围
对称性
顶点坐标
焦点坐标
半轴长
离心率
a,b,c的关系
5、双曲线
定义
图形
方程
范围
对称性
顶点坐标
焦点坐标
实轴虚轴
离心率
a,b,c的关系
渐近线
6、抛物线
标准方程
图形
焦点
准线方程
顶点
对称轴
离心率
焦准距
通经长
焦参数
的焦半径
十三、立体几何
1、常见几何体的三视图
几何体
直观图形
正视图
侧视图
俯视图
正方体
长方体
圆柱
圆锥
圆台

2、空间几何体的表面积与体积
名称
图形
侧面积
表面积
体积
圆柱
圆锥

3、直线、平面位置关系(立体几何常用定理和方法)
(一)、直线与平面平行的判定定理:
文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行
图形语言:
符号语言:
作用:线线平行 线面平行
(二)、直线与平面平行的性质定理:
图形语言:
符号语言:
作用:面面垂直 线面垂直
十四、极坐标与参数方程
1、极坐标
2、参数方程
(1)、直线的参数方程: ( 为定点, 为倾斜角)
(2)、圆的参数方程: ((a,b)为圆心,r为半径)
(3)、椭圆的参数方程: (a为长半轴,b为短半轴)
(5)、三角函数的图像与性质
函数
图像
定义域
值域
递增区间
递减区间
奇偶性
最小正周期
对称性
最值
(6)、函数
①五点作图法
0
② 的性质
定义域
值域
周期性
奇偶性
单调性
对称性
③由 的图像得到 的图像的过程
方法途径一:
图像上各点向左或向右平移 个单位,得到,图像各点横坐标伸长或缩短到原来的 ,纵坐标不变,得到,图像各点纵坐标伸长或缩短到原来的A倍,横坐标不变,得到;
文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
图形语言:
符号语言:
作用:线面平行 线线平行
(三)、平面与平面平行的判定定理
文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
图形语言:
符号语言:
作用:线线平行 面面平行
(四)、平面与平面平行的性质定理:
设 ,则 ==;
3、向量的平行于垂直
(1)、若 平行
(2)、若 垂直
七、数列
1、数列的通项 与前n项和 的关系:
;(数列{ }的前n项和为 )
2、等差数列
(1)、定义:若数列 称等差数列;
(2)、等差数列通项公式: ,其中首项是,公差是;
(3)、等差数列前n项和公式: ==;
(4)、等差中项: A是a、b的等差中项,则有等式;
文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行
图形语言:
符号语言:
作用: 面面平行 线线平行
(五)、直线与平面垂直的判定定理:
文字语言:如果一条直线和一个平面内的两条相交
直线垂直,那么这条直线垂直于这个平面
图形语言:
符号语言:
作用:线线垂直 线面垂直
(六)、直线与平面垂直的性质定理:
分步计数法(乘法法则):完成一件事有两个步骤,第一个步骤有m种方法,第二个步骤有n种方法,连续完成这两个步骤这件事才完成,那么完成这件事总共有m×n种方法。
2、排列数、组合数公式
排列(有顺序),公式: = = ;
例:
组合(没有顺序),公式: = = ;
= + =
例:
3、组合数的性质
(1) = ;(2) + = .注:规定 .
= = =
= = =
= =
3、对数与指数互化:
4、基本初等函数图像
(1)指数函数
(2)对数函数
(当 时,y=;当 时,y=)
a>1时的图像
0<a<1时的图像
a>1时的图像
0<a<1时的图像
图像恒过点,且不与轴相交。
图像恒过点,且不与轴相交。
(3)幂函数的图像和性质
解析式
图像
定义域
值域
奇偶性
单调性
三、函数的性质
3、解三角形
(10)、正弦定理:===2R (R为三角形的外接圆半径)
用角表示边:a=,b=,c=。
(11)、余弦定理: =, =, =
求角: =, =, =
(12)、三角形面积公式: ===
六、平面向量
1、平面向量的坐标运算
(1)、设 ,则 =;
(2)、设 ,则 =, =, =;
=, =, =;
2、两向量的夹角公式
文字语言:若两条直线垂直于同一个平面,则这两条直线平行
图形语言:
符号语言:
作用:线面垂直 线线平行
(七)、平面与平面垂直的判定定理:
文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。
图形语言:
符号表示:
注:线面垂直 面面垂直
(八)、平面与平面垂直的性质定理:
文字语言:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面
(2)、直线的五种方程:
①斜截式:(b为直线L在y轴上的截距);
②点斜式:(直线L过点 ,且斜率为k);
④截距式:(a,b分别为直线L的横、纵截距, );
⑤一般式:(其中A,B不同时为0)。
(3)、两条直线的平行与垂直
直线 ;
①若 平行 ;
②若 垂直 。
(4)、距离计算
①点到点的距离公式:(两点为 )
方法途径二:
图像各点横坐标伸长或缩短到原来的 ,纵坐标不变,得到,图像上各点向左或向右平移 个单位,得到,图像各点纵坐标伸长或缩短到原来的A倍,横坐标不变,得到;
2、三角恒等变换
(7)、两角和与差的正弦、余弦和正切
(异名同号) = =
(同名异号) = =
= =
(8)、二倍角公式
= ===
=
(9)、辅助角公式
(5)、首尾项性质:若 是等比数列,则;
(6)、若 是等比数列,p、q、r、s为正整数,且 ,则;
八、不等式
1、已知a,b都是正数,则有 ,当a=b时,等号成立;
(1)、若积ab是定值m,则当a=b时,和a+b有最小值;
(2)、若和a+b是定值n,则当a=b时,积ab有最大值;
九、复数
1、 = = =( )
4、排列组合问题常见解题方法:(1)两个计数原理(2)特殊位置法(3)捆绑法(4)插空法
5、二项式定理 ;
二项展开式的通项公式
.
6、区分系数、二项式系数
7、二式项式系数的性质
(1) .
(2) .
十一、统计概率
1、平均数: =;
2、样本方差: =;
3、样本标准差: =;
十二、解析几何
1、直线与方程
(1)、直线的斜率: ( 为直线的倾斜角);
(3)、复数的乘法:(a+bi) (c+di)=;
(4)、复数的除法:(a+bi) (c+di)=;
6、共轭复数:复数 的共轭复数为 =;
十、排列组合二项式定理
1、分类计数法和分步计数法
分类计数法(加法法则):完成一件事有两类办法,第一类办法由m种方法,第二类办法有n种方法,无论用哪一类办法中的哪种方法,都能完成这件事,则完成这件事总共有m+n种方法。
1、函数 在点 处的导数的几何意义
函数 在点 处的导数是曲线 在点 ( , )处的切线的斜率 ,相应的切线方程式是;
2、用导数判别单调性、单调区间、极值和最值;
(1)设函数 在某个区间内可导,若 >0,则 为函数,若 <0,则 为函数;
(2)求函数的极值的方法:解方程 ,当 时,
①如果在 附近的左侧 >0,右侧 <0,那么是极值;
(3)、特殊角的三角函数值表
a的角度
a的弧度
sina
cosa
tana
(4)、三角函数的诱导公式( )
公式一: = =
=
公式二: = = =
公式三: = = =
公式四: = = =
公式五: = =
公式六: = =
(记忆口诀:奇变偶不变,符号看象限。奇偶指 的奇偶数倍,变与不变指三角函数名称的变化,若变则是正弦变余弦,正切变余切;符号是根据角的范围以及三角函数在四个象限的正负来判断新三角函数的符号(无论a是多大的角,都将a看成锐角))
②如果在 附近的左侧 <0,右侧 >0,那么是极值;
3、集中常见函数的导数
=(C位常数) = =
= = =
= =
4、导数的运算法则
= = =
五、三角函数、三角恒等变换和解三角形
1、三角函数
(1)、三角函数值在各象限的符号
(记忆口诀:一全正、二正弦、三正切、四余弦)
(2)、同三角函数的基本关系
平方关系: =商数关系: =
1、奇偶性
(1)对于定义域内任意的x,都有 ,则 为函数,图像关于对称;
(2)对于定义域内任意的x,都有 ,则 为函数,图像关于对称;
2、单调性
设 ,那么
上是函数;(即 )
上是函数。(即 )
3、周期性
对于定义域内任意的x,都有 ,则 的周期为;
对于定义域内任意的x,都有 ,则 的周期为;
四、函数的导数及其应用
相关文档
最新文档