知识02 函数的概念与基本初等函数(含真题)-【新高考】2021年高考数学考前必备知识速记
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二 函数的概念与基本初等函数
知识必备
一、函数的概念及其表示
1.函数
设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,称f:A→B为从集合A到集合B的一个函数y=f(x),x∈A
2.函数的有关概念
(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.
(3)各段函数的定义域不可以相交.
4.常用结论
(1)若f(x)为整式,则函数的定义域为R;
(2)若f(x)为分式,则要求分母不为0;
(3)若f(x)为对数式,则要求真数大于0;
(4)若f(x)为根指数是偶数的根式,则要求被开方式非负;
(5)若f(x)描述实际问题,则要求使实际问题有意义.
如果f(x)是由几个部分的数学式子构成的,求定义域常常等价于解不等式(组).
二、函数的单调性与最值
1.函数的单调性
(1)单调函数的定义
增函数
减函数
定义
一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2
当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数
当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数
②若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.
③若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.
四、二次函数与幂函数
1.幂函数
(1)幂函数的定义
一般地,形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α为常数.
(2)二次函数的图象与性质
函数
y=ax2+bx+c(a>0)
y=ax2+bx+c(a<0)
图象
(抛物线)
定义域
R
值域
对称轴
x=-
顶点坐标
奇偶性
当b=0时是偶函数,当b≠0时是非奇非偶函数
单调性
在 上是减函数;
在 上是增函数
在 上是增函数;
在 上是减函数
3.常用结论
.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.
.若f(x)=ax2+bx+c(a≠0),则当 时恒有f(x)>0,当 时,恒有f(x)<0.
五、指数与指数函数
1.根式
(1)概念:式子 叫做根式,其中n叫做根指数,a叫做被开方数.
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数
关于原点对称
2.函数的周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
(4)函数周期性常用结论
对f(x)定义域内任一自变量的值x:
①若f(x+a)=-f(x),则T=2a(a>0).
②若f(x+a)= ,则T=2a(a>0).
③若f(x+a)=- ,则T=2a(a>0).
(5)对称性的三个常用结论
①若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.
(2)如果函数y=f(x)用表格给出,则表格中x的集合即为定义域.
(3)如果函数y=f(x)用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.
值域是一个数集,由函数的定义域和对应关系共同确定.
(1)分段函数虽由几个部分构成,但它表示同一个函数.
(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
在(-∞,0)和(0,+∞)上单调递减
图象
过定点
(0,0),(1,1)
(1,1)
2.二次函数
(1)二次函数解析式的三种形式
一般式
f(x)=ax2+bx+c(a≠0),图象的对称轴是x=- ,顶点坐标是
顶点式
f(x)=a(x-m)2+n(a≠0),图象的对称轴是x=m,顶点坐标是(m,n)
零点式
f(x)=a(x-x1)(x-x2)(a≠0),其中x1,x2是方程ax2+bx+c=0的两根,图象的对称轴是x=
存在x0∈I,使得f(x0)=M
对于任意x∈I,都有f(x)≥M;
存在x0∈I,使得f(x0)=M
结论
M为最大值
M为最小值
三、函数的奇偶性、周期性与对称性
1.函数的奇偶性
奇偶性
定义
图象特点
偶函数
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数
关于y轴对称
奇函数
图象描述
自左向右看图象是上升的
自左向右看图象是下降的
(2)单调区间的定义
如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
2.函数的最值
前提
设函数f(x)的定义域为I,如果存在实数M满足
条件
对于任意x∈I,都有f(x)≤M;
(2)5个常见幂函数的图象与性质
函数
y=x
y=x2
y=x3
y=x-1
定义域
R
R
R
{x|x≥0}
{x|x≠0}
值域
R
{y|y≥0}
R
{y|y≥0}
{y|y≠0}
奇偶性
奇函数
偶函数
奇函数
非奇非偶
函数
奇函数
单调性
在R上单调递增
在(-∞,0)上单调递减,在(0,+∞)上单调递增
在R上单调递增
在(0,+∞)上单调递增
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
3.函数的周期性
(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.
(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).
(3)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.
(2)函数的三要素:定义域、值域和对应关系.
(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.
(4)函数的表示法:解析法、图象法、列表法.
3.分段函数
若函数在其定义域函数.
(1)确定函数的定义域常从解析式本身有意义,或从实际出发.
知识必备
一、函数的概念及其表示
1.函数
设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,称f:A→B为从集合A到集合B的一个函数y=f(x),x∈A
2.函数的有关概念
(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.
(3)各段函数的定义域不可以相交.
4.常用结论
(1)若f(x)为整式,则函数的定义域为R;
(2)若f(x)为分式,则要求分母不为0;
(3)若f(x)为对数式,则要求真数大于0;
(4)若f(x)为根指数是偶数的根式,则要求被开方式非负;
(5)若f(x)描述实际问题,则要求使实际问题有意义.
如果f(x)是由几个部分的数学式子构成的,求定义域常常等价于解不等式(组).
二、函数的单调性与最值
1.函数的单调性
(1)单调函数的定义
增函数
减函数
定义
一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2
当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数
当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数
②若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.
③若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.
四、二次函数与幂函数
1.幂函数
(1)幂函数的定义
一般地,形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α为常数.
(2)二次函数的图象与性质
函数
y=ax2+bx+c(a>0)
y=ax2+bx+c(a<0)
图象
(抛物线)
定义域
R
值域
对称轴
x=-
顶点坐标
奇偶性
当b=0时是偶函数,当b≠0时是非奇非偶函数
单调性
在 上是减函数;
在 上是增函数
在 上是增函数;
在 上是减函数
3.常用结论
.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.
.若f(x)=ax2+bx+c(a≠0),则当 时恒有f(x)>0,当 时,恒有f(x)<0.
五、指数与指数函数
1.根式
(1)概念:式子 叫做根式,其中n叫做根指数,a叫做被开方数.
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数
关于原点对称
2.函数的周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
(4)函数周期性常用结论
对f(x)定义域内任一自变量的值x:
①若f(x+a)=-f(x),则T=2a(a>0).
②若f(x+a)= ,则T=2a(a>0).
③若f(x+a)=- ,则T=2a(a>0).
(5)对称性的三个常用结论
①若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.
(2)如果函数y=f(x)用表格给出,则表格中x的集合即为定义域.
(3)如果函数y=f(x)用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.
值域是一个数集,由函数的定义域和对应关系共同确定.
(1)分段函数虽由几个部分构成,但它表示同一个函数.
(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
在(-∞,0)和(0,+∞)上单调递减
图象
过定点
(0,0),(1,1)
(1,1)
2.二次函数
(1)二次函数解析式的三种形式
一般式
f(x)=ax2+bx+c(a≠0),图象的对称轴是x=- ,顶点坐标是
顶点式
f(x)=a(x-m)2+n(a≠0),图象的对称轴是x=m,顶点坐标是(m,n)
零点式
f(x)=a(x-x1)(x-x2)(a≠0),其中x1,x2是方程ax2+bx+c=0的两根,图象的对称轴是x=
存在x0∈I,使得f(x0)=M
对于任意x∈I,都有f(x)≥M;
存在x0∈I,使得f(x0)=M
结论
M为最大值
M为最小值
三、函数的奇偶性、周期性与对称性
1.函数的奇偶性
奇偶性
定义
图象特点
偶函数
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数
关于y轴对称
奇函数
图象描述
自左向右看图象是上升的
自左向右看图象是下降的
(2)单调区间的定义
如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
2.函数的最值
前提
设函数f(x)的定义域为I,如果存在实数M满足
条件
对于任意x∈I,都有f(x)≤M;
(2)5个常见幂函数的图象与性质
函数
y=x
y=x2
y=x3
y=x-1
定义域
R
R
R
{x|x≥0}
{x|x≠0}
值域
R
{y|y≥0}
R
{y|y≥0}
{y|y≠0}
奇偶性
奇函数
偶函数
奇函数
非奇非偶
函数
奇函数
单调性
在R上单调递增
在(-∞,0)上单调递减,在(0,+∞)上单调递增
在R上单调递增
在(0,+∞)上单调递增
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
3.函数的周期性
(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.
(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).
(3)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.
(2)函数的三要素:定义域、值域和对应关系.
(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.
(4)函数的表示法:解析法、图象法、列表法.
3.分段函数
若函数在其定义域函数.
(1)确定函数的定义域常从解析式本身有意义,或从实际出发.