新人教版六年级上册《分数除法》教材分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版六年级上册《分数除法》教材分
析
本单元的研究重点是分数除法的意义及计算方法。
在研究分数除法之前,学生需要先了解倒数的概念和求倒数的方法。
分数除法的基本方法是“除以一个不等于的数,等于乘这个数
的倒数”。
通过实际例子的练,学生可以更好地理解分数除法
的意义和计算方法,并能够应用到实际问题中去解决。
三)解决相关的实际问题
在研究分数除法的过程中,学生需要掌握如何应用分数除法解决相关的实际问题。
例如,在购物时如何计算打折后的价格、在制作食品时如何计算食材的比例等。
这些实际问题的解决需要学生对分数除法的掌握和应用,同时也能够帮助学生更好地理解分数除法的意义和计算方法。
总之,本单元的研究内容涵盖了倒数的认识、分数除法的意义及计算方法以及解决相关的实际问题。
通过本单元的研究,学生能够更加系统地掌握分数的四则运算,进一步加深对乘除法关系的理解,为后续的研究打下坚实的基础。
分数除法是乘法的逆运算,其含义随着分数乘法的扩展而有所变化。
教学分数除法的意义可以通过实际例子引出除法题来说明,也可以通过类比的方式帮助学生理解。
新版教材将除法意义融合在练中,通过练使学生体会到乘除法的互逆关系,明确分数除法的意义。
同时,教材也重视分数除法计算方法的探寻过程,通过实际情境引导学生列出算式,并通过数形结合方法及分析推理出正确的计算结果。
教材将分数除法的意义教学与分数除法的计算方法教学有机地融合在一起,帮助学生理解算理,掌握计算方法。
三)用分数除法解决实际问题
分数除法的实际问题主要有两种情况:一种是利用已学的数量关系直接列式解决实际问题,与分数除法计算方法同步教学;另一种是数量关系涉及“一个数的几分之几”或需用抽象的“1”解决较为复杂的实际问题,需要通过列方程等方法解决问题。
教材新增的例6和例7都属于后一种情况,需要通过寻找数量与对应分率之间的关系计算得到。
这既是对过去列方程解决问题的扩展,也为后面解决百分数的实际问题做准备。
四)把“比”的内容单独设置一个单元
材将“比”单独设置为本书的第四单元,在“分数除法”单元
完成后进行教学。
这样有利于学生更好地理解比的概念和应用,同时也有利于教师更好地组织教学。
一)倒数的认识
例1介绍了倒数的概念,倒数是指一个数的倒数为其分数形式的倒数。
例如,数5的倒数为1/5.学生需要理解倒数的概
念及其应用。
什么两个分数相除可以转化为乘以倒数?”来引导学生思考,进一步理解分数除法的本质。
同时,教材还提供了多种不同形式的练,帮助学生巩固和拓展所学知识。
首先,教材安排了几组乘积为1的乘法算式,让学生通过计算、观察、讨论等活动,寻找它们的共同特点,并导出倒数的定义。
接着,教材用实例突出理解“互为倒数”的含义,并引导学生思考互为倒数的两个数有什么特点。
在例1中,教材以找倒数的活动为载体,初步体验找倒数的方法,并总结出三种情况:求分数的倒数、求整数的倒数、1和的倒数的问题。
通过学生对话讨论形式判断“的倒数是
0.75”的合理性问题,进一步揭示互为倒数的本质:只要两个
数的乘积是1,那么这两个数就互为倒数,与这两个数是整数、分数、小数无关。
在例2中,教材研究了一个数除以分数的计算,包括整数除以分数和分数除以分数两种情况。
教材通过画线段图的直观方式呈现推算的思路,降低了学生对中每一部分含义的理解难度,顺利完成从“除以一个分数”到“乘以这个分数的倒数”的转化。
教材还提供了多种不同形式的练,帮助学生巩固和拓展所学知识。
总的来说,教材通过实例和活动,引导学生理解倒数和分数除法的本质,探索计算方法,并通过多种形式的练巩固所学知识。
本文介绍了数学教材中的几个例子,涉及分数混合运算、分数乘法逆向问题等。
教材通过引导学生自行阐述算理,总结分数除法的一般算法,并启发学生用自己的方式表示这一算法。
在分数混合运算中,教材提供了两种不同的解决方法,体现了不同的分析思路。
在分数乘法逆向问题中,教材利用已有知识画线段图,找到等量关系,列出方程并解出方程,降低了学生
理解的难度。
在“和倍、差倍”问题中,教材选择符合学生的顺向思维的思路,给出多样化的解题方法。
教材的引导和教学方法都是为了帮助学生更好地理解和掌握数学知识。
教材引入了篮球比赛上下半场得分的实际问题,涉及两个未知数和两种关系。
其中,未知量为上半场得分和下半场得分,两种关系为上半场得分加下半场得分等于42,以及下半场得
分是上半场得分的一半或上半场得分是下半场得分的2倍。
教材提供了两种解法,分别是先设哪个量为未知数,然后利用两个量的数量关系,用代数式表示出另一个量。
例7中,教材利用修路这一“工程问题”引入,让学生经历
发现和提出问题、分析和解答问题的过程。
通过假设公路总长为某个具体的长度,把新问题转化为旧问题,加以解决。
通过分析,发现两队每天修的长度分别占总长度的和是不变的,这也是能得到相同结果的内在原因。
此基础上,进一步抽象,可用“1”来表示公路总长。
教材的目的是建立一种数量关系的模型,让学生体会模型思想,掌握用假设、验证等方法解决问题的基本策略。
在教学中,不必要求学生死记硬背数量关系,可用线段图帮助学生理解数量关系,学生只要会用具体的语言描述出来就可。
本单元的教学重点是体会分数除法的意义,理解并掌握分数除法的计算方法,会解决一些和分数除法相关的实际问题。
教学难点是探索与理解分数除法的意义及计算方法,用分数除法解决问题。
1.重点教学分数除法的意义,包括建立计算法则和判断运算应用场合。
可以通过练题引导学生对比分数乘法算式和分数除法算式,明确它们都是已知积和一个因数,求另一个因数的逆运算。
2.通过操作和观察线段图等方式,直观理解算理。
教师应该花时间让学生经历计算方法的探索过程,例如通过画线段图的方式呈现推算的思路,帮助学生理解算理的每个步骤含义,使学生直观地看到由“除以一个分数”到“乘以这个分数的倒数”的转化过程。
3.引导类推,促进迁移,通过自主探究总结出分数除法的计算方法。
教材安排了分数除以整数、整数除以分数以及分数除以分数三类,内容由易到难、由简单到复杂逐步提升。
教师应该注重引导学生通过迁移类推,充分运用原有的知识经验自行探究分数除法的计算方法。
在教学中,可以放手让学生自己
尝试,使学生在研究整数除以分数的基础上通过迁移类推,掌握分数除以分数的计算方法。
反馈时,可以让学生说一说自己的思路,也可以让学生画示意图说明,使得他们对算理的理解更为深刻。
在解决问题时,可以运用分数除法。
教师应该引导学生理解问题中的分数含义,并通过分数除法计算出答案。
例如,可以通过练题引导学生运用分数除法解决问题,加深对分数除法的理解和应用。
本文提出了三种教学策略,旨在帮助学生更好地理解数量关系,提高解决问题的能力。
第一种策略是引导学生充分阅读和理解例题信息,找出已知量和未知量,分析关键信息,形成顺向迁移,降低思维难度。
例如,在例5中,通过把爸爸的体重看作单位“1”,学生可以
更好地理解两人体重的数量关系。
第二种策略是彰显数形结合的思想,培养学生利用画图策略帮助思考的能力。
例如,在例7中,学生可以通过画线段图或示意图表示数量关系,直观地发现相关题与“工程问题”的数
量关系在本质上是完全相同的,从而更好地理解利用画示意图来分析数量关系是解决问题的重要策略。
第三种策略是开展充分的自主探究与合作交流,引导学生经历问题解决的全过程。
例如,在例7的教学中,学生可以通过自主探究和合作交流,发现总路程长不同,算出的合修天数是相同的,从而更好地理解总天数和总路程之间的关系。
同时,这种教学策略也有助于提高学生的解决问题能力。
在研究分数除法的过程中,学生需要掌握分数除法的计算方法。
教师可以通过具体的例子,引导学生理解分数除法的概念和计算方法。
同时,也可以通过让学生自己尝试解决问题的方式,帮助学生探索出更为合理简洁的运算途径。
在这个过程中,教师需要注重引导学生思考,培养学生的数学思维能力和解决问题的能力。
三)重视数学思想方法的渗透
在研究分数除法的过程中,教师应该注重培养学生的数学思想方法。
通过引导学生分析问题、归纳总结、提炼规律,帮助学生更好地理解分数除法的概念和计算方法。
同时,也可以通过让学生运用分数除法的知识解决实际问题的方式,让学生
认识到数学在日常生活中的应用价值,增强学生学好数学的信心。
通过折纸实验,学生可以逐步理解分数除法的计算方法。
教师应该给学生足够的时间和机会,让他们动手操作、观察和思考,通过交流来理解和发现算法,从而培养学生的研究和探究能力,促进学生的发展。
在教学中,应该有意识地引导学生将图形与式子对照起来,进行分析和说理,让学生逐渐感受数形结合的优势。
分数除法的计算方法将除法转化为乘法计算,这对学生来说是一次数学认识上的飞跃,每一步都是新旧知识和方法的转化。
通过实际问题的例题,引导学生运用所学的分数除法解决日常生活中的实际问题。
教师应该引导学生对问题进行阅读、理解、分析和解答,尤其是回顾和反思这一步,以验证思路和解答的正确性。
这有利于培养学生严谨的数学思维和良好的数学研究惯。