【易错题】高三数学上期中一模试题含答案(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【易错题】高三数学上期中一模试题含答案(2)
一、选择题
1.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数
列,则1a =( ) A .2
B .-2
C .
12
D .12
-
2.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5
B .25
C
D
.3.已知AB AC ⊥u u u v u u u v ,1AB t
=u u u
v ,AC t =u u u v ,若P 点是ABC V 所在平面内一点,且
4AB AC AP AB AC
=+u u u v u u u v u u u v u u u v u u u v ,则·PB PC u u u v u u u v 的最大值等于( ). A .13
B .15
C .19
D .21
4.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和
n S =( )
A .2744n n +
B .2533n n
+
C .2324
n n
+
D .2n n +
5.在ABC ∆中,角,,A B C 的对边分别是,,a b c , 2
cos 22A b c
c
+=,则ABC ∆的形状为 A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形
D .正三角形
6.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( ) A .()3,-+∞
B
.()
-+∞
C .[)3,-+∞
D
.)
⎡-+∞⎣
7.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019
111a a a ++⋯+=( ) A .
2020
2019
B .
2019
1010
C .
2017
1010
D .
4037
2020
8.在等比数列{}n a 中,21a a 2-=,且22a 为13a 和3a 的等差中项,则4a 为( ) A .9
B .27
C .54
D .81
9.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为( )
A .134
B .135
C .136
D .137
10.设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3
+2 016(a 4-1)=1,(a 2 013-1)3
+2 016·(a 2 013-1)=-1,则下列结论正确的是( ) A .S 2 016=-2 016,a 2 013>a 4 B .S 2 016=2 016,a 2 013>a 4 C .S 2 016=-2 016,a 2 013<a 4 D .S 2 016=2 016,a 2 013<a 4
11.在等差数列{}n a 中,如果123440,60a a a a +=+=,那么78a a +=( ) A .95
B .100
C .135
D .80
12.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且
723
n n S n T n +=+,则220
715
a a
b b +=+( )
A .
49
B .
378
C .
7914
D .
149
24
二、填空题
13.已知数列{}n a 的前n 项和为n S ,11a =,22a =,且对于任意1n >,*n N ∈,满足
11n n S S +-+=2(1)n S +,则10S 的值为__________
14.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a a n +=++,则
122016
111a a a +++=L _________. 15.在平面内,已知直线12l l P ,点A 是12,l l 之间的定点,点A 到12,l l 的距离分别为和,点
是2l 上的一个动点,若AC AB ⊥,且AC 与1l 交于点C ,则ABC ∆面积的最小
值为____.
16.已知关于x 的一元二次不等式ax 2
+2x+b >0的解集为{x|x≠c},则227a b a c
+++(其中
a+c≠0)的取值范围为_____.
17.已知ABC ∆的内角,,A B C 的对边分别为,,a b c .若1c =,ABC ∆的面积为
221
4
a b +-,则ABC ∆面积的最大值为_____. 18.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = ________.
19.若等比数列{}n a 的各项均为正数,且5
10119122a a a a e +=,则
1220ln ln ln a a a +++L 等于__________.
20.设变量,x y 满足约束条件:21y x x y x ≥⎧⎪
+≤⎨⎪≥-⎩,则3z x y =-的最小值为__________.
三、解答题
21.数列{}n a 中,11a =,121n n a a n +=++. (1)求{}n a 的通项公式; (2)设141
n n b a =
-,求出数列{}n b 的前n 项和.
22.已知等差数列{}n a 中,235220a a a ++=,且前10项和10100S =. (1)求数列{}n a 的通项公式; (2)若1
1
n n n b a a +=
,求数列{}n b 的前n 项和n T . 23.已知{}n a 为等差数列,前n 项和为(
)*
n S n N
∈,{}n
b 是首项为2的等比数列,且公
比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式; (2)求数列{}221n n a b -⋅的前n 项和.
24.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本
y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002
y x x =-+,且每处
理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?
25.在△ABC 中,角,,A B C 所对的边分别是,,a b c ,且4cos 5
A =. (1)求2
sin
cos 22
B C
A ++的值; (2)若2b =,ABC ∆的面积3S =,求a 的值.
26.已知函数()[)22,1,x x a
f x x x
++=∈+∞.
(1)当1
2
a =
时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】 【分析】
把已知2
214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,
【详解】
因为124S S S ,,成等比数列,所以2214S S S =,即2
11111(21)(46).2
a a a a -=-=-,
故选D. 【点睛】
本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.
2.A
解析:A 【解析】
在ABC ∆中,1a =,045B ∠=,可得1
14522
ABC S csin ∆=⨯⨯︒=,解得c =.
由余弦定理可得:5b =
==. 3.A
解析:A 【解析】
以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t
,(0,)C t ,
10)4(0,1)(1,4)AP =+=u u u r (,,即14)P (,,所以1
14)PB t
=--u u u r (,,14)PC t =--u u u r (,,因
此PB PC ⋅u u u r u u u r
11416t t =--+117(4)t t =-+,因为144t t +≥=,所以PB PC ⋅u u u r u u u r 的最大值等于
13,当1
4t t =,即12
t =时取等号.
考点:1、平面向量数量积;2、基本不等式.
4.A
解析:A 【解析】 【分析】 【详解】 设公差为d 则
解得
,故选A.
5.A
解析:A 【解析】 【分析】
先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择. 【详解】 因为2
cos
22A b c c
+=,所以1cosA 22b c
c ++=,()
ccosA b,sinCcosA sinB sin A C ,sinAcosC 0===+=,因此cosC 0C 2
π
==
,,选A.
【点睛】
本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.
6.D
【解析】
由()1,2x ∈时,220x mx ++≥恒成立得2m x x
⎛⎫≥-+ ⎪⎝

对任意()1,2x ∈恒成立,即
max 2,m x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝
⎭⎣⎦Q
当x 时,2x x ⎛
⎫-+ ⎪⎝⎭
取得最大值m -∴≥-,m 的取
值范围是)
⎡-+∞⎣,故选D.
【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).
7.B
解析:B 【解析】 【分析】
由题意可得n ≥2时,a n -a n -1=n ,再由数列的恒等式:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -
1),运用等差数列的求和公式,可得a n ,求得
1n a =()21n n +=2(1n -1
1
n +),由数列的裂项相消求和,化简计算可得所求和. 【详解】
解:数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1, 即有n ≥2时,a n -a n -1=n ,
可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+2+3+…+n =
1
2
n (n +1),1n =也满足上式 1n a =()21n n +=2(1n -11
n +), 则122019111a a a ++⋯+=2(1-12+12-13
+…+12019-12020) =2(1-12020
)=2019
1010.
故选:B . 【点睛】
本题考查数列的恒等式的运用,等差数列的求和公式,以及数列的裂项相消求和,考查化简运算能力,属于中档题.
8.B
【解析】 【分析】
根据题意,设等比数列{}n a 的公比为q ,由22a 为13a 和3a 的等差中项,可得
21322a 3a a ⨯=+,利用等比数列的通项公式代入化简为2q 4q 30-+=,解得q ,又21a a 2-=,即()1a q 12-=,q 1≠,分析可得1a 、q 的值,可得数列{}n a 的通项公
式,将n 4=代入计算可得答案. 【详解】
解:根据题意,设等比数列{}n a 的公比为q ,
若22a 为13a 和3a 的等差中项,则有21322a 3a a ⨯=+,变形可得2
1114a q 3a a q =+,即
2q 4q 30-+=,
解得q 1=或3;
又21a a 2-=,即()1a q 12-=,则q 3=,1a 1=,
则n 1
n a 3-=,则有34a 327==;
故选:B . 【点睛】
本题考查等比数列的性质以及通项公式,关键是掌握等比数列通项公式的形式,属于基础题.
9.B
解析:B 【解析】 【分析】
由题意得出1514n a n =-,求出15142019n a n =-≤,即可得出数列的项数. 【详解】
因为能被3除余1且被5除余1的数就是能被15整除余1的数,故1514n a n =-.由
15142019n a n =-≤得135n ≤,故此数列的项数为135,故答案为B.
【点睛】
本题主要考查阅读能力及建模能力、转化与化归思想及等差数列的通项公式及数学的转化与化归思想.属于中等题.
10.D
解析:D 【解析】
∵(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016(a 2 013-1)=-1, ∴(a 4-1)3+2 016(a 4-1)+(a 2 013-1)3+2 016(a 2 013-1)=0, 设a 4-1=m ,a 2 013-1=n ,
则m 3+2 016m +n 3+2 016n =0, 化为(m +n )·
(m 2+n 2-mn +2 016)=0, ∵2
2
2
2132?0162016024m n mn m n n ⎛⎫=-++> ⎪⎝
⎭+-+,
∴m +n =a 4-1+a 2 013-1=0, ∴a 4+a 2 013=2,
∴()
()
120164201320162016201620162
2
a a a a S ++=
=
=.
很明显a 4-1>0,a 2 013-1<0,∴a 4>1>a 2 013, 本题选择D 选项.
11.B
解析:B 【解析】 【分析】
根据等差数列{}n a 性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,然后求出结果 【详解】
由等差数列的性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,
()()()()781234124140320100a a a a a a a a ⎡⎤∴+=++-+-+=+⨯=⎣⎦
故选B 【点睛】
本题主要考查了等差数列的性质运用,等差数列中连续的、等长的、间隔相等的几项的和依然成等差,即可计算出结果。

12.D
解析:D 【解析】 【分析】
根据等差数列的性质前n 项和的性质进行求解即可. 【详解】
因为等差数列{}n a 和{}n b ,所以
2201111
7151111
22a a a a b b b b +==+,又211121S a =,211121T b =,
故令21n =有2121721214921324
S T ⨯+==+,即1111211492124a b =,所以1111149
24a b = 故选:D. 【点睛】
本题主要考查等差数列的等和性质:
若{}n a 是等差数列,且(,,,*)m n p q m n p q N +=+∈,则m n p q a a a a +=+
与等差数列{}n a 前n 项和n S 的性质*
21(21),()n n S n a n N -=-∈
二、填空题
13.91【解析】【分析】由Sn+1+Sn ﹣1=2(Sn+1)可得Sn+1﹣Sn =Sn ﹣Sn ﹣1+2可得an+1﹣an =2利用等差数列的通项公式与求和公式即可得出【详解】∵对于任意n >1n∈N*满足Sn+
解析:91 【解析】 【分析】
由S n+1+S n ﹣1=2(S n +1),可得S n+1﹣S n =S n ﹣S n ﹣1+2,可得a n+1﹣a n =2.利用等差数列的通项公式与求和公式即可得出. 【详解】
∵对于任意n >1,n∈N *,满足S n+1+S n ﹣1=2(S n +1), ∴n≥2时,S n+1﹣S n =S n ﹣S n ﹣1+2, ∴a n+1﹣a n =2.
∴数列{a n }在n≥2时是等差数列,公差为2. 则10S =1+9×298
22
⨯+⨯=91. 故答案为91 【点睛】
本题考查了数列递推关系、等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
14.【解析】试题分析:所以所以考点:累加法;裂项求和法 解析:
4032
2017
【解析】
试题分析:111,n n n n a a n a a n +--=+-=,所以
()11221112
n n n n n n n a a a a a a a a ---+=-+-++-+=
L ,所以
11121n a n n ⎛⎫=- ⎪+⎝⎭
,122016111140322120172017a a a ⎛
⎫+++=-= ⎪⎝⎭
L . 考点:累加法;裂项求和法.
15.6【解析】【分析】【详解】如图所示设由题意知与相似所以所以所以当且仅当即时等号成立所以面积的最小值为6
解析:6 【解析】 【分析】
【详解】 如图所示,
设BF x =,由题意知3,2AE AF ==
ABF ∆与CAE ∆相似,所以
AB BF CA AE =
,所以3
AC AB x
=,所以2
11322ABC S AB AC AB x
∆=
=⨯ 21363(4)622x x x x =⨯⨯+=+≥,当且仅当632x
x =,即2x =时,等号成立,所以CAE ∆面积的最小值为6.
16.(﹣∞﹣6∪6+∞)【解析】【分析】由条件利用二次函数的性质可得ac=﹣1ab=1即c=-b 将转为(a ﹣b )+利用基本不等式求得它的范围【详解】因为一元二次不等式a x2+2x+b >0的解集为{x|x
解析:(﹣∞,﹣6]∪[6,+∞) 【解析】 【分析】
由条件利用二次函数的性质可得ac=﹣1,ab=1, 即c=-b 将227
a b a c +++转为(a ﹣b )
+
9
a b -,利用基本不等式求得它的范围. 【详解】
因为一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},由二次函数图像的性质可得a >0,二次函数的对称轴为x=1
a
-
=c ,△=4﹣4ab=0, ∴ac=﹣1,ab=1,∴c=1a
-
,b=1
a ,即c=-b,
则227a b a c +++=()2
9
a b a b
-+-=(a ﹣b )+9a b -,
当a ﹣b >0时,由基本不等式求得(a ﹣b )+9a b
-≥6, 当a ﹣b <0时,由基本不等式求得﹣(a ﹣b )﹣
9a b -≥6,即(a ﹣b )+9a b -≤﹣6, 故227a b a c
+++(其中a+c≠0)的取值范围为:(﹣∞,﹣6]∪[6,+∞), 故答案为(﹣∞,﹣6]∪[6,+∞).
【点睛】
本题主要考查二次函数图像的性质,考查利用基本不等式求最值.
17.【解析】【分析】结合已知条件结合余弦定理求得然后利用基本不等式求得的最大值进而求得三角形面积的最大值【详解】由于三角形面积①由余弦定理得②由①②得由于所以故化简得故化简得所以三角形面积故答案为【点睛
解析:
14 【解析】
【分析】 结合已知条件,结合余弦定理求得π4
C =
,然后利用基本不等式求得ab 的最大值,进而求得三角形ABC 面积的最大值.
【详解】 由于三角形面积2211sin 24a b S ab C +-==①,由余弦定理得221cos 2a b C ab
+-=②,由
①②得sin cos C C =,由于()0,πC ∈,所以π4C =.故221cos 22
a b C ab +-==,化简
221a b =+-22121a b ab =+-≥-,化简得22ab +≤
所以三角形
面积1121sin 22224S ab C =
≤⨯=.
故答案为
14
. 【点睛】
本小题主要考查余弦定理解三角形,考查三角形的面积公式,考查基本不等式求最值的方法,属于中档题. 18.【解析】【分析】根据正弦定理将边化为角再根据两角和正弦公式以及诱导公式化简得cosB 的值即得B 角【详解】由2bcosB =acosC +ccosA 及正弦定理得2sinBcosB =sinAcosC +sin 解析:3
π
【解析】
【分析】
根据正弦定理将边化为角,再根据两角和正弦公式以及诱导公式化简得cos B 的值,即得B 角.
【详解】
由2b cos B =a cos C +c cos A 及正弦定理,得2sin B cos B =sin A cos C +sin C cos A .
∴2sin B cos B =sin(A +C ).
又A +B +C =π,∴A +C =π-B .∴2sin B cos B =sin(π-B )=sin B .
又sin B ≠0,∴cos B =.∴B =.
∵在△ABC 中,a cos C +c cos A =b ,∴条件等式变为2b cos B =b ,∴cos B =.
又0<B <π,∴B =.
【点睛】
解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:
第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.
19.50【解析】由题意可得=填50
解析:50
【解析】
由题意可得51011912a a a a e ==,
1220ln ln ln a a a ++⋅⋅⋅+=1050121920110ln()ln()ln 50a a a a a a e ===L ,填50.
20.-
10【解析】作出可行域如图所示:由得平移直线由图象可知当直线经过点时直线的截距最大此时最小由得此时故答案为
解析:-10
【解析】
作出可行域如图所示:
由3z x y =-得33x z y =-,平移直线33
x z y =-,由图象可知当直线经过点A 时,直线33
x z y =-的截距最大,此时z 最小 由1{2
x x y =-+=得(1,3)A -,此时13310z =--⨯=- 故答案为10-
三、解答题
21.(1)2n a n =;(2)21
n n +. 【解析】
【分析】
(1)直接根据累加法即可求得数列{}n a 的通项公式;
(2)利用裂项相加即可得出数列{}n b 的前n 项和。

【详解】
(1)因为121n n a a n +=++,所以当2n ≥时:
()()()()21122111321n n n n n a a a a a a a a n n L L ---=-+-+-+=+++-=,
由于11a =满足2n a n =,所以求{}n a 的通项公式为2n a n =。

(2)因为1
41n n b a =-21
1114122121
n n n ⎛⎫==- ⎪--+⎝⎭, 所以数列{}n b 的前n 项和为:
12111111123352121
n n T b b b n n ⎛⎫=+++=-+-++- ⎪-+⎝⎭
L L 11122121n n n ⎛⎫=-= ⎪++⎝⎭。

【点睛】
本题考查数列的通项公式的求法以及裂项相消法求和,考查学生对于累加法以及裂项相消法求和的理解与使用,考查化归与转化思想,考查计算能力,是中档题。

22.(1)a n =2n -1(2)T n =
21n n + 【解析】
【分析】
(1)本题首先可以对235220a a a ++=化简得到14820a d +=,再对10100S =化简得到11045100a d +=,最后两式联立,解出1d a 、的值,得出结果;
(2)可通过裂项相消法化简求出结果.
【详解】
(1)由已知得235111248201091010451002a a a a d a d a d ++=+=⎧⎪⎨⨯+=+=⎪⎩
, 解得11d 2a ==,,
所以{}n a 的通项公式为()12121n a n n =+-=-,
(2)()()1111 212122121n b n n n n ⎛⎫==- ⎪-⋅+-+⎝⎭
, 所以数列{}n b 的前n 项和11111112335212121n n T n n n ⎛⎫=
-+-++-= ⎪-++⎝⎭L . 【点睛】
裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭
;(2)
1k =; (3)()()1
111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎢⎥⎣⎦
;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
23.(1)32n a n =-,2n n b =,*
n N ∈;(2)()143283n n +-+,*n N ∈. 【解析】
【分析】
(1)由等差数列和等比数列的基本量法求数列的通项公式;
(2)用错位相减法求和.
【详解】
(1)数列{}n b 公比为q ,则2232212b b q q +=+=,∵0q >,∴2q =,
∴2n
n b =, {}n a 的公差为d ,首项是1a ,
则41328a a b ==-,411411112176S b ==⨯=, ∴1113281110111762a d a a d +-=⎧⎪⎨⨯+⨯=⎪⎩
,解得113a d =⎧⎨=⎩. ∴13(1)32n a n n =+-=-.
(2)21221(62)2n n n a b n --⋅=-⋅,数列{}221n n a b -⋅的前n 项和记为n T ,
352142102162(62)2n n T n -=⨯+⨯+⨯++-⋅L ,①
23572121242102162(68)2(62)2n n n T n n -+=⨯+⨯+⨯++-⋅+-⋅L ,②
①-②得:35212138626262
(62)2n n n T n -+-=+⨯+⨯++⨯--⨯L 1218(14)86(62)214
n n n -+-=+⨯--⨯-14(23)8n n +=--, ∴14(32)83
n n n T +-+=. 【点睛】
本题考查等差数列和等比数列的通项公式,考查等差数列的前n 项和及错位相减法求和.在求等差数列和等比数列的通项公式及前n 项和公式时,基本量法是最基本也是最重要的方法,务必掌握,数列求和时除公式法外,有些特殊方法也需掌握:错位相减法,裂项相消法,分组(并项)求和法等等.
24.(1)该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元/吨;(2)该单位每月不获利,需要国家每月至少补贴40000元才能不亏损.
【解析】
【分析】
(1)根据已知得平均处理成本为y x
,得到关系式后利用基本不等式求得平均处理成本的最小值,并根据基本不等式等号成立条件求得每月处理量;(2)获利
()213003500002
10x S x y =-=---,根据二次函数图象可求得[]80000,40000S ∈--,可知不获利,同时求得国家至少补贴40000元.
【详解】
(1)由题意可知,二氧化碳每吨的平均处理成本为:
1800002002002002y x x x =+-≥= 当且仅当1800002x x
=,即400x =时取等号 ∴月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元/吨 (2)不获利
设该单位每月获利为S 元
()222110010020080000113008000030035000222S x y x x x x x x ⎛⎫=-=--+ ⎪=-+-=---⎝⎭
[]400,600x ∈Q []80000,40000S ∴∈--
故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损
【点睛】
本题考查构造函数模型解决实际问题,主要涉及的内容是利用基本不等式求解函数的最
值、利用二次函数图象求解最值的问题.
25.(Ⅰ)5950(Ⅱ)a =13 【解析】 【分析】 【详解】 2
22221131sin cos 2cos 12sin cos 12sin cos 2sin 222222
B C A A A A A A A ++=+-=++-=+-⋅ 3sin 5A =
,4cos 5A ∴= 2231314959sin cos 2cos 2sin 2222225 5 250
B C A A A ++=+-=+⨯-⨯= (2)133sin ,2,sin 25
bc A b A ===
26.(1)
72(2)3a >- 【解析】
【分析】
(1)由题得()122f x x x =+
+,再利用对勾函数的性质得到函数()f x 的最小值;(2)等价于22y x x a =++>0,再利用函数的单调性求函数的最小值即得解.
【详解】
(1)当12
a =时,()122f x x x =++, ∵()f x 在区间[)1,+∞上为增函数,
∴由对勾函数的性质知函数()f x 在区间[)1,+∞上的最小值为()712
f =. (2)在区间[)1,+∞上,()220x x a f x x
++=>恒成立220x x a ⇔++>恒成立. 设2
2y x x a =++,[)1,x ∈+∞, 因为()222+a=11y x x x a =+++-在[
)1,+∞上递增,
∴当1x =时,min 3y a =+,
于是,当且仅当min 30y a =+>时,函数()0f x >恒成立,
故3a >-.
【点睛】
本题主要考查对勾函数的性质,考查不等式的恒成立问题和二次函数的性质,意在考查学生对这些知识的理解掌握水平.。

相关文档
最新文档