智能控制 第2章 模糊控制论-控制系统

合集下载

智能控制技术-第三课模糊控制2

智能控制技术-第三课模糊控制2

相应输入(-6~6)对应不同集合的隶属度函数值(e=2.4,元素2)
µ NL NM NS ZE PS PM PL
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
1.0 0.8 0.4 0.1 0 0.2 0.7 1.0 0.7 0.2 0 0 0.2 0.7 1.0 0.9 0 0.5 1.0 0.5 0.9 1.0 0.7 0.2 0 0 0.2 0.7 1.0 0.7 0.2 0.1 0.4 0.8 1.0
如果A’=A
0.2 那么 0.2 B A R C 1 0.8 0.6 0.4 0.2 0.2 0.2 0.2 0.2 0.4 0.6 0.8 1
0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2
0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2
1 0.8 0.6 0.4 0.2
0.2 0.4 0.6 0.8 1 B “高电压” 1 2 3 4 5
方法2. 采用积运算法,即为RP
1 0.8 0.6 0.4 0.2
其中,每个元素是按最大-最小的合成规则计算出来的。如,上 式中第一个元素是这样计算的:
(1 0.2) (0.8 0.2) (0.6 0.2) (0.4 0.2) (0.2 0.2) 0.2 0.2 0.2 0.2 0.2 0.2
如果A’=A B A R p 0.2 0.4 0.6 0.8 1
如果A’=A2 B A2 R p 0.2 0.4 0.6 0.8 1

《智能控制》课程教学大纲(本科)

《智能控制》课程教学大纲(本科)

《智能控制》课程教学大纲注:课程类别是指公共基础课/学科基础课/专业课;课程性质是指必修/限选/任选。

一、课程地位与课程目标(-)课程地位《智能控制》是自动化专业的专业教育课程,代表着自动控制理论发展的新阶段,教学目的是培养学生掌握智能控制的基本概念,熟悉智能控制系统分析设计的一般方法及其应用。

本课程以智能控制中发展比较成熟的模糊控制、神经网络技术的理论与应用作为主要教学内容,介绍在工业领域中用传统方法难以解决的复杂系统的控制问题。

学生通过本课程的学习,可掌握智能控制系统的基本概念、工作原理、设计方法和实际应用,具备初步的运用智能控制理论和技术,对复杂控制工程问题进行分析、设计及解决实际问题的能力。

(二)课程目标(1)理解智能控制的基本概念,熟悉智能控制系统分析与设计的理论知识体系,具有面向自动化领域复杂控制工程问题的理解能力;培养大学生的科学精神,实事求是、开拓进取;(2)掌握模糊控制及人工神经网络的基本原理,具有运用智能控制理论,针对复杂控制工程问题进行计算和模拟的能力;培养大学生顽强拼搏、不畏挫折、勇于创新的精神。

(3)掌握智能控制系统设计的基本方法,具有运用智能控制理论和技术,针对复杂控制工程问题进行分析、设计和改进的能力。

二、课程目标达成的途径与方法《智能控制》课程教学以课堂教学为主,结合自主学习和上机教学,针对难以建模的控制对象,学习用模糊控制或人工神经网络控制的基本理论和方法,分析控制系统任务需求, 设计控制器的专业基础知识。

培养学生掌握智能控制的基本概念,熟悉智能控制系统分析设计的一般方法,具备初步的运用智能控制理论和技术,针对复杂控制工程问题进行分析、设计和改进的能力。

(1)课堂教学主要讲述智能控制的基本概念,基本原理、基本设计方法,在课堂教学中,充分引入互动环节,提高教学效果。

通过指导学生学习使用MATLAB仿真软件,进行简单的工程实例设计,使学生能够更加容易理解抽象的理论知识,提高学习兴趣,熟悉智能控制系统分析与设计的理论知识体系,形成良好的思维方式和学习方法。

模糊控制理论及应用

模糊控制理论及应用

模糊控制理论及应用模糊控制是一种基于模糊逻辑的控制方法,它能够应对现实世界的不确定性和模糊性。

本文将介绍模糊控制的基本原理、应用领域以及未来的发展趋势。

一、模糊控制的基本原理模糊控制的基本原理是基于模糊逻辑的推理和模糊集合的运算。

在传统的控制理论中,输入和输出之间的关系是通过精确的数学模型描述的,而在模糊控制中,输入和输出之间的关系是通过模糊规则来描述的。

模糊规则由模糊的IF-THEN语句组成,模糊推理通过模糊规则进行,从而得到输出的模糊集合。

最后,通过去模糊化操作将模糊集合转化为具体的输出值。

二、模糊控制的应用领域模糊控制具有广泛的应用领域,包括自动化控制、机器人控制、交通控制、电力系统、工业过程控制等。

1. 自动化控制:模糊控制在自动化控制领域中起到了重要作用。

它可以处理一些非线性和模糊性较强的系统,使系统更加稳定和鲁棒。

2. 机器人控制:在机器人控制领域,模糊控制可以处理环境的不确定性和模糊性。

通过模糊控制,机器人可以对复杂的环境做出智能响应。

3. 交通控制:模糊控制在交通控制领域中有重要的应用。

通过模糊控制,交通信号可以根据实际情况进行动态调整,提高交通的效率和安全性。

4. 电力系统:在电力系统中,模糊控制可以应对电力系统的不确定性和复杂性。

通过模糊控制,电力系统可以实现优化运行,提高供电的可靠性。

5. 工业过程控制:在工业生产中,许多过程具有非线性和不确定性特点。

模糊控制可以应对这些问题,提高生产过程的稳定性和质量。

三、模糊控制的发展趋势随着人工智能技术的发展,模糊控制也在不断演进和创新。

未来的发展趋势主要体现在以下几个方面:1. 混合控制:将模糊控制与其他控制方法相结合,形成混合控制方法。

通过混合控制,可以充分发挥各种控制方法的优势,提高系统的性能。

2. 智能化:利用人工智能技术,使模糊控制系统更加智能化。

例如,引入神经网络等技术,提高模糊控制系统的学习和适应能力。

3. 自适应控制:模糊控制可以根据系统的变化自适应地调整模糊规则和参数。

第二章模糊控制理论基础

第二章模糊控制理论基础

0
x
2、变量所取隶属度函数通常是对称和平衡的。
很低
1

适中

很高
Degree of membership
0.8
标称名:语言值 (个数适中:3~ 9个(通常是奇 数)) 语言值的个 数和规则数 成正比。
0.6
0.4
0.2
0 5
20
30
50
70
95
100
速度(语言变量)
3、隶属度函数要符合人们的语言顺序,避免不恰当的重叠
F F / u
例 以年龄为论域,取 U 0,100 。Zadeh给出了“年轻”的模糊集F, 其隶属函数为
1
Degree of membership
0 u 25 1 1 F (u ) u 25 2 25 u 100 1 5
例: F ={(0,1.0), (1 ,0.9), (2 ,0.75), (3,0.5),(4 ,0.2), (5 ,0.1) } (3)向量表示法 F ={(u1),(u2),…,(un)} (元素u按次序排列)
F ={1.0 ,0.9, 0.75,0.5,0.2 ,0.1 } 例:
模糊集合的表示方法: 2、论域为连续域
u F
(隶属函数 F:u隶属于F的程度)
(映射)
F (u)=1:u完全属于F; F (u)= 0:u完全不属于F; 0< F (u)<1:u部分属于F。 U中的模糊集F可以用元素u和它的隶属度来表示: F={(u ,F (u) )| uU}
例2-2 设F是远大于0的实数集合(显然F是模糊集 合,而论域U表示全部实数集合),U中任一元素u隶 属模糊集合F的隶属度F (u)可以用下式来定义:

智能控制理论及应用复习

智能控制理论及应用复习

智能控制理论及应用第1章绪论■《智能控制》在自动化课程体系中的位置《智能控制》是一门控制理论课程,研究如何运用人工智能的方法来构造控制系统和设计控制器。

与《自动控制原理》和《现代控制原理》一起构成了自动控制课程体系的理论基础。

■《智能控制》在控制理论中的位置《智能控制》是目前控制理论的最高级形式,代表了控制理论的发展趋势,能有效地处理复杂的控制问题。

其相关技术可以推广应用于控制之外的领域:金融、管理、土木、设计等等。

■经典控制和现代控制理论的统称为传统控制,智能控制是人工智能与控制理论交叉的产物,是传统控制理论发展的高级阶段。

智能控制是针对系统的复杂性、非线性和不确定性而提出来的。

■传统控制和智能控制的主要区别:➢传统控制方法在处理复杂化和不确定性问题方面能力很低;智能控制在处理复杂性、不确定性方面能力较高。

智能控制系统的核心任务是控制具有复杂性和不确定性的系统,而控制的最有效途径就是采用仿人智能控制决策。

➢传统控制是基于被控对象精确模型的控制方式;智能控制的核心是基于知识进行智能决策,采用灵活机动的决策方式迫使控制朝着期望的目标逼近。

传统控制和智能控制的统一:智能控制擅长解决非线性、时变等复杂的控制问题,而传统控制适于解决线性、时不变等相对简单的控制问题。

智能控制的许多解决方案是在传统控制方案基础上的改进,因此,智能控制是对传统控制的扩充和发展,传统控制是智能控制的一个组成部分。

■智能控制与传统控制的特点。

传统控制:经典反馈控制和现代理论控制。

它们的主要特征是基于精确的系统数学模型的控制。

适于解决线性、时不变等相对简单的控制问题。

智能控制:以上问题用智能的方法同样可以解决。

智能控制是对传统控制理论的发展,传统控制是智能控制的一个组成部分,在这个意义下,两者可以统一在智能控制的框架下。

■智能控制应用对象的特点(1)不确定性的模型模型未知或知之甚少;模型的结构和参数可能在很大范围内变化。

(2)高度的非线性(3)复杂的任务要求■自动控制的发展过程■智能控制系统的结构一般有哪几部分组成,它们之间存在什么关系?答:智能控制系统的基本结构一般由三个部分组成:人工智能(AI):是一个知识处理系统,具有记忆、学习、信息处理、形式语言、启发式推理等功能。

智能控制技术(模糊控制)

智能控制技术(模糊控制)

INTELLIGENT CONTROL
随着系统复杂程度的提高,将难以建立系统的精 确数学模型和满足实时控制的要求。 人们希望探索一种除数学模型以外的描述手段和 处理方法。 例如: 骑自行车 水箱水温控制
2011年4月10日
INTELLIGENT CONTROL
模糊控制就是模仿上述人的控制过程,其中包 含了人的控制经验和知识。从这个意义上来说,模 糊控制也是一种智能控制。模糊控制方法既可用于 简单的控制对象,也可用于复杂的过程。 模糊控制是以模糊集合论作为数学基础。 1965年L.A.Zandeh(美国教授)首先提出了模糊集 合的概念。 1974年E.H.Mamdani(英国教授)首先将模糊集合 理论应用于加热器的控制。 典 型 例 子
2011年4月10日
INTELLIGENT CONTROL
二、模糊控制的特点 特点: (1)无需知道被控对象的数学模型 (2)是一种反映人类智慧思维的智能控制 (3)易被人接受 (4)构造容易 (5)鲁棒性好
2011年4月10日
INTELLIGENT CONTROL
第二节
模糊集合论基础 一、模糊集合的概念 二、模糊集合的运算 三、隶属函数的建立 四、模糊关系
2011年4月10日
INTELLIGENT CONTROL
现代控制系统的数学模型难以通过传统的数学工具 来描述。就是说,采用数学工具或计算机仿真技术的传 统控制理论,已无法解决此类系统的控制问题。 从生产实践中可以看到,许多复杂的生产过程难以 实现的目标,可以通过熟练的操作工、技术人员或专家 的操作得到满意的控制效果。 如何有效地将熟练操作工、技术人员或专家的经验 知识和控制理论结合,去解决复杂系统的控制问题,就 是智能控制研究的目标。

智能控制

智能控制

第一章复杂系统的特点在传统的控制系统中,控制的任务要求输出为定值,或者要求输出量跟随期望的值变化,因此控制任务比较单一。

而对于复杂的控制任务:如:智能机器人系统、复杂工业过程控制系统、计算机集成制造系统、航天航空控制系统、社会经济管理系统、环境及能源系统等,传统的控制理论都无能为力。

传统控制理论的局限性1.传统的控制理论建立在精确的数学模型基础上——用微分或差分方程来描述。

不能反映人工智能过程:推理、分析、学习。

丢失许多有用的信息2.不能适应大的系统参数和结构的变化自适应控制和自校正控制——通过对系统某些重要参数的估计以克服小的、变化较慢的参数不确定性和干扰。

鲁棒控制——在参数或频率响应处于允许集合内,保证被控系统的稳定。

注:自适应控制鲁棒控制不能克服数学模型严重的不确定性和工作点剧烈的变化。

3.传统的控制系统输入信息模式单一通常处理较简单的物理量:电量(电压、电流、阻抗);机械量(位移、速度、加速度)复杂系统要考虑:视觉、听觉、触觉信号,包括图形、文字、语言、声音等。

智能定义(Albus):按系统的一般行为特性,指在不确定环境中作出合适动作的能力是自动控制(Au tomati c Control)和人工智能(A rtifi cial Intelligen ce)的交集和运筹学(OR)模糊控制与传统控制的区别:传统控制是从被控制对象的数学模型上考虑进行控制;模糊控制是从人类智能活动的角度和基础上去考虑实施控制。

模仿人的控制经验而不是依赖控制对象的模型智能控制的几个重要分支:一、专家系统和专家控制二、模糊控制三、神经网络控制四、学习控制智能控制系统的结构1. 定义a. 实现某种控制任务的智能系统。

智能系统是具备一定智能行为的系统。

若对于一个问题的激励输入,系统具备一定的智能行为,能够产生合适的求解问题的响应。

举例:智能洗衣机b.(Saridis的定义)通过驱动自主智能机来实现其目标而无需操作人员参与的系统举例:智能机器人智能控制系统的特点一混合控制过程,数学模型和非数学广义模型表示;适用于含有复杂性、不完全性、模糊性、不确定性和不存在已知算法的生产过程。

模糊控制

模糊控制

第2章模糊控制2.1 模糊控制自从1965年美国加利福尼亚大学控制论专家L .A .zadeh教授提出模糊数学以来”,吸引了众多的学者对其进行研究,使其理论与方法日臻完善,并且广泛地应用于自然科学和社会科学的各个领域,尤其是在第5代计算机研制和知识工程开发等领域占有特殊重要的地位。

把模糊逻辑应用于控制领域则始于1973年”。

1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机控制。

此后20多年来,模糊控制不断发展并在许多领域中得到成功应用。

由于模糊逻辑本身提供了由专家构造语言信息并将其转化为控制策略的一种系统的推理方法,因而能够解决许多复杂而无法建立精确数学模型系统的控制问题,所以它是处理推理系统和控制系统中不精确和不确定性的一种有效方法。

从广义上讲,模糊控制是适于模糊推理,模仿人的思维方式,对难以建立精确数学模型的对象实施的一种控制策略。

它是模糊数学同控制理论相结合的产物,同时也是智能控制的重要组成部分。

模糊控制的突出特点在于:①控制系统的设计不要求知道被控对象的精确数学模型,只需要提供现场操作人员的经验知识及操作数据。

⑦控制系统的鲁棒性强,适应于解决常规控制难以解决的非线性、时变及大纯滞后等问题。

③以语言变量代替常规的数学变量,易于形成专家的“知识”。

④控制推理采用“不精确推理”(Approximatc Reasoning)。

推理过程模仿人的思维过程。

由于介入了人类的经验.因而能够处理复杂甚至“病态”系统。

2.1.1模糊数学模糊数学是基于模糊集理论。

模糊集的概念与古典集非此即彼的概念相对应,描述没有明确、清楚地定义界限的集合。

模糊集的理论叙述为:模糊集A是定义在一个输入ξ之上并由其隶属函数µA(·):ξ→[0,1]表征的集合。

假设ξ是一个普通集合,称为论域。

从ξ到区间[0,1]的映射A称为ξ上的一个模糊集合。

µA(·)表示ξ隶属于模糊集合A的程度,称为隶属度。

智能控制题目及解答

智能控制题目及解答

智能控制题目及解答 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制2.智能控制系统有哪几种类型,各自的特点是什么3.比较智能控制与传统控制的特点。

4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么5.智能控制有哪些应用领域试举出一个应用实例,并说明其工作原理和控制性能。

1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。

智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。

智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。

是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。

2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。

(2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。

(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务。

3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。

在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。

模糊控制技术-第二章

模糊控制技术-第二章
5
上述定义表明:
①论域U中的元素是分明的,即U本身是普通 集合,只是U的子集是模糊集合,故称A为 U的模糊子集,简称模糊集。 ②隶属函数μA(u)是用来说明u隶属于A的程度 的,μA(u)的值越接近于1,表示u隶属于A 的程度越高;当μA(u)的值域变为{0,1}时, 隶属函数μA(u)蜕化为普通集合的特征函数, 模糊集合也就蜕化为普通集合。
' ~ ~ ~ ~ ~
~
0.1 0.1 0.6 0.5 0.7 0.9 0.9 1 C u1 u2 u3 u4
'
0.1 0.5 0.7 0.9 u1 u2 u3 u4
~
0.9 0.4 0.3 0.1 A u1 u2 u3 u4
18
台(support)集合
39
• 例:设X={1,2,3,4},Y={a,b, c},Z={α,β},Χ×Y以及Y×Z上的模糊关 系R与S如图所示。
2.2.2 模糊关系 (1)普通关系:客观世界存在的普遍现象,描 述了事物之间存在的某种联系。 1)集合的直积 • 由两个集合U和V的各自元素u与v组成的序 偶(u,v)的全体集合,称为U与V的直积,记 为U×V,即
U×V={(u,v)|u∈U,v∈V }
• 一般情况下,U×V≠V×U。 2)普通二元关系
A 和 A 分别称为模糊集合 A 的强 截集和弱
正则(normal)模糊集合
[0,) 1 (0, 1]
截集
如果:max A (u )
uU
1 ,则称A为正则模糊集合
凸(convex)模糊集合
A (u1 (1 )u2 ) min( A (u1 ), A (u2 )) u1,u2 U, [0, 1]

计算机智能控制第2讲模糊数学的基本概念-10-9资料

计算机智能控制第2讲模糊数学的基本概念-10-9资料

高斯函数 S函数
II函数
Z函数
S函数
II函数
关系的定义
关系的定义
关系是客观世界存在的普遍现象。如父子关
系、大小关系、属于关系、二元关系、多元关系
、多边关系等等(关系明确)直积体现着两集合
间的无约束关系,若给以约束,就形成关系。在
普通集合中,设论域U和V,从U到V的一个关系定
义为直积
1、为什么采用模糊控制?
传统的自动控制控制器的综合设计都要建立 在被控对象准确的数学模型(即传递函数模 型或状态空间模型)的基础上,但是在实际 中,很多系统的影响因素很多,油气混合 过程、缸内燃烧过程等) ,很难找出精确的 数学模型。这种情况下,模糊控制的诞生 就显得意义重大。因为模糊控制不用建立 数学模型不需要预先知道过程精确的数学 模型。
用模糊矩阵R来表示为
那么家中孙子、孙女与祖父、祖母的相似程度如 何?
模糊关系 也存在关 系合成, 主要通过 模糊关系 矩阵来合 成。
模糊关系合成
定义2-5 模糊关系合成:如果R和S分别为迪卡
尔空间

上的模糊关系,则R和S的合
成是定义在迪卡尔空间
上的模糊关系,
并记为
。其隶属度函数的计算方法为:
从模糊中寻找确定,“矬子里选将军”
定义:设Aλ∈F(U), λ∈[0,1] 则:
(1)
称Aλ为A的一个-
λ截集,称λ为阈值(或置信水平)。
(2) λ强截集。
称Aλ为A的一个-
(3) SuppA={u|u∈U, A(u)>0} ,A的支集
KerA={u|u ∈U,A(u)=1} ,A的核。
当A的核不空,称A为正规F集。
的一个子集R,记为

【精品论文】智能控制题目及解答

【精品论文】智能控制题目及解答

智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制?2.智能控制系统有哪几种类型,各自的特点是什么?3.比较智能控制与传统控制的特点。

4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么?5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能。

1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。

智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。

智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。

是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。

2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。

(2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。

(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务。

3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。

在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。

在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的和行为是否达到。

模糊控制毕业论文

模糊控制毕业论文

模糊控制考核论文姓名:郑鑫学号:1409814011 班级:149641 题目:模糊控制的理论与发展概述摘要模糊控制理论是以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行决策的一种高级控制策。

模糊控制作为以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制,它已成为目前实现智能控制的一种重要而又有效的形式尤其是模糊控制和神经网络、遗传算法及混沌理论等新学科的融合,正在显示出其巨大的应用潜力。

实质上模糊控制是一种非线性控制,从属于智能控制的范畴。

模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。

本文简单介绍了模糊控制的概念及应用,详细介绍了模糊控制器的设计,其中包含模糊控制系统的原理、模糊控制器的分类及其设计元素。

关键词:模糊控制;模糊控制器;现状及展望Abstract Fuzzy control theory is based on fuzzy mathematics, using language rule representation and advanced computer technology, it is a high-level control strategy which can make decision by the fuzzy reasoning. Fuzzy control is a computer numerical contro which based fuzzy set theory, fuzzy linguistic variables and fuzzy logic, it has become the effective form of intelligent control especially in the form of fuzzy control and neural networks, genetic algorithms and chaos theory and other new integration of disciplines, which is showing its great potential. Fuzzy control is essentially a nonlinear control, and subordinates intelligent control areas. A major feature of fuzzy control is both a systematic theory and a large number of the application background.This article introduces simply the concept and application of fuzzy control and introduces detailly the design of the fuzzy controller. It contains the principles of fuzzy control system, the classification of fuzzy controller and its design elements.Key words: Fuzzy Control; Fuzzy Controller; Status and Prospects.引言传统的常规PID控制方式是根据被控制对象的数学模型建立,虽然它的控制精度可以很高,但对于多变量且具有强耦合性的时变系统表现出很大的误差。

智能控制第2章 模糊控制改进(4)

智能控制第2章 模糊控制改进(4)
14
2.5.2 模糊控制的改进方法
常规PID参数的模糊自整定(用调节变化量的方式) Fuzzy控制器
de/dt
dkp dki dkd
r
-
e
PID控制器
对象
y
College of Information Science and Engineering, Chongqing Jiaotong University
9
2.5.2 模糊控制的改进方法
并联控制
复合控制器 模糊控 制器

对象
PI 控制器

当|E|≥1,模糊控制器开关闭合,PI控制器的输出与模糊控制器输
出的和作为被控对象输入, 克服不确定性因素影响,且有较强控制作用;
当|E|=0时, 模糊控制器输出断开,仅有PI控制器控制对象, 消除稳 态误差。
Simulink仿真实现
College of Information Science and Engineering, Chongqing Jiaotong University
6
Switch介绍
College of Information Science and Engineering, Chongqing Jiaotong University
2.5.2 模糊控制的改进方法
2 自校正模糊控制
针对普通模糊控制器的参数和控制规则在系统运行时无法在线调 整,自适应能力差的缺陷,自校正模糊控制器可以在线修正模糊控制 器的参数或控制规则,从而增强了模糊控制器的自适应能力,提高了 控制系统的动、静态性能和鲁棒性。 自校正模糊控制器通常分为两种: 参数自校正模糊控制器 规则自校正模糊控制器
3
2.5.2 模糊控制的改进方法

智能控制基础答案

智能控制基础答案

智能控制基础答案【篇一:智能控制基础思考题】xt>复习思考题一重要概念解释 1 智能控制答:智能控制是一门交叉学科,美国学者在运筹学的基础上提出了三元论的智能控制概念,即ic=ac n ai n or 各子集的含义为:ic为智能控制,ai为人工智能,ac为自动控制,or为运筹学。

所谓智能控制,即设计一个控制器,使之具有学习、抽象、推理、决策等功能,并能根据环境(包含被控对象或被控过程)信息的变化做出适应性反应,从而实现由人来完成的任务。

2 专家系统与专家控制答:专家系统是一类包含知识和推理的智能计算机程序,其内部包含某领域专家水平的知识和经验,具有解决专门问题的能力。

专家控制是智能控制的一个重要分支,又称专家智能控制。

所谓专家控制,是将专家系统的理论和技术同控制理论、方法与技术相结合,在未知环境下,仿效专家的经验,实现对系统的控制。

3 模糊集合与模糊关系,模糊推理模糊控制答:模糊集合:给定论域u上的一个模糊集a?是指:对任何元素u?u 都存在一个数?a?u???0,1?与之对应,表示元素u属于集合a?的程度,这个数称为元素u对集合a?的隶属度,这个集合称为模糊集合。

模糊关系:二元模糊关系:设a、b是两个非空集合,则直积a?b???a,b?|a?a,b?b?中的一个模糊集合称为从a到b的一个模糊关系。

模糊关系r?可由其隶属度?r?a,b?完全描述,隶属度?r?a,b?表明了元素a与元素b具有关系r?的程度。

模糊推理:知道了语言控制规则中蕴含的模糊关系后,就可以根据模糊关系和输入情况,来确定输出的情况,这就叫“模糊推理”。

4神经网络?答:人工神经网络(artificial neural network )是模拟人脑思维方式的数学模型。

神经网络是在现代生物学研究人脑组织成果的基础上提出的,用来模拟人类大脑神经网络的结构和行为,它从微观结构和功能上对人脑进行抽象和简化,神经网络反映了人脑功能的基本特征,如并行信息处理、学习、联想、模式分类、记忆等。

第二章模糊集合(1)

第二章模糊集合(1)
上例可写成 F={(0,1),(1,0.9),(2,0.75),(3,0.5), (4,0.2),(5,0.1)}
3)向量表示法
F { (u1 ), (u2 ),..., (un )}
此时,元素u应该按次序排列,隶属度值为零的项不能省略。 上例可写为 F={1,0.9,0.75,0.5,0.2,0.1} 上页
具有数学运算、符号运算的逻辑推理 边缘交叉学科 上页
小结
下页
茂名学院计算机与电子信息学院自动化系
—智能控制技术—
第二章 模糊控制的理论基础
第一节 引言
第二节 模糊集合论基础
一、普通集合 二、模糊集合的概念 三、模糊集合的运算 四、隶属函数(MF)的确定 五、模糊关系 上页
小结
下页
茂名学院计算机与电子信息学院自动化系
1 A 0
如果 X A 如果 X A
模糊集合:论域U中的模糊集F用一个在区间[0,1]上
取值的隶属函数
F (u) 来表示,即
F {(u, F (u)) | u U}
上页
小结
下页
茂名学院计算机与电子信息学院自动化系
—智能控制技术—
普通集合
X 6
1
X 6ቤተ መጻሕፍቲ ባይዱ
A 0
3)交换律 A∩B=B∩A, A∪B= B∪A
上页
小结
下页
茂名学院计算机与电子信息学院自动化系
—智能控制技术—
4)分配律 5)同一律 6)零一律 7)吸收律 8)德.摩根律
A∩(B∪C) =(A ∩ B)∪(A ∩ C) ; A∪(B∩C)=(A∪B)∩ (A∪C); A∩U=A, A∪Φ=A; A∩Φ=Φ, A∪U=U; A∩(A∪B)=A, A∪(A ∩ B)=A;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

j1
X1 X 2 ...X p U
A2 ... Ap ) R U(u ) (A1
j j { [ ( A ( x ) A ( x ) U (u ))]} i i i i j1 i 1 x i X i
n
p
20/76
T-S型模糊控制器 规则
规则库
用一系列模糊条件描 述,主要有:过程状 态输入变量和控制输 出变量的选择、模糊 控制规则的建立和模 糊控制规则的完整性、 兼容性、干扰性等问 题
6/76
数据库的建立
论域的离散化 (量化处理) 输入输出空间的模糊划分(并不唯一) 基本模糊子集的隶属度函数

离散时:
( u ) a i / u i
2.5.4 模糊控制器的常规设计方法
23/76
2.5.3 模糊控制器的设计原则
1
定义输入输出变量 定义所有变量的模糊化条件 设计控制规则库 设计模糊推理结构 选择精确化策略的方法
2
1 3
2 4
1 5
24/76
2.5 模糊控制系统的设计
2.5.1 模糊控制器的结构设计 2.5.2 模糊控制器的基本类型 2.5.3 模糊控制器的设计原则
i 1
5

连续时:函数(三角函数、高斯函数)
7/76
规则库的建立
过程状态输入变量和控制输出变量的选择 模糊控制规则的建立

基于模糊模型的控制 专家经验法 观察法 自组织法
8/76
2.4.3 决策逻辑
决策逻辑是模糊控制的核心。 有不同的方法。 最常见的为2 .3节介绍的Mamdani模糊推理 算法。
3
3 2 2 1 1 0 0
3
2 2 1 1 0 -1 -2
3
2 1 1 0 -1 -1 -2
3
2 1 0 -1 -1 -2 -2
0
0 0 -1 -1 -2 -2 -3
0
0 -1 -1 -2 -2 -3 -3
0
0 -2 -2 -2 -3 -3 -3
4
0
0
0
-3
-3
-3
-3
-3
-4
38/76
模糊控制输出
9/76
2.4.4 精确化(Defuzzification)过程
在推理得到的模糊集合中取一个能最佳代表 这个模糊推理结果可能性的精确值的过程就 称为精确化过程(又称为反模糊化)。
最大隶属度函数法 重心法 加权平均法
m
v0 maxv (v)
vV
v0

V V
m k 1 m
v v ( v)dv
重心法
1 0.2 0 0.4 1 0.2 2 0.2 3 0.2 u 1 0.2 0.4 0.2 0.2 0.2
39/76
目录
2.1 引言
2.2 模糊集合论基础 2.3 模糊逻辑、模糊逻辑推理和合成 2.4 模糊控制系统的组成 2.5 模糊控制系统的设计 2.6 模糊PID控制器
规则
R1: 如果 e 是 E1和 de 是 DE1 ,则 u 是 U1; R2:否则如果e 是 E2和 de 是 DE2 ,则 u 是 U2; : Rn: 否则如果 e 是 En和 de 是 DE2 ,则 u 是 Un。
( E i DE i ) U i 总的模糊蕴含关系 :R (e, de, u ) i 1
k3
u
对象
T
+
de
k2
量 化
y
27/76
举例:温度控制系统
以温度控制系统为例说明控制效果:

输入:被控温度误差e 输出:供电电压u
28/76
步骤1:模糊化过程
表2-1 模糊集的隶属度函数
误差eቤተ መጻሕፍቲ ባይዱ
误差率de 控制u
-50
-150 -64
-30
-90 -16
-15
-30 -4
-5
-10 -2
0
0 0
IF x1 is A12
2 AND x2 is A2
2 is Ap , then u is U 2
Rn :

IF x1 is A1n
n AND x2 is A2
AND ... x p
n is Ap , then u is U n
18/76
Mamdani型模糊控制器的获取
模糊输出:
A U (A1 2 ... Ap ) R
模糊关系:
R Rj
j1 n
j j R j A1j A2 ... Ap Uj
19/76
常见控制策略
选择模糊关系运算为取小“∧”、合成算子 为“∧-∨” 。
则有
R Rj
j1 n n j j j j A ( x ) A ( x ) ... A ( x ) U (u) /(x1 , x 2 ,...x p , u) p p 1 1 2 2
后件是系统状态变化量或输人变量的函数
R1 :
R2 :
1 1 IF x1 is A1 AND x2 is A2 AND ... xp is A1 , then u f1( x1 , x2 ,...x p ) p
IF x1 is A12
2 AND x2 is A2
2 AND ... x p is Ap , then u f 2 ( x1 , x2 ,...x p )
n
15/76
2.5 模糊控制系统的设计
2.5.1 模糊控制器的结构设计 2.5.2 模糊控制器的基本类型 2.5.3 模糊控制器的设计原则
2.5.4 模糊控制器的常规设计方法
16/76
2.5.2 模糊控制器的基本类型
按规则的形式和推理方法划分,主要有两类:

Mamdani型

英国Mamdani博士在1974年提出 最常用的模糊控制器之一 通常也称为传统的模糊控制器 Takagi和Sugeno于1985年首先提出

Rn : IF x1 is A1n
n AND x2 is A2 n AND ... x p is Ap , then u f n ( x1 , x2 ,...x p )
21/76
T-S型模糊控制器
控制输出:
u
w f (x , x
j1 j j 1
n
2
,...x p )
w
j1
n
32/76
阶段5的控制规则
规则 11:如果误差e是 NS、且误差变化 de是 NS,则控制 U为 PS; 规则 12:如果误差e是 NS、且误差变化 de是 NB,则控制 U为 PB; 规则 13:如果误差e是 ZE、且误差变化 de是 NS,则控制 U为 PS; 规则 14:如果误差e是 ZE、且误差变化 de是 NB,则控制 U为 PB。
13/76
一维模糊控制器
规则 R1: 如果 e 是 E1, 则 u 是 U1; R2: 否则如果 e 是 E2, 则 u 是 U2; : Rn: 否则如果 e 是 En, 则 u 是 Un。
总的模糊蕴含关系 : R (e, u ) E i U i
i 1 n
14/76
二维模糊控制器
3/76
基本结构
4/76
2.4.1 模糊化(Fuzzification)过程
模糊化过程是将精确的测量值转化为模糊子 集的过程 。 将输入量转化为语言值表示的隶属度。 语言值并不唯一 见图2-19
5/76
2.4.2 知识库
知识库包括数据库和规则库。
数据库
主要包括量化等级的 选择、量化方式(线 性量化或非线性量 化)、比例因子和模 糊子集的隶属度函数
11/76
2.5 模糊控制系统的设计
2.5.1 模糊控制器的结构设计 2.5.2 模糊控制器的基本类型 2.5.3 模糊控制器的设计原则
2.5.4 模糊控制器的常规设计方法
12/76
2.5.1 模糊控制器的结构设计
单变量模糊控制器

一维模糊控制器 二维模糊控制器 多维模糊控制器
多变量模糊控制器
j
wj为输入变量对第j条规则的匹配度。 可采用
wj wj
j j A1j (xi ) A2 (x 2 ) ... Ap (x p ) j j A1j (xi )A2 (x 2 )...Ap (x p )
22/76
2.5 模糊控制系统的设计
2.5.1 模糊控制器的结构设计 2.5.2 模糊控制器的基本类型 2.5.3 模糊控制器的设计原则
v
( v)dv
v0
v k
i 1 i
i
v0
vkv (vk )
k 1 v
k
i 1
m
i
(vk )
10/76
目录
2.1 引言
2.2 模糊集合论基础 2.3 模糊逻辑、模糊逻辑推理和合成 2.4 模糊控制系统的组成 2.5 模糊控制系统的设计 2.6 模糊PID控制器
2.7 模糊控制器的应用
31/76
阶段2的控制规则
规则5:如果误差e是NS、且误差变化de是ZE,则控制 U为PS; 规则6:如果误差e是NS、且误差变化de是PS,则控制 U为ZE; 规则7:如果误差e是NS、且误差变化de是PB,则控制 U为NS; 规则8:如果误差e是ZE、且误差变化de是ZE,则控 制U为ZE; 规则9: 如果误差e是ZE、且误差变化de是PS,则控 制U为NS; 规则10:如果误差e是ZE、且误差变化de是PB,则控 制U为NB。

Takagi-Sugeno型

17/76
相关文档
最新文档