初一数学测试有理数综合_2

合集下载

七上第二章《有理数》综合测验试题(含答案)初一数学

七上第二章《有理数》综合测验试题(含答案)初一数学

第二章《有理数》测验试题班级 姓名 得分一、 填空题(每空1分,共30分)1.常熟市某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。

2.绝对值大于1而不大于3的整数有 ,它们的和是 。

3.有理数-3,0,20,-1.25,143, -12- ,-(-5) 中,正整数是 ,负整数是 ,正分数是 ,非负数是 。

4.观察下面一列数,根据规律写出横线上的数:-11;21;-31;41; ; ;……;第2003个数是 。

5.321-的倒数是 ,321-的相反数是 ,321-的绝对值是 ,已知|a|=4,那么a = 。

6.比较大小:(1)-2 +6 ; (2) 0 -1.8 ;(3)23-_____ 45- 7.最小的正整数是_____;绝对值最小的有理数是_____。

绝对值等于3的数是______。

绝对值等于本身的数是 .8.直接写出答案:(1)(-2.8)+(+1.9)= ,(2)10.75(3)4--= , (3)0(12.19)--= ,(4)3(2)---= . 9.A 地海拔高度是-30米,B 地海拔高度是10米,C 地海拔高度是-10米,则 地势最高,_____地势最低,地势最高的与地势最低的相差______米。

10.某地一周内每天的最高气温与最低气温记录如下表:则温差最大的一天是星期_____;温差最小的一天是星期_______。

二、 选择题(每题2分,共20分)1.下列说法不正确的是 ( )A .0既不是正数,也不是负数B .1是绝对值最小的数C .一个有理数不是整数就是分数D .0的绝对值是0 2.2-的相反数是 ( )A .21-B .2-C .21D .23.下列交换加数的位置的变形中,正确的是( )A 、14541445-+-=-+-B 、1311131134644436-+--=+--C 、 12342143-+-=-+-D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-4.下列说法中正确的是 ( ) A.最小的整数是0 B. 互为相反数的两个数的绝对值相等C. 有理数分为正数和负数D. 如果两个数的绝对值相等,那么这两个数相等 5.绝对值大于2且小于5的所有整数的和是 ( ) A.7 B.-7 C.0 D.56.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在 ( ) A. 在家 B. 在学校 C. 在书店 D. 不在上述地方 7.计算:46+-的结果是 ( ) A 、2 B 、10 C 、2- D 、10-8.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式mba cd m ++-2的值为 ( ) A 、3- B 、3 C 、5- D 、3或5- 9.下列式子中,正确的是( )A .∣-5∣ =5B .-∣-5∣ = 5C .∣-0.5∣ =21-D .-∣- 21∣ =21 *10.如图,把一条绳子折成3折,用剪刀从中剪断,得到几条绳子? ( )A.3B.4C.5D.6 三、 判断题(每题1分,共10分)1.-21一定大于-41。

初一数学上册第2章有理数测试题(附答案青岛版)

初一数学上册第2章有理数测试题(附答案青岛版)

初一数学上册第2章有理数测试题(附答案青岛版)初一数学上册第2章有理数测试题(附答案青岛版)(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2013•山东青岛中考)-6的相反数是()A.-6B.6C.-D.2.下列说法中错误的是()A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.若仓库运进货物5t记作+5t,那么运出货物5t记作-5tD.一个有理数不是正有理数,那它一定是负有理数3.下列说法正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正有理数就是负有理数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B.2C.3D.44.(2013•山东菏泽中考)如图所示,数轴上的A,B,C三点所表示的数分别为a,b,c,其中AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边5.在,,,,,各数中,最大的数是()A.B.C.D.6.在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数7.如图,在数轴上点表示()A.B.C.D.8.的相反数是()A.B.C.D.9.(2013•浙江丽水中考)在数0,2,-3,-1.2中,属于负整数的是()A.0B.2C.-3D.-1.210.数轴上的点到原点的距离是,则点表示的数为()A.B.C.D.二、填空题(每小题3分,共24分)11.(2013•广西贵港中考)若超出标准质量0.05克记作+0.05克,则低于标准质量0.03克记作克.12.在有理数中,正数有____________________,负数有__________________.13.如果一个数的相反数等于它本身,那么这个数是_________.14.如图,数轴上点所表示的数的相反数为_________.15.在数轴上,将表示的点向右移动个单位长度后,对应点表示的数是_________.16.在这些数中,互为相反数的数有______对.17.在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是.18.+5.7的相反数与-7.1的绝对值的和是.三、解答题(共46分)19.(5分)在下表适当的空格里打"√"号.有理数整数分数正整数负分数自然数2-3.1420.(5分)把下列各数填在相应的大括号内:.正数:{,…};非负整数:{,…};整数:{,…};负分数:{,…}.21.(6分)一个物体沿着南北方向运动,如果把向南的方向规定为正,那么走,走,走的意义各是什么?22.(6分)在数轴上标出下列各数:并把它们用“>”连接起来.23.(6分)化简下列各数:(1);(2);(3);(4);(5);(6).24.(6分)已知的相反数等于,,求a、b的值.25.(6分)学校对七年级男生进行立定跳远的测试,以能跳及以上为达标,超过的厘米数用正数表示,不足的厘米数用负数表示.第一组10名男生成绩如下:第一组有百分之几的学生达标?26.(6分)某体育用品公司生产了一批比赛用的篮球,比赛用的篮球质量有严格规定,其中误差符合要求,现质检员从中抽取6个篮球进行检查,检查结果如下表:①②③④⑤⑥(1)有几个篮球符合质量要求?(2)其中质量最接近标准的是几号球?第2章有理数检测题参考答案1.B2.D解析:有理数包括正有理数、负有理数和零,故D不正确.3.B解析:整数和分数统称为有理数,所以①正确;有理数包括正有理数、负有理数和零,所以②不正确;整数包括正整数、负整数和零,所以③不正确;分数包括正分数和负分数,所以④正确.故选B.4.C解析:若数轴的原点O在点A的左边,则|c|>b>a,与已知|a|>|c|>|b|不符,故选项A错误;若数轴的原点O在点A与点B之间,则|c|最大,也与已知不符,故选项B错误;若数轴的原点O在点B与点C 之间,则有|a|>|c|>|b|的可能,故选项C正确;若数轴的原点O在点C的右边,则|a|>|b|>|c|,与已知也不符,故选项D错误.5.C解析:可将这些数标在数轴上,最右边的数最大.也可根据:负数比较大小,绝对值大的反而小,来比较.故选C.6.D解析:由数轴的定义,知原点表示的数是,原点右边的点表示的数是正数,所以原点及原点右边的点表示的数都是非负数.7.A解析:由图可知,数轴上的点对应的数是.8.B解析:的相反数是.故选B.9.C解析:本题考查了有理数的分类.0既不是正整数也不是负整数,2是正整数,-1.2是负分数.10.A解析:与原点距离为6的点有两个,分别为和.11.-0.03解析:本题考查了正负数的意义,超出标准质量0.05克记作+0.05克,则低于标准质量0.03克记作-0.03克.12.13.解析:只有0的相反数等于它本身.14.解析:点所表示的数为,所以它的相反数为15.2解析:画图可知,表示的点向右移动个单位长度后,对应点表示的数是2.16.3解析:因为所以和互为相反数;因为所以和互为相反数;因为所以和互为相反数.17.解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数有两个,分别位于点的两侧,分别是18.1.4解析:的相反数为,的绝对值为7.1,所以的相反数与-7.1的绝对值的和是19.解:有理数整数分数正整数负分数自然数2√√√√-3.14√√√0√√√√√√20.解:正数:非负整数:;整数:;负分数:.21.解:走的意义是向南走了,走的意义是向北走了,走的意义是没有动.22.解:如下图,把它们用“>”连接起来为:.23.解:(1);(2);(3);(4);(5);(6).24.解:因为的相反数等于,所以.因为,所以.25.分析:因为以能跳及以上为达标,超过的厘米数用正数表示,不足的厘米数用负数表示,所以成绩是或正数为达标,一共有7个,再除以总人数即为所求.解:达标的有人,因而达标率是.答:第一组有的学生达标.26.解:(1),,,,,,只有第④个球的质量绝对值大于,不符合质量要求,其他都符合,所以有5个篮球符合质量要求.(2)因为,绝对值最小,所以⑤号球的质量最接近标准质量.。

初一数学有理数月考卷

初一数学有理数月考卷

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是有理数?()A. √2B. πC. 3.14D. √12. 如果|a|=5,那么a的值可以是()A. 5B. 5C. 5或5D. 03. 下列运算中,结果为负数的是()A. (2) + (3)B. (2) (3)C. (2) × (3)D. (2) ÷ (3)4. 下列各数中,最小的数是()A. 1B. 0C. 1D. 1和05. 有理数的乘法中,负数乘以负数的结果是()A. 正数B. 负数C. 0D. 无法确定二、判断题(每题1分,共5分)1. 任何两个有理数的和仍然是有理数。

()2. 0是正数和负数的分界点。

()3. 两个负数相乘一定得正数。

()4. 有理数的除法可以转化为乘法。

()5. 绝对值相等的两个数相等。

()三、填空题(每题1分,共5分)1. |5|=______。

2. 如果3x=6,那么x=______。

3. 2的平方是______。

4. 5的立方是______。

5. 1÷(1/2)的结果是______。

四、简答题(每题2分,共10分)1. 简述有理数的分类。

2. 解释什么是有理数的乘法法则。

3. 请说明绝对值的意义。

4. 简述如何比较两个负数的大小。

5. 请解释有理数除法的运算规则。

五、应用题(每题2分,共10分)1. 计算下列各式的值:(3) + 7 (2)。

2. 如果一个数的相反数是4,那么这个数是多少?3. 计算:(5/2) × (4/3)。

4. 已知一个数的绝对值是4,这个数可能是多少?5. 解方程:2x 5 = 3。

六、分析题(每题5分,共10分)1. 分析有理数加法和乘法的运算规律,并举例说明。

2. 讨论绝对值在解决实际问题中的应用。

七、实践操作题(每题5分,共10分)八、专业设计题(每题2分,共10分)1. 设计一个有理数加法游戏,说明游戏规则及如何判定胜负。

2. 设计一个方法,用数轴上的点来表示一个有理数,并解释你的方法。

初一数学上册《有理数》综合测试卷附解析

初一数学上册《有理数》综合测试卷附解析

初一数学上册《有理数》综合测试卷附解析第一章《有理数》单元综合测试题(附答案)一、选择题(每小题3分,共30分)1.下列说法正确的是()A.任何负数都小于它的相反数B.零除以任何数都等于零C.若,则D.两个负数比较大小,大的反而小2.假如一个数的绝对值等于它的相反数,那么那个数()A.必为正数B.必为负数C.一定不是正数D.不能确定正负3.当、互为相反数时,下列各式一定成立的是()A.B.C.D.4.的运算结果是()A.0B.C.D.5.为有理数,则下列各式成立的是()A.B.C.D.6.假如一个数的平方与那个数的绝对值相等,那么那个数是()A.0B.1C.-1D.0,1或-17.若3.0860是四舍五入得到的近似数,则下列说法中正确的是()A.它有四个有效数字3,0,8,6B.它有五个有效数字3,0,8,6,0C.它精确到0.001D.它精确到百分位8.已知,,则,,按从小到大的顺序排列为()A.B.C.D.9.下列各组运算中,其值最小的是()A.B.C.D.10.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是()A.28B.33C.45D.57二、填空题(每小题3分,共24分)11.绝对值小于5的整数共有___________个。

12.当时,_______(填“>”“=”或“<”)。

13.假如与互为相反数,那么的倒数是____________。

14.在数轴上表示-5的点到原点的距离等于_____________。

15.假如由四舍五入得到的近似数是35,那么34.49,34.51,34.99,3 5.01这四个数中不可能是真值的为________________。

16.____________时,代数式的值是-2。

17.假如,且,那么______0,_______0。

18.若,则__________,__________。

三、解答题(共46分)19.(3分)有理数、、在数轴上的对应点分别为A、B、C,其位置如下图所示,试化简:20.(3分)把下列各数化简后在数轴上表示出来,并把它们按从小到大的顺序用“<”号连接起来。

苏科版七年级上册数学 有理数综合测试卷(word含答案)

苏科版七年级上册数学 有理数综合测试卷(word含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为________;点B表示的数为________;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=________;乙小球到原点的距离=________;当t=3时,甲小球到原点的距离=________;乙小球到原点的距离=________;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.________【答案】(1)-2;4(2)3;2;5;2;能.理由:当0<t≤2时,t+2=4-2t解之:当t>2时,t+2=2t-4解之:t=6∴当或6时,甲乙两小球到原点的距离相等.【解析】【解答】解:(1)∵a、b满足|a+2|+|b﹣4|=0,∴a+2=0且b-4=0解之:a=-2且b=4,∵在数轴上A点表示数a,B点表示数b,∴点A表示的数是-2,点B表示的数是4.故答案为:-2,4.(2)当0<t≤2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(4-2t)个单位长度;当t>2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(2t-4)个单位长度;①当t=1时,甲小球到原点的距离为:1+2=3;乙小球到原点的距离为4-2×1=2;当t=3时,甲小球到原点的距离为:3+2=5;乙小球到原点的距离为2×3-4=2;故答案为:3,2;5,2【分析】(1)利用几个非负数之和为0,则每一个数都是0,建立关于a,b的方程组,解方程组求出a,b的值,就可得到点A,B所表示的数。

初一数学七年级人教版上册第1章《有理数》单元综合测试题答案解析

初一数学七年级人教版上册第1章《有理数》单元综合测试题答案解析

初一数学七年级人教版上册第1章《有理数》单元综合测试题一.选择题1.阿里巴巴数据显示,2017年天猫商城“双11”全球狂欢交易额超957亿元,数据957亿用科学记数法表示为()A.957×108B. 95.7×109C.9.57×1010D.0.957×1010【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:将957亿用科学记数法表示约为:9.57×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列运算结果为正数的是()A. ﹣32B. ﹣3÷2C. ﹣1+2D. 0×(﹣2018)【答案】C【解析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.解:∵-32=-9,-3÷2=-32,-1+2=1,0×(-2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.在﹣2、3、﹣4、﹣5这四个数中任取两个数相乘,得到的积最大的是()A. 20B. ﹣20C. 10D. 8【答案】A【解析】观察四个数,不难得出,选择﹣4与﹣5相乘,得到的积最大.﹣4与﹣5乘积最大,为20.故选A.【点评】本题主要掌握有理数的乘法运算法则,两数相乘,同号得正,异号得负,并把绝对值相乘.4.下列说法正确的是()①最小的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A. 2个B. 3个C. 4个D. 5个【答案】C【解析】①最大的负整数是1,故不正确;②2和-2的绝对值相等,则数轴上表示数2和-2的点到原点的距离相等,故命题正确;③正确;④正确;⑤正确.故选C.【考点】1.有理数的乘方;2.有理数;3.数轴;4.绝对值;5.有理数大小比较.5.在﹣112,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数的个数有()A. 2个B. 3个C. 4个D. 5 个【答案】B【解析】根据正数与负数的定义求解.解:在-112,15,-10,0,-(-5),-|+3|中,负数有-112、-10、-|+3|这3个,故选:B.【点评】本题考查了正数和负数:在以前学过的0以外的数叫做正数,在正数前面加负号“-”,叫做负数,一个数前面的“+”“-”号叫做它的符号.6.如图,在数轴上点A最可能表示的数的绝对值是()A. ﹣2.5B. 2.5C. ﹣3.5D. 3.5【答案】B【解析】根据数轴的定义即可求出答案.解:由数轴可知:点A表示的数为a,∴-3<a<-2,∴在数轴上点A最可能表示的数的绝对值是2.5.故选:B.【点评】本题考查数轴的性质,解题的关键是正确理解数轴的定义,本题属于基础题型.7.a,b,c三个数的位置如图所示,下列结论不正确的是()A. a+b<0B. b+c<0C. b+a>0D. a+c>0【答案】C【解析】根据数轴上点的位置判断出a,b,c的大小,利用有理数的加法法则判断即可.解:根据数轴上点的位置得:-4<b<-3<-1<0<1<c,即|a|<|c|<|b|,∴a+b<0,b+c<0,b+a<0,a+c>0,故选:C.【点评】此题考查了有理数的加法,以及数轴,熟练掌握运算法则是解本题的关键.8.已知有理数a,b,c在数轴上对应的位置如图所示,化简|b﹣c|﹣|c﹣a|( )A. b﹣2c+aB. b﹣2c﹣aC. b+aD. b﹣a【答案】D【解析】观察数轴,可知:c<0<b<a,进而可得出b﹣c>0、c﹣a<0,再结合绝对值的定义,即可求出|b﹣c|﹣|c﹣a|的值.观察数轴,可知:c<0<b<a,∴b﹣c>0,c﹣a<0,∴|b﹣c|﹣|c﹣a|=b﹣c﹣(a﹣c)= b﹣c﹣a+c=b﹣a.故选D.【点评】本题考查了数轴以及绝对值,由数轴上a、b、c的位置关系结合绝对值的定义求出|b﹣c|﹣|c﹣a|的值是解题的关键.9.下列结论成立的是( )A. 若|a|=a,则a>0B. 若|a|=|b|,则a=±bC. 若|a|>a,则a≤0D. 若|a|>|b|,则a>b.【答案】B【解析】若|a|=a,则a为正数或0;若|a|=|b|,则a与b互为相反数或相等;若|a|>a,则a为正数;若|a|>|b|,若a,b均为正数,则a>b;若a,b均为负数,则a<b;若a,b为一正一负或有一个为0,则a,b的大小不能确定.A.若|a|=a,则a为正数或0,故结论不成立;B.若|a|=|b|,则a与b互为相反数或相等,故结论成立;C.若|a|>a,则a为负数,故结论不成立;D.若|a|>|b|,若a,b均为负数,则a<b,故结论不成立.故选B.【点评】本题考查了的知识点有:正、负数的意义、绝对值的意义,有理数的大小比较等.10.若ab≠0,则aabb+的值不可能是()A. 0B. 1C. 2D. ﹣2 【答案】D【解析】当a、b同号时,a ba b+=±2,当a、b异号时,a ba b+=0,由此即可判断.解:当a、b同号时,a ba b+=±2,当a、b异号时,a ba b+=0,故选:D.【点评】本题考查有理数的加法法则以及乘法法则,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二.填空题11.计算:|-3|-1=__.【答案】2【解析】根据有理数的加减混合运算法则计算.解:|﹣3|﹣1=3-1=2.故答案为:2.【点评】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.12.将数轴上表示﹣1的点A向右移动5个单位长度,此时点A所对应的数为_____.【答案】4.【解析】分析:在数轴上点向右平移几个单位,则就加上几;在数轴上点向左平移几个单位,则就加上几.详解:根据题意可得:-1+5=4.【点评】本题主要考查的是数轴上点的平移法则,属于基础题型.理解平移的性质是解决这个问题的关键.13.145-的倒数是_____.【答案】521.【解析】求一个分数的倒数的方法:把这个分数的分子和分母互换位置即可,是小数的化成分数后据此求出,据此解答.解:145-=145,1 4 5的倒数是521.故答案为:5 21.【点评】本题主要考查求一个分数的倒数的方法:把这个分数的分子和分母互换位置即可.14.已知:|m﹣n|=n﹣m,|m|=4,|n|=3,则m﹣n=_______【答案】-1或-7【解析】根据绝对值的代数意义和有理数的减法法则,结合已知条件分析解答即可.∵|m-n|=n-m,|m|=4,|n|=3,∴m≤n,m=±4,n=±3,∴m=-4,n=±3,∴当m=-4,n=3时,m-n=-4-3=-7;当m=-4,n=-3时,m-n=-4-(-3)=-4+3=-1.综上所述,m-n=-1或-7.故答案为:-1或-7.【点评】熟悉“有理数的减法法则和绝对值的代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0”是解答本题的关键.15.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为_____.【答案】3027.【解析】根据题意得出规律:当n为奇数时,A n-A1=n-12,当n为偶数时,A n=A1-n2,把n=2018代入求出即可.解:根据题意得:当n为奇数时,A n-A1=n-12,当n为偶数时,A n-A1=-n2,2018为偶数,代入上述规律, A2018-A1=-2018/2=-1009,解得A1=3027.故答案为:3027.【点评】此题考查数字的变化规律,找出数字之间的联系,利用运算规律解决问题.16.已知a,b互为相反数,c,d互为倒数,则﹣5a+2017cd﹣5b=_____.【答案】2017【解析】根据相反数及倒数的定义得出a+b=0,cd=1,再代入所求代数式进行计算即可.解:根据题意得:a+b=0,cd=1,则原式=-5(a+b)+2017cd=-5×0+2017×1=2017.故答案为2017.【点评】本题考查的是有理数的混合运算,熟知相反数、倒数的定义是解答此题的关键.三.解答题17.计算:(1)﹣18×(125 236+-);(2)(﹣1)3﹣(1﹣12)÷3×[2﹣(﹣3)2].【答案】(1)-6;(2)16;【解析】分析:(1)运用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.详解:(1)原式=-9-12+15=-6.(2)原式=-1-12×13×(-7)=-1+76=16.【点评】本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.18.已知a的相反数是2,b的绝对值是3,c的倒数是﹣1.(1)写出a,b,c的值;(2)求代数式3a(b+c)﹣b(3a﹣2b)的值.【答案】(1)a=﹣2,b=±3,c=﹣1;(2)24;【解析】(1)根据相反数、绝对值、倒数的定义解答即可;(2)把所给的整式去括号合并同类项化为最简后,再代入求值即可.(1)∵a的相反数是2,b的绝对值是3,c的倒数是﹣1,∴a=﹣2,b=±3,c=﹣1;(2)3a(b+c)﹣b(3a﹣2b)=3ab+3ac﹣3ab+2b2=3ac+2b2,∵a=﹣2,b=±3,c=﹣1,∴b2=9,∴原式=3×(﹣2)×(﹣1)+2×9=6+18=24.【点评】本题考查了代数式求值,相反数的定义,绝对值的性质,倒数的定义,是基础题,比较简单,但要注意b的两种情况.19.下表给出了七(三)班6位同学的体重情况:(单位:kg)(1)完成表中空白部分;(2)这6位同学体重的和多少千克.【答案】(1)答案见解析;(2)282千克;【解析】(1)先算出标准体重为45kg,再算出个人体重与班级平均体重的差值,填表即可;(2)将这6个人的个人体重相加即可.(1)如表:(2)﹣1+2+0﹣3+4+10+45×6=282(kg),答:这6位同学体重的和是282千克;【点评】本题考查了有理数的混合运算,以及正负数所表示的意义.20.粮库3天内进出库的粮食记录日下(单位:吨.进库的吨数记为正数,出库的吨数记为负数):+26,﹣32,﹣25,+34,﹣38,+10.(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库存粮食480吨,那么3天前库存粮食是多少吨?【答案】(1)-25吨;(2)505吨;【解析】(1)理解“+”表示进库“-”表示出库,把粮库3天内发生粮食进出库的吨数相加就是库里现在的情况; (2)利用(1)中所求即可得出3天前粮库里存粮数量.(1)26+(﹣32)+(﹣25)+34+(﹣38)+10=﹣25(吨).答:粮库里的粮食是减少了25吨;(2)480﹣(﹣25)=505(吨).答:3天前粮库里存粮有505吨;【点评】此题主要考查了正数和负数的定义,解题关键是理解“正”和“负”的相对性,明确正数和负数的定义,并且注意0这个特殊的数字,既不是正数也不是负数.21.为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天行驶记录如下(单位:km ):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B 地在A 地哪个方向?距A 地多少千米?(2)若该警车每千米耗油0.2L ,警车出发时,油箱中有油20L ,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.【答案】(1)在A 地的西方,距A 地4千米;(2)需加油5.6L ;【解析】(1)把这些数值相加,根据结果就可知道在那个方向,相距多少千米.(2)绝对值相加,乘以每小时耗油量即可,由此即可进行判断.解:(1)18-19-13+15+10-14+19-20=-4所以B 地在A 地的西方,相距4千米;(2)0.2×(18+19+13+15+10+14+19+20)=25.6升25.6﹣20=5.6故中途给警车加过油,至少加5.6升.【点评】本题考查有理数的加减混合运算,以及正负数的意义,从而可求出解.22.把下列各数填在相应的括号内:–19,2.3,–12,–0.92,35,0,–14,0.563,π 正数集合{ ……};负数集合{ ……};负分数集合{ ……};非正整数集合{ ……}【答案】正数集合:32.30.5635,,,π⎧⎫⎨⎬⎩⎭负数集合:119120.924⎧⎫----⎨⎬⎩⎭,,,,负分数集合:10.924⎧⎫--⎨⎬⎩⎭,,非正整数集合:{}19120--,,【解析】利用正数,负数,负分数,非整数的定义进行分类即可. 正数集合:32.30.5635π⎧⎫⎨⎬⎩⎭,,, 负数集合:119120.924⎧⎫----⎨⎬⎩⎭,,,, 负分数集合:10.924⎧⎫--⎨⎬⎩⎭,, 非正整数集合:{}19120--,,23.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A→B(+1,+4),从B 到A 记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C( , ),B→C( , ),C→ (+1, );(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置;(3)若这只甲虫的行走路线为A→B→C→D ,请计算该甲虫走过的路程;(4)若图中另有两个格点M 、N ,且M→A (3-a ,b-4),M→N (5-a ,b-2),则N →A 应记为什么?【答案】(1)3;4;2;0;D ;-2;(2)见解析;(3)10;(4)N →A 应记为(-2,-2) .【解析】(1)根据规定及实例可知A→C 记为(3,4)C→D 记为(1,-1);A→B→C→D 记为(1,4),(2,0),(1,-1);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可;(3)根据M→A(3-a,b-4),M→N(5-a,b-2)可知5-a-(3-a)=2,b-2-(b-4)=2,从而得到点A向右走2个格点,向上走2个格点到点N,从而得到N→A应记为什么.(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;(2)P点位置如图1所示;(3)如图2,根据已知条件可知:A→B表示为:(1,4),B→C;p记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10;(4)由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2).【点评】本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.。

初一数学上册第二章有理数及其运算测试题

初一数学上册第二章有理数及其运算测试题

2019初一数学上册第二章有理数及其运算测试题有理数的小数部分是有限或为无限循环的数。

不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

查字典数学网小编为大家准备了这篇初一数学上册第二章有理数及其运算测试题。

2019初一数学上册第二章有理数及其运算测试题一、选择题(每小题3分,共30分)1.(2019?湖北宜昌中考)如果“盈利5%”记作+5%,那么—3%表示( )A.亏损3%B.亏损8%C.盈利2%D.少赚2%2.(2019?江苏连云港中考)有理数,,,中,最小的数是( )A. B. C. D.3.下列运算正确的是( )A. B.C. D.4.计算的值是( )A.0B.C. D.5. (2019?南京中考)数轴上点A、B表示的数分别是5、-3,它们之间的距离可以表示为( )A.-3+5B. -3-5C. |-3+5|D. |-3-5|6.下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个7.气象部门测定发现:高度每增加1 km,气温约下降5 ℃.现在地面气温是15 ℃,那么4 km高空的气温是( )A.5 ℃B.0 ℃C.-5 ℃D.-15 ℃8.在有理数中,一个数的立方等于这个数本身,这种数的个数为( )A.1B.2C.3D.无数9. (2019??南京中考) 为了方便市民出行.提倡低碳交通,近几年南京市大力发展公共自行车系统.根据规划,全市公共自行车总量明年将达70 000辆.用科学计数法表示70 000是( )A.0.7 105B. 7 104C. 7 105D. 70 10310.(2019?河北中考)计算:3-2×(-1)=()A.5B.1C.-1D.6二、填空题(每小题3分,共24分)11.若规定,则的值为 .12.绝对值小于4的所有整数的和是 .13.如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作3千米,向西行驶2千米应记作千米.14.测得某乒乓球厂生产的五个乒乓球的质量误差(g)如下表.检验时,通常把比标准质量大的克数记为正,比标准质量小的克数记为负.请你选出最接近标准质量的球是号.号码 1 2 3 4 5误差(g) -0.02 0.1 -0.23 -0.3 0.215.某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分.王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是 . 16. (2019?福建泉州中考)找出下列各图形中数的规律,依此,a的值为 .17.某年级举办足球循环赛,规则是:胜一场得3分,平一场得1分,输一场得-1分.某班比赛结果是胜3场平2场输4场,则该班得分.18.如图是一个数值转换机的示意图,若输入的值为3,y的值为-2,则输出的结果为 .第18题图三、解答题(共46分)19.(12分)计算:(1) ;(2) ;(3) ;(4) .20.(5分)已知:,且,求的值.21.(5分)(2019?杭州中考)计算,方方同学的计算过程如下,原式= =6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程..22.(6分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数):星期一二三四五六日增减 -5 +7 -3 +4 +10 -9 -25(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加了还是减少了?(3)生产量最多的一天比生产量最少的一天多生产了多少辆?23.(6分)为节约用水,某市对居民用水规定如下:大户(家庭人口4人及4人以上者)每月用水15 m3以内的,小户(家庭人口3人及3人以下者)每月用水10 m3以内的,按每立方米收取0.8元的水费;超过上述用量的,超过部分每立方米水费加倍收取.某用户5口人,本月实际用水25 m3,则这户本月应交水费多少元?24.(6分)李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):星期一二三四五六日收入 +15 +18 0 +16 0 +25 +24支出 10 14 13 8 10 14 15(1)到这个周末,李强有多少节余?(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?25.(6分)观察下列各式:猜想:(1) ;(2)如果n为正整数,那么 .初一数学上册第二章有理数及其运算测试题到这里就结束了,希望同学们的成绩能够更上一层楼。

初中数学人教版七年级上册第二单元《有理数的运算》综合测试卷

初中数学人教版七年级上册第二单元《有理数的运算》综合测试卷

初中数学人教版七年级上册第二单元《有理数的运算》综合测试卷一、选择题1.(2024·天津)计算3−(−3)的结果是()A.6B.3C.0D.-62.(2023七上·合肥期中)根据教育部统计,2023届高校毕业生的规模将达到1158万人,数据1158万用科学记数法表示为()A.1.158×104B.1.158×107C.1.158×108D.0.1158×1083.下面算法正确的是()A.(−5)+9=−(9−5)B.7−(−10)=7−10C.(−5)×0=−5D.(−8)÷(−4)=8÷4.4.(2022七上·上杭期中)用四舍五入法,把2.345精确到百分位的近似数是()A.2.3B.2.34C.2.35D.2.305.(2024七上·播州期末)一件衣服的进价为100元,商家提高80%进行标价,为了吸引顾客,商店进行打7折促销活动,商家出售这件衣服时,获得的利润是()A.26元B.44元C.56元D.80元6.下列两个数互为相反数的是()A.3和13B.−(−3)和|−3|C.(−3)2和−32D.(−3)3和−337.(2024七上·黔西南期末)若(m﹣2)2+|n+3|=0,则﹣(2m+n)2024的值是()A.﹣1B.1C.2024D.﹣20248.(2024七上·南宁期末)如图,数轴上点A和点B分别表示数a和b,则下列式子正确的是()A.a>0B.ab>0C.a-b>0D.a+b<0 9.(2024七上·雅安期末)若a2=4,|b|=5,且ab<0,则a+b的值是()A.3B.−3C.3或−3D.−3或−7 10.(2024七上·通道期末)王华写出下列四个计算式子中,你认为错误的是()A.(−1)2n=1(n是正整数)B.(−96)−(−2)=−94C.(−2)(−3)(−4)=−24D.(−3)÷13=−1二、填空题11.(2024·浙江模拟)计算:−22−(−2)2=.12.太阳的半径约为696 000千米,用科学记数法表示数696 000为.13.(2024七下·肇源开学考)绝对值小于4的所有整数的和是.14.如果a、b互为倒数,c、d互为相反数,且m=−1,则代数式2ab−(c+d)+m2=.15.如图所示的程序图,当输入﹣1时,输出的结果是.三、解答题16.(2024七上·盘州期末)计算:(1)−20+|−8|+9+(−4);(2)−22×(−2+14)−8÷(−4).17.(2023七上·桦甸期中)一辆新能源电动出租车一天上午以商场A为出发地,在一条东西走向的通路上载客行驶,规定向东为正,向西为负,出租车载客的行驶里程如下(单位,千米):+8,−7,−3,−8,+6,+8.(1)将最后一名乘客送到目的地时,求出租车距商场A多远.(2)已知这辆新能源电动出租车每千米耗电成本为0.2元,求它这天上午载客行驶里程的总耗电成本.18.(2024七上·防城期末)为了增强体质,小明给自己设定:以每天跑步a千米为基准,超过的部分记为正,不足的部分记为负,手机应用程序统计小明一周跑步情况,记录如下:小明周六和周日共跑了21.6千米.(1)求a的值.(2)小明本周共跑了多少千米?19.(2024七上·高州期末)一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,用A,B,C分别表示小明家,小彬家,小颖家,在如图数轴上表示出A,B,C的位置.(2)小明家距小彬家千米.(3)货车一共行驶了多少其纳米?20.(2024七上·绍兴期末)目前,某城市“一户一表”居民用电实行阶梯电价,具体收费标准如下.(1)若该市某户12月用电量为200度,该户应交电费元;(2)若该市某户12月用电量为x度,请用含x的代数式分别表示0≤x≤180和x>180时该户12月应交电费多少元;(3)若该市某户12月应交电费125元,则该户12月用电量为多少度?21.如图.在数轴上原点О表示的数是o,A点丧示的数是m ,B点表示的数是n,且(m+4)2+[n-8|=0.(1)m=,n=(2)①在数轴上表示出点A、B;②已知点C是线段AB的中点,则点C表示的数是▲ ,线段CO的长是▲ ,在数轴上表示出点C:(3)若点M是线段OA 的中点.点N是线段OB上的一点.且BN=2ON.试求线段.MN的长.。

初一上数学真题专题练习---有理数与数轴综合

初一上数学真题专题练习---有理数与数轴综合

有理数与数轴综合【真题精选】1.(2020秋•海淀区校级月考)在﹣2020,2.3,0,π,﹣4五个数中,非负的有理数共有()A.1个B.2个C.3个D.4个2.(2020秋•海淀区校级月考)下列说法错误的是()A.零既不是正数也不是负数B.﹣a一定是负数C.有理数不是整数就是分数D.正整数、零和负整数统称为整数3.(2020秋•海淀区校级月考)下列说法正确的是()A.互为相反数的两个数的绝对值相等B.绝对值等于本身的数只有正数C.不相等的两个数绝对值也不相等D.绝对值相等的两数一定相等4.(2020秋•海淀区校级期中)绝对值大于1而小于4的整数有个.5.(2020秋•海淀区校级期中)数a在数轴上对应点位置如图,若数b满足b<|a|,则b的值不可能是()A.﹣2B.0C.1D.26.(2020秋•石景山区期末)有理数m,n在数轴上的对应点的位置如图所示,则不正确的结论是()A.m>﹣1B.m>﹣n C.mn<0D.m+n>0 7.(2021•海淀区校级模拟)如图,数轴上A,B两点的位置如图所示,则下列说法中,能判断原点一定位于A、B之间的是()A.a+b>0B.ab<0C.|a|>|b|D.a、b互为倒数8.(2020秋•西城区校级期中)在数轴上,表示数x的点的位置如图所示,则化简|x+1|﹣|x ﹣2|结果为()A.3B.﹣3C.2x﹣1D.1﹣2x 9.(2020秋•延庆区期中)有理数a,b在数轴上的对应点的位置如图所示,则下列各式:①a+b;②a﹣b;③ab;④;⑤|b|﹣|a|,其中值为负数的有()A.2个B.3个C.4个D.5个10.(2020秋•海淀区期中)有理数m,n,k在数轴上的对应点的位置如图所示,若m+n<0,n+k>0,则A,B,C,D四个点中可能是原点的是()A.A点B.B点C.C点D.D点11.(2020秋•延庆区期中)数轴上点A表示的数是2,从点A出发,沿数轴向左移动3个单位长度到达点B,则点B表示的数是.12.(2020秋•海淀区校级期中)如果a>0,b<0,a+b<0,那么下列各式中大小关系正确的是()A.﹣b<﹣a<b<a B.﹣a<b<a<﹣b C.b<﹣a<﹣b<a D.b<﹣a<a<﹣b13.(2020秋•西城区校级期中)a、b是有理数,它们在数轴上的对应点的位置如图所示,下列说法正确的有()个.①|a+b|=|a|﹣|b|;②﹣b<a<﹣a<b;③a+b>0;④|﹣b|<|﹣a|.A.1B.2C.3D.414.(2020秋•海淀区校级期中)在数轴上,一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数为()A.7B.3C.﹣3D.﹣215.(2020秋•西城区校级月考)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.116.(2020秋•海淀区校级期中)数轴上两点A,B,其中A表示的数为﹣2,B表示的数为2,若数轴上存在一点C,使得AC+2BC=l,则称C为点A,B的“和l点”(其中AC,BC分别表示点C到点A,B的距离).(1)若点E在数轴上(不与A,B重合),若BE=AE,且点E为点A,B的“和l点”,则l的值可能为;(2)若点D在是点A,B的“和5点”,则点D表示的数可能为.17.(2020秋•海淀区校级月考)已知数轴上三点A,O,B对应的数分别为﹣3,0,2,点P 为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)若点P到点A,点B,点O的距离之和最小,则此距离之和最小为.18.(2020秋•西城区校级期中)如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A4表示的数,是,如果点A n与原点的距离不小于20,那么n的最小值是.19.(2020秋•平谷区期末)一只小球落在数轴上的某点P0,第一次从p0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4…,若小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是;若小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是.有理数概念综合参考答案与试题解析1.(2020秋•海淀区校级月考)在﹣2020,2.3,0,π,﹣4五个数中,非负的有理数共有()A.1个B.2个C.3个D.4个【分析】找出五个数中非负有理数即可.【解答】解:在“﹣2020,2.3,0,π,﹣4”这五个数中,非负有理数是2.3,0,故选:B.【点评】此题考查了有理数,熟练掌握非负有理数的定义是解本题的关键.2.(2020秋•海淀区校级月考)下列说法错误的是()A.零既不是正数也不是负数B.﹣a一定是负数C.有理数不是整数就是分数D.正整数、零和负整数统称为整数【分析】按照有理数的分类解答即可.【解答】解:A、零既不是正数也不是负数,说法正确,故本选项不合题意;B、﹣a不一定是负数,如﹣(﹣1)=1,故原说法错误,故本选项符合题意;C、有理数不是整数就是分数,说法正确,故本选项不合题意;D、正整数、零和负整数统称为整数,说法正确,故本选项不合题意.故选:B.【点评】本题考查了有理数,熟记正数、负数、整数、分数的定义与特点是解答本题的关键;注意整数和正数的区别,注意0是整数,但不是正数,也不是负数.3.(2020秋•海淀区校级月考)下列说法正确的是()A.互为相反数的两个数的绝对值相等B.绝对值等于本身的数只有正数C.不相等的两个数绝对值也不相等D.绝对值相等的两数一定相等【分析】根据相反数与绝对值的意义可对A进行判断;根据0的绝对值等于0可对B进行判断;利用2与﹣2的绝对值相等,可对C、D进行判断.【解答】解:A、互为相反数的两个数的绝对值相等,所以A选项正确;B、绝对值等于本身的数有正数或0,所以B选项错误;C、不相等的两个数绝对值可能相等,若2与﹣2,所以C选项错误;D、绝对值相等的两个数不一定相等,若2与﹣2,所以D选项错误.故选:A.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.4.(2020秋•海淀区校级期中)绝对值大于1而小于4的整数有4个.【分析】求绝对值大于1且小于4的整数,即求绝对值等于2或3的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.【解答】解:绝对值大于1且小于3的整数有±2,±3.故答案为:4.【点评】主要考查了绝对值的性质,绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.5.(2020秋•海淀区校级期中)数a在数轴上对应点位置如图,若数b满足b<|a|,则b的值不可能是()A.﹣2B.0C.1D.2【分析】根据数轴得到|a|<2,根据题意解答即可.【解答】解:由数轴可知,|a|<2,∵b<|a|,∴b不可能是2,故选:D.【点评】本题考查的是数轴的概念、绝对值的性质,根据数轴确定|a|的范围是解题关键.6.(2020秋•石景山区期末)有理数m,n在数轴上的对应点的位置如图所示,则不正确的结论是()A.m>﹣1B.m>﹣n C.mn<0D.m+n>0【分析】根据数轴与实数的意义解答.【解答】解:如图所示,A、m>﹣1,故本选项正确;B、|m|<|n|且m<0<n,则m>﹣n,故本选项错误;C、m<0<n,则mn<0,故本选项错误;D、|m|<|n|且m<0<n,故本选项错误;故选:A.【点评】本题主要考查了绝对值及数轴,解题的关键是得出n,m的取值范围.7.(2021•海淀区校级模拟)如图,数轴上A,B两点的位置如图所示,则下列说法中,能判断原点一定位于A、B之间的是()A.a+b>0B.ab<0C.|a|>|b|D.a、b互为倒数【分析】由题意可知,a<0<b,根据实数的乘法法判断即可.【解答】解:A、a+b>0,原点可能位于A、B之间,原点也可能位于A的左边,故本选项错误;B、∵ab<0,∴a与b异号,原点一定位于A、B之间,故本选项正确;C、|a|>|b|,原点可能位于A、B之间,原点也可能位于B的右边,故本选项错误;D、∵a<0<b|,∴a,b不是互为倒数,故本选项错误.故选:B.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.8.(2020秋•西城区校级期中)在数轴上,表示数x的点的位置如图所示,则化简|x+1|﹣|x ﹣2|结果为()A.3B.﹣3C.2x﹣1D.1﹣2x【分析】直接利用数轴得出x的取值范围,再利用绝对值的性质化简得出答案.【解答】解:由数轴可得:﹣1<x<0,则x+1>0,x﹣2<0,故|x+1|﹣|x﹣2|=x+1﹣[﹣(x﹣2)]=x+1+x﹣2=2x﹣1.故选:C.【点评】此题主要考查了数轴以及绝对值,正确掌握绝对值的性质是解题关键.9.(2020秋•延庆区期中)有理数a,b在数轴上的对应点的位置如图所示,则下列各式:①a+b;②a﹣b;③ab;④;⑤|b|﹣|a|,其中值为负数的有()A.2个B.3个C.4个D.5个【分析】利用数轴表示数的方法得﹣2<a<﹣1,0<b<1,然后根据有理数的运算可对①②③④进行判断;根据绝对值的意义对⑤进行判断.【解答】解:由数轴表示数的方法得﹣2<a<﹣1,0<b<1,∴a+b<0,a﹣b<0,ab<0,<0,|b|﹣|a|<0.故选:D.【点评】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.也考查了数轴和绝对值.10.(2020秋•海淀区期中)有理数m,n,k在数轴上的对应点的位置如图所示,若m+n<0,n+k>0,则A,B,C,D四个点中可能是原点的是()A.A点B.B点C.C点D.D点【分析】分四种情况讨论,利用数形结合思想可解决问题.【解答】解:若点A为原点,可得0<m<n<k,则m+n>0,与题意不符合,故选项A 不符合题意;若点B为原点,可得m<0<n<k,且|m|>n,则m+n<0,n+k>0,符合题意,故选项B 符合题意;若点C为原点,可得m<n<0<k,且|n|>|k|,则n+k<0,与题意不符合,故选项C不符合题意;若点D为原点,可得m<n<k<0,则n+k<0,与题意不符合,故选项D不符合题意;故选:B.【点评】本题考查了数轴.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.11.(2020秋•延庆区期中)数轴上点A表示的数是2,从点A出发,沿数轴向左移动3个单位长度到达点B,则点B表示的数是﹣1.【分析】由点A表示的数结合点A运动的方向及位移,即可得出点B表示的数,此题得解.【解答】解:根据题意得:点B表示的数是2﹣3=﹣1.故答案为:﹣1.【点评】本题考查了数轴,根据点A与点B之间的关系,找出点B表示的数是解题的关键.12.(2020秋•海淀区校级期中)如果a>0,b<0,a+b<0,那么下列各式中大小关系正确的是()A.﹣b<﹣a<b<a B.﹣a<b<a<﹣b C.b<﹣a<﹣b<a D.b<﹣a<a<﹣b 【分析】首先根据题目所跟的条件确定a、b的正负,以及绝对值的大小,再根据分析画出数轴标出a、b、﹣a、﹣b在数轴上的位置,根据数轴上的数左边的总比右边的小即可选出答案.【解答】解:∵a>0,b<0,∴a为正数,b为负数,∵a+b<0,∴负数b的绝对值较大,则a、b、﹣a、﹣b在数轴上的位置如图所示:,由数轴可得:b<﹣a<a<﹣b,故选:D.【点评】此题主要考查了有理数的比较大小,关键是利用数轴表示出a、b、﹣a、﹣b在数轴上的位置.13.(2020秋•西城区校级期中)a、b是有理数,它们在数轴上的对应点的位置如图所示,下列说法正确的有()个.①|a+b|=|a|﹣|b|;②﹣b<a<﹣a<b;③a+b>0;④|﹣b|<|﹣a|.A.1B.2C.3D.4【分析】根据有理数a、b在数轴上的对应点的位置,得出a<0,b>0,且|a|<|b|,再根据绝对值、相反数的意义逐项判断即可.【解答】解:根据有理数a、b在数轴上的对应点的位置可知,a<0,b>0,且|a|<|b|,∴a+b>0,因此③正确;∵|a|=|﹣a|,|b|=|﹣b|,而|a|<|b|,∴|﹣a|<|﹣b|,因此④不正确;∵a<0,b>0,且|a|<|b|,∴a+b=|b|﹣|a|>0,因此①不正确,根据绝对值和相反数的意义可得,﹣b<a<﹣a<b;因此②正确,故选:B.【点评】本题考查数轴表示数的意义和方法,理解绝对值、相反数的意义是正确解答的关键.14.(2020秋•海淀区校级期中)在数轴上,一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数为()A.7B.3C.﹣3D.﹣2【分析】数轴上点的平移和其对应的数的大小变化规律:左减右加,依此求解即可.【解答】解:设A点表示的数为x.列方程为x﹣2+5=1,解方程得:x=﹣2.即点A所表示的数为﹣2.故选:D.【点评】本题考查了数轴上点的平移和其对应的数的大小变化规律,能够运用列方程的方法进行求解.15.(2020秋•西城区校级月考)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【分析】根据CO=BO可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16.(2020秋•海淀区校级期中)数轴上两点A,B,其中A表示的数为﹣2,B表示的数为2,若数轴上存在一点C,使得AC+2BC=l,则称C为点A,B的“和l点”(其中AC,BC分别表示点C到点A,B的距离).(1)若点E在数轴上(不与A,B重合),若BE=AE,且点E为点A,B的“和l点”,则l的值可能为或16;(2)若点D在是点A,B的“和5点”,则点D表示的数可能为1或.【分析】(1)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=AE,先求点E表示的数,再根据AE+2BE=1,即可得出结论(2)设点D表示的数为y,根据“和5点的定义分两种情况列出方程,即可求解.【解答】解:(1)分三种情况:①当点E在BA延长线上时,∵不能满足BE=AE,∴该情况不符合题意,舍去②当点E在线段AB上时,可以满足BE=AE,设点E表示的数为x,则2﹣x=[x﹣(﹣2)],解得x=.l=AE+2BE=.③当点E在AB的延长线上时,∵BE=AE,∴BE=AB=4,∴点E表示的数为6∴l=AE+2BE=8+8=16.综上所述:l=或l=16.故答案为:或6.(2)∵点D是数轴上点A、B的“和5点”,∴AD+2BD=5.∵AB=4,∴点D在线段AB上或AB的延长线上.设点D表示的数为y,由AD+2BD=5得,y﹣(﹣2)+2(2﹣y)=5或y﹣(﹣2)+2(y﹣2)=5,解得y=1或y=,∴点D表示的数为1或.故答案为:1或.【点评】本题考查了数轴,一元一次方程的应用,解题的关键是掌握“和l点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.17.(2020秋•海淀区校级月考)已知数轴上三点A,O,B对应的数分别为﹣3,0,2,点P 为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=﹣0.5;(2)当x= 2.5或﹣3.5时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是﹣3≤x≤2;(4)若点P到点A,点B,点O的距离之和最小,则此距离之和最小为5.【分析】(1)点P到点A,点B的距离相等,即点P是AB的中点,根据中点求法可得答案;(2)可列方程求解,也可分两种情况进行解答,即点P在点A的左侧,点P在点B的右侧;(3)点P到点A,点B的距离之和最小,也就是点P在点A与点B之间即可,可得出x 的取值范围;(4)点P在点O时,点P到点A,点B,点O的距离之和最小,此时最小距离为AB的长.【解答】解:(1)x==﹣0.5,故答案为:﹣0.5;(2)由题意得,|x+3|+|x﹣2|=6,解得,x=2.5或x=﹣3.5;故答案为:x=2.5或x=﹣3.5;(3)∵点P到点A,点B的距离之和最小,∴点P在点A与点B之间,因此﹣3≤x≤2,故答案为:﹣3≤x≤2;(4)∵点P到点A,点B,点O的距离之和最小,∴点P在点O时,点P到点A,点B,点O的距离之和最小,此时,这个最小距离为AB的长,即为5,故答案为:5.【点评】本题考查数轴表示数的意义和方法,理解绝对值和两点之间距离的计算方法是正确解答的前提.18.(2020秋•西城区校级期中)如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A4表示的数,是7,如果点A n与原点的距离不小于20,那么n的最小值是13.【分析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为﹣17﹣3=﹣20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于20时,n的最小值是13.【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点A n与原点的距离不小于20,那么n的最小值是13.故答案为7,13.【点评】本题考查了规律型问题,认真观察、仔细思考,找出点表示的数的变化规律是解决问题的关键.19.(2020秋•平谷区期末)一只小球落在数轴上的某点P0,第一次从p0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4…,若小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是3;若小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是2.【分析】根据题意,可以发现题目中每次跳跃后相对于初始点的距离,从而可以解答本题.【解答】解:由题意可得,小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是6÷2=3,小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是:n+2﹣(2n÷2)=2,故答案为:3,2.【点评】此题考查数字的变化规律,数轴的认识、有理数的加减,明确题意列出算式,找出其中的变化规律是解题的关键.。

初一数学有理数全章综合测试(含答案)

初一数学有理数全章综合测试(含答案)

第一章有理数全章综合测试一、选择题:1.下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数2.12的相反数的绝对值是()A.-12B.2 C.一2 D.123.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A.a>b B.a <b C.ab>0 D.ab>04.在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是()A.是正数B.不是0 C.是负数D.以上都不对6.下列各组数中,不是互为相反意义的量的是()A.收入200元与支出20元B.上升l0米和下降7米C.超过0.05mm与不足0.03m D.增大2岁与减少2升7.下列说法正确的是()A.-a一定是负数;B.a定是正数;C.a一定不是负数;D.-a一定是负数8.如果一个数的平方等于它的倒数.那么这个数一定是()A.0 B.1 C.-1 D.±19.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零10.若0<m<1,m、m2、1m的大小关系是()A.m<m2<1mB.m2<m<1mC.1m<m<m2D.1m<m2<m11.4604608取近似值,保留三个有效数字,结果是()A.4.60 ×106B.4600000 C.4.61 ×106D.4.605 ×10612.下列各项判断正确的是()A.a+b一定大于a-b B.若-ab<0,则a、b异号C.若a3=b3,则a=b D.若a2=b2,则a=b 13.下列运算正确的是()A.-22÷(一2)2=l B.3123⎛⎫- ⎪⎝⎭=-8127C.-5÷13×35=-25 D.314×(-3.25)-634×3.25=-32.5.14.若a=-2×32,b=(-2×3)2,c=-(2×4)2,则下列大小关系中正确的是()A.a>b>0 B.b>c>a C.b>a>c D.c>a>b15.若x=2,y=3,则x y+的值为()A.5 B.-5 C.5或1 D.以上都不对二、填空题1.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降1l℃,这时气温是____。

初一数学有理数单元测试二

初一数学有理数单元测试二

《有理数》单元测试二 姓名____________一、仔细选一选(40分)1. 0是( )A .正有理数 B .负有理数 C .整数 D .负整数2. 中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于( ) A .计数 B .测量 C .标号或排序 D .以上都不是3. 下列说法不正确...的是( ) A .0既不是正数,也不是负数 B .0的绝对值是0 C .一个有理数不是整数就是分数 D .1是绝对值最小的数4. 在数-21, 0 , 4.5, |-9|, -6.79中,属于正数..的有( )个 A .2 B .3 C .4 D .55. 一个数的相反数是3,那么这个数是( )A .3 B .-3 C .13 D .1-36. 下列式子正确的是( )A .2>0>-4>-1B .-4>-1>2>0C .-4<-1<0<2D .0<2>-1<-47. 一个数的相反数是最大的负整数,则这个数是( )A .1 B .±1 C .0 D .-1 8. 把数轴上表示数2的点移动3个单位后,表示的数为( ) A .5 B .1 C .5或1 D .5或-19. 大于-2.2的最小整数是( )A .-2B .-3C .-1D .010. 学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在 ( )A. 在家 B. 在学校 C. 在书店 D. 不在上述地方二、认真填一填(本题共40分)11.若上升15米记作+15米,则-8米表示 。

12.举出一个既是负数又是整数的数 。

13.计算:=+⨯-5.24__________。

14.计算5.24÷6.55,结果用分数表示是______;用小数表示是________。

(完整word版)初一数学第一章有理数单元测试题及答案(2),推荐文档

(完整word版)初一数学第一章有理数单元测试题及答案(2),推荐文档

七年级数学有理数单元测试题(新人教版)满分100分时间60分考生注意:1、本卷共有29个小题,共100分+30分2、考试时间为90分钟、选择题(本题共有 10个小题,每小题都有A B C 、D 四个选项,请你把你认为适当的有理数中不是负数就是正数 零是自然数,但不是正整数A — 12B - 9 —0.01 D — 54、如果一个数的平方与这个数的差等于 0,那么这个数只能是5、绝对值大于或等于 1,而小于4的所有的正整数的和是(86、计算:(一2) 100+( - 2)101 的是(^100-2选项前的代号填入题后的括号中,每题 共20分)1、F 列说法正确的是(整数就是正整数和负整数负整数的相反数就是非负整数 2、F 列各对数中,数值相等的是(7722—2 与(一2) B — 3 与(一3)与—(一2)3 3、在一5, — 9, — 3.5 , — 0.01 , — 2, )—3X 23与一32X 2—(—3)2-212各数中,最大的数是( 7、比一7.1 大, 而比1小的整数的个数是8、2003 年 5 月 19日,国家邮政局特别发行万众一心, 抗击“非典” 邮票, 收入全部捐赠 给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000 枚, 用科学记数法表示正 确的是( ) 7 A. 1.205 X 10 8 B . 1.20 X 10 C. 1.21 7 X 10 4D. 1.205 X 10 9、下列代数式中,值- 1定是 正数的是 ( A. x 2B.| — x+1| 10、已知 8.62 2= 73.96,若 x 2= 0.7396 , 2C.( — x ) +2 则x 的值等于( 2 .D. — x +1 86. 2 862 ± 0.862 ± 862 二、填空题(本题共有 9个小题,每小题2分,共18分) 11、一幢大楼地面上有 12层,还有地下室 2层,如果把地面上的第一层作为基准,记为 0, 规定向上为正,那么习惯上将 2楼记为 ;地下第一层记作____________________ ;数_ 2的实际意义为_________________________ ,数+ 9的实际意义为_____________________________ 。

人教新版初一上册数学有理数的加减法试题及答案(2)

人教新版初一上册数学有理数的加减法试题及答案(2)

人教新版初一上册数学有理数的加减法试题及答案(2)人教新版初一上册数学有理数的加减法试题参考答案一、选择题(共13小题)1.计算﹣10﹣8所得的结果是( )A.﹣2B.2C.18D.﹣18【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣10﹣8=﹣18.故选D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.2.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为( )A.5℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】常规题型.【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【解答】解:28﹣21=28+(﹣21)=7,故选:C.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是( )A.﹣10℃B.﹣6℃C.6℃D.10℃【考点】有理数的减法.【专题】计算题.【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:8﹣(﹣2)=8+2=10(℃).故选D.【点评】本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.4.比1小2的数是( )A.3B.1C.﹣1D.﹣2【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:1﹣2=﹣1.故选C.【点评】本题考查了有理数的减法,是基础题.5.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是( )A.40℃B.38℃C.36℃D.34℃【考点】有理数的减法.【专题】应用题.【分析】用中午的温度减去下降的温度,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:37℃﹣3℃=34℃.故选:D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.6.计算,正确的结果为( )A. B. C. D.【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣ =﹣ .故选D.【点评】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键.7.计算:1﹣(﹣ )=( )A. B.﹣ C. D.﹣【考点】有理数的减法.【分析】根据有理数的减法法则,即可解答.【解答】解:1﹣(﹣ )=1+ = .故选:C.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.8.﹣2﹣1的结果是( )A.﹣1B.﹣3C.1D.3【考点】有理数的减法.【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数把原式化为加法,根据有理数的加法法则计算即可.【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3,故选:B.【点评】有本题考查的是有理数的减法法则:减去一个数等于加上这个数的相反数,掌握法则是解题的关键.9.计算2﹣3的结果是( )A.﹣5B.﹣1C.1D.5【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,再运用加法法则求和.【解答】解:2﹣3=2+(﹣3)=﹣1.故选B.【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法.10.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是( )A.﹣8℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】应用题.【分析】根据“温差”=最高气温﹣最低气温计算即可.【解答】解:7﹣(﹣1)=7+1=8℃.故选D.【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最高气温﹣最低气温.11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到( )A.147.40元B.143.17元C.144.23元D.136.83元【考点】有理数的加减混合运算;有理数大小比较.【专题】应用题.【分析】根据存折中的数据进行解答.【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.【点评】本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是(A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时【考点】有理数的加减混合运算.【专题】应用题.【分析】求出两地的时差,根据北京时间求出每个地方的时间,再判断即可.【解答】解:A、∵纽约时间与北京差:8+5=13个小时,9﹣13=﹣4,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日21时,故本选项错误;B、∵多伦多时间与北京差:8+4=12个小时,9﹣12=﹣3,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日22时,故本选项错误;C、∵伦敦时间与北京差:8﹣0=8个小时,9﹣8=1,∴当北京时间2015年6月16日9时,伦敦时间是2015年6月16日1时,故本选项正确;D、∵汉城时间与北京差:9﹣8=1个小时,9+1=10,∴当北京时间2015年6月16日9时,首尔时间是2015年6月16日10时,故本选项错误;故选C.【点评】主要考查了数轴,要注意数轴上两点间的距离公式是|a ﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.13.与﹣3的差为0的数是( )A.3B.﹣3C.D.【考点】有理数的减法.【分析】与﹣3的差为0的数就是﹣3+0,据此即可求解.【解答】解:﹣3+0=﹣3.故选B.【点评】本题考查了有理数的减法运算,正确列出式子是关键.二、填空题(共5小题)14.计算:0﹣7= ﹣7 .【考点】有理数的减法.【分析】根据有理数的减法法则进行计算即可,减去一个数等于加上这个数的相反数.【解答】解:0﹣7=﹣7;故答案为:﹣7.【点评】此题考查了有理数的减法运算,熟练掌握减法法则是本题的关键,是一道基础题,较简单.15.计算:3﹣(﹣1)= 4 .【考点】有理数的减法.【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果.【解答】解:3﹣(﹣1)=3+1=4,故答案为4.【点评】本题主要考查了有理数加减法则,能理解熟记法则是解题的关键.16.计算:3﹣4= ﹣1 .【考点】有理数的减法.【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.【解答】解:3﹣4=3+(﹣4)=﹣1.故答案为:﹣1.【点评】有理数的减法法则:减去一个数等于加上这个数的相反数.17.计算:2000﹣2015= ﹣15 .【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:2000﹣2015=﹣15.故答案为:﹣15.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.18. |﹣7﹣3|= 10 .【考点】有理数的减法;绝对值.【专题】计算题.【分析】根据有理数的减法运算法则和绝对值的性质进行计算即可得解.【解答】解:|﹣7﹣3|=|﹣10|=10.故答案为:10.【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键初一数学复习指导一、多看主要是指认真阅读数学课本。

七年级有理数综合测试卷(word含答案)

七年级有理数综合测试卷(word含答案)

一、初一数学有理数解答题压轴题精选(难)1.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.2.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.3.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.4.已知 , , 三点在数轴上对应的位置如图如示,其中点对应的数为2,, .(1)点对应的数是________,点对应的数是________;(2)动点,分别同时从,两点出发,分别以每秒8个单位和3个单位的速度沿数轴正方向运动.点为的中点,点在上,且,设运动时间为 .①请直接用含的代数式表示点,对应的数;②当时,求的值.【答案】(1)-12;5(2)解:① 对应的数是,对应的数是;② ,,,,由,得,由,得,故当秒或秒时, .【解析】【解答】解:(1)点对应的数为,,,点对应的数是:;点对应的数是:;故点对应的数为,点对应的数是 .【分析】(1)根据点对应的数,由的长确定出点表示的数,再根据的长确定出点表示的数;(2)①根据题意表示出点、的数即可;②列出含t的、的代数式,得出方程,求出方程的解即可.5.已知,如图A、B分别为数轴上的两点,点A对应的数为-20,点B对应的数为120.(1)请写出线段AB的中点C对应的数.(2)点P从点B出发,以3个单位/秒的速度向左运动,同时点Q从点A出发,以2个单位/秒的速度向右运动,当点P、Q重合时对应的数是多少?(3)在(2)的条件下,P、Q两点运动多长时间相距50个单位长度?【答案】(1)解:AB=120-(-20)=140,则BC=70C点对应的数是50.(2)解:设P、Q运动时间为t,则BP=3t,AQ=2t当点P、Q重合时,则BP+AQ=140即:3t+2t=140,解得:t=28所以AP=56点P、Q重合时对应的数为56-20=36(3)解:分两种情况,①当P、Q相遇之前,BP+AQ=140-50,即3t+2t=140-50,解得:t=18②当P、Q相遇之后,BP+AQ=140+50,即3t+2t=140+50,解得:t=38当P、Q两点运动18秒或38秒时,P、Q相距50个单位长度.【解析】【分析】(1)先求出AB的长度,即可求出线段BC,再确定C在数轴上表示的数即可;(2)设P、Q运动时间为t,则BP=3t,AQ=2t,根据题意可知BP+AQ=140,即3t+2t=140,进而求得t的值,即可表示P、Q重合点的对应数.(3)分两种情况,①当P、Q相遇之前,BP+AQ=140-50;②当P、Q相遇之后,BP+AQ=140+50,分别求出t的值,即可解决问题.6.仔细观察下列等式:第1个:22﹣1=1×3第2个:32﹣1=2×4第3个:42﹣1=3×5第4个:52﹣1=4×6第5个:62﹣1=5×7…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:________;(2)设n(n≥1)表示自然数,则第n个等式可表示为________;(3)运用上述结论,计算: .【答案】(1)72﹣1=6×8(2)(n+1)2-1=n(n+2)(3)解:===【解析】【解答】解:(1)∵第1个:22-1=1×3第2个:32-1=2×4第3个:42-1=3×5第4个:52-1=4×6第5个:62-1=5×7,∴第6个等式:72-1=6×8;故答案为:72-1=6×82)设n(n≥1)表示自然数,则第n个等式可表示为:(n+1)2-1=n(n+2);故答案为:(n+1)2-1=n(n+2);【分析】(1)根据题中所给出的例子找出规律,即可得到第六个等式.(2)根据题中所给出的例子找出规律,进行解答即可.(3)根据所得结论,进行化简,即可得到答案.7.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如的几何意义是数轴上表示有理数的点与表示有理数3的点之间的距离.试探索:①:若,则=________.②:的最小值为________.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.①:当 =1时,A,P两点之间的距离为________;②:当 =________时,A,P之间的距离为2.(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)-12(2)6或10;20(3)6;3或5(4)2或4【解析】【解答】解:(1)∵AB=20,点A表示的数是8,B是数轴上位于点A左侧一点,∴点B表示的数是8-20=-12.故答案为:-12.(2)∵|x-8|=2∴x-8=±2解之:x=10或x=6;|x-(-12)|+|x-8|的最小值为8-(-12)=20.故答案为:6或10;20.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴OP=2t∴AP=8-2t当t=1时,AP=8-2×1=6;当AP=2时,则|8-2t|=2,解之:t=5或t=3.故答案为:6;3或5.(4)∵点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,∴点Q的速度为每秒8个单位长度,设运动时间为t(t>0)秒时,P,Q之间的距离为4.∴8t-4t-12=4或12+4t-8t=4解之:t=4或t=2故答案为:2或4.【分析】(1)根据点A表示的数和点B的位置关系,就可得到点B所表示的数。

第2章 有理数的运算 综合检测卷(含答案) 初中数学人教版(2024)七年级上册

第2章  有理数的运算  综合检测卷(含答案)   初中数学人教版(2024)七年级上册

人教版(2024年新教材)七年级(上)综合检测卷第2章《有理数的运算》考试时间:100分钟总分值:120分题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.计算:2+(﹣6)=( )A.4B.﹣4C.8D.﹣82.﹣2024的倒数是( )A.﹣2024B.2024C.D.3.横冲国际滑雪场某一天的最高气温为1℃,最低气温为﹣9℃,则这天的最高气温比最低气温高( )A.﹣10℃B.﹣8℃C.8℃D.10℃4.据国家统计局发布,2023年全国固定资产投资(不含农户)50.3万亿元,同比增长3.0%.其中数据“50.3万亿”用科学记数法表示为( )A.5.03×1014 B.5.03×1013 C.0.503×1014 D.5.03×10125.不改变原式的值,将6﹣(﹣3)+(﹣7)﹣(+2)中的减法改成加法,并写成省略加号的形式是( )A.6+3﹣7+2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣26.下列计算不正确的是( )A.﹣1.5×(﹣3)=4.5B.(﹣1.2)×(﹣7)=﹣8.4C.﹣8×(﹣1.3)=10.4D.0×(﹣1.6)=07.两个非零有理数的和为零,则它们的商( )A.1B.﹣1C.0D.不能确定8.下列各数中,结果相等的是( )A.23和32B.(﹣2)3和﹣23C.(﹣3)2和﹣32D.|﹣2|3和(﹣2)39.对于有理数a、b,定义一种新运算“※”,规定:a※b=|a|﹣|b|﹣|a﹣b|,则2※(﹣3)等于( )A.﹣2B.﹣6C.0D.210.数轴上的两点所表示的数分别为a,b,且满足ab>0,a+b<0,下列结论正确的是( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a<0,b>0二.填空题(共6小题,满分18分,每小题3分)11.比﹣27大3的数是 .12.底数是﹣2,指数是4的幂可以写成 .13.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.14.将数2 024.624四舍五入取近似值,精确到个位为 .15.计算(﹣2)÷6×的结果是 .16.在数4、﹣6、3、﹣2、1中,任意取3个不同的数相乘,其中乘积最大是 .三.解答题(共9小题,满分72分,每小题8分)17.(8分)计算:(1)(﹣7)+13﹣5;(2)(﹣)﹣(﹣)﹣|﹣1|.18.(6分)如果a、b互为相反数,c、d互为倒数,m的绝对值为5,求的值.19.(6分)先阅读第(1)小题,再计算第(2)小题:(1)计算:﹣1+(﹣5)+24+(﹣3)解:原式=(﹣1﹣)+(﹣5﹣)+(24+)+(﹣3﹣)=﹣1﹣﹣5﹣+24+﹣3﹣=﹣1﹣5﹣3+24﹣﹣+﹣=15﹣=13(2)计算(﹣15)+(﹣19)+14+(﹣1).20.(10分)计算:(1);(2).21.(6分)阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法 是错误的;(2)请你选择合适的解法计算:(﹣)÷(﹣+﹣).22.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.23.(8分)某仓库5月份前6天,每天粮食相对于前一天(单位:袋)变化如图,增加粮食记作“+”,减少粮食记作“﹣”.(1)通过计算说明前6天,仓库粮食总共的变化情况;(2)在1~7号中,如果前四天的仓库粮食变化情况是后三天变化精况的一半,求7号这天仓库粮食变化情况.24.(10分)①如果a,b,c是有理数且abc≠0,计算代数式的值;②如果有理数a+b+c=0且abc≠0,计算代数式的值.25.(10分)阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数.所以,当a≥0时,|a|=a,当a≤0时,|a|=﹣a.根据以上阅读完成:(1)|3.14﹣π|= ;(2)|x+y|=x+y,则x+y ;(3)计算:.参考答案一.选择题1.B.2.C.3.D.4.B.5.D.6.B.7.B.8.B.9.B.10.B.二.填空题11.﹣24.12.(﹣2)4.13.8.14.2025.15..16.48.三.解答题17.解:(1)原式=6﹣5=1;(2)原式=﹣﹣=﹣=0.18.解:∵a、b互为相反数,c、d互为倒数,m的绝对值为5,∴a+b=0,cd=1,m=±5,当a+b=0,cd=1,m=5时,;当a+b=0,cd=1,m=﹣5时,;所以原式的值为﹣7或3.19.解:(﹣15)+(﹣19)+14+(﹣1)=﹣15﹣﹣19﹣+14+﹣1﹣=﹣15﹣19+14﹣1﹣﹣+﹣=﹣21﹣=﹣2220.解:(1)=﹣8×(﹣+﹣)×6=﹣48×(﹣+﹣)=﹣48×(﹣)﹣48×﹣48×(﹣)=8﹣36+4=﹣24;(2)=﹣1﹣[2﹣(﹣8)]×(﹣)×=﹣1﹣10×(﹣)×=﹣1+=.21.解:(1)上述得到的结果不同,我认为解法一是错误的;故答案为:一;(2)原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,则原式=﹣.22.解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.23.解:(1)﹣4+2﹣6+5+3﹣7=﹣7答:前6天,仓库粮食减少7袋;(2)设7号粮食变化x袋,由题意得,,解得:x=﹣2答:7号粮食减少2袋.24.解:①当a、b、c中没有负数时,都是正数,则原式=1+1+1+1=4;当a、b、c中只有一个负数时,不妨设a是负数,则原式=﹣1+1+1﹣1=0;当a、b、c中有2个负数时,不妨设a、b是负数,则原式=﹣1﹣1+1+1=0;当a、b、c都是负数时,则原式=﹣1﹣1﹣1﹣1=﹣4,综上所述,代数式的值是4或﹣4或0;②当有理数a+b+c=0且abc≠0时,a、b、c中至少有1个正数,有1个负数.则代数式的值是:0.25.解:(1)|3.14﹣π|=π﹣3.14;故答案为:π﹣3.14;(2)|x+y|=x+y,则x+y≥0,故答案为:≥0;(3)原式=1﹣+﹣+﹣+⋯+﹣=1﹣=.。

初一上册数学综合测试卷及答案【三篇】

初一上册数学综合测试卷及答案【三篇】

三一文库()/初中一年级〔初一上册数学综合测试卷及答案【三篇】〕初一上册数学有理数综合测试卷及答案一.选择题(每小题3分,共24分)1.-2的相反数是()A.2B.-2C.D.2.│3.14-|的值是().A.0B.3.14-C.-3.14D.3.14+3.一个数和它的倒数相等,则这个数是()A.1B.C.±1D.±1和04.如果,下列成立的是()A.B.C.D.5.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(保留两个有效数字)D.0.0502(精确到0.0001)6.计算的值是()A.B.C.0D.7.有理数a、b在数轴上的对应的位置如图所示:则()A.a+b<0B.a+b>0C.a-b=0D.a-b>08.下列各式中正确的是()A.B.C.D.二.填空(每题3分,共24分)9.在数+8.3、-4、-0.8、、0、90、、中,________是正数,_________不是整数。

10.+2与-2是一对相反数,请赋予它实际的意义:_________.11.的倒数的绝对值是___________.12.+4=;13.用科学记数法表示13040000,应记作_______________.14.若a、b互为相反数,c、d互为倒数,则(a+b)3.(cd)4=__________.15.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个.16.在数轴上与-3距离四个单位的点表示的数是__________.三.解答题(每题6分,共12分)17.(-0.9)+(+4.4)+(-8.1)+(+5.6)18.四.解答题(每题8分,共40分)19.把下列各数用“”号连接起来:,-0.5,,,-(-0.55),20.如图,先在数轴上画出表示2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,求点B,C表示的数,以及B,C两点间的距离.21.求+的最小值22.某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月赢利2万元,7~10月平均每月赢利1.7万元,11~12月平均每月亏损2.3万元,问:这个公司去年总的盈、亏情况如何?23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)520136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质量为450克,则抽样检测的总质量是多少?参考答案一.选择题1.A2.C3.C4.D5.C6.D7.A8.A二.填空题9.+8.3、90;+8.3、、、.10.向前走2米记为+2米,向后走2米记为米。

山东省青岛实验初级中学数学有理数综合测试卷(word含答案)

山东省青岛实验初级中学数学有理数综合测试卷(word含答案)

一、初一数学有理数解答题压轴题精选(难)1.阅读下面的材料:如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A.B.C三点的位置:(2)点C到点人的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示的数为________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.【答案】(1)解:如图所示:(2)5;﹣5或3(3)﹣1+x(4)解:CA﹣AB的值不会随着t的变化而变化,理由如下:根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴CA﹣AB=(5+3t)﹣(2+3t)=3,∴CA﹣AB的值不会随着t的变化而变化【解析】【解答】(2)CA=4﹣(﹣1)=4+1=5(cm);设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;故答案为5,﹣5或3;( 3 )将点A向右移动xcm,则移动后的点表示的数为﹣1+x;故答案为﹣1+x;【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为-1+x;(4)表示出CA和AB,再相减即可得出结论.2.已知数轴上有A,B,C三个点,对应的数分别为﹣36,﹣12,12;动点P从A出发,以每秒1个单位的速度向终点C移动,设运动时间为t秒(1)若点P到A点的距离是到点B距离的2倍,求点P的对应数;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q 两点之间的距离为4?请说明理由.【答案】(1)解:当P在A、B之间,PA+PB=AB,因为点P到A点的距离是到点B距离的2倍,所以PA=2PB,故2PB+PB=AB,代数可得PB=8,故P点对应数为﹣12﹣8=﹣20;当P在B、C之间,PA﹣PB=AB,所以2PB﹣PB=AB,故PB=AB=24,故P点对应数为﹣12+24=12,与点C重合.(2)解:分四种情况考虑,第一种情况:当Q未追上P时,两点相距4个单位长度.PA﹣QA=4,设时间为t1, AB+t1×1﹣3t1=4,故24+t1×1﹣3t1=4,则t1=10;第二种情况:当Q超过P时,两点相距4个单位长度.QA﹣PA=4,设时间为t2,3t2﹣(t2+AB)=4,故3t2﹣(t2+24)=4,则t2=14;第三种情况:当Q从C点返回未和P相遇时,两点相距4个单位长度.设时间为t3,3t3+t3+4+AB=2AC,故3t3+t3+4+24=2×48,则t3=17;第四种情况:当Q从C点返回和P相遇后,两点相距4个单位长度.设时间为t4,3t4+t4+AB=2AC+4,故3t4+t4+24=2×48+4,则t4=19.【解析】【分析】(1)P从A运动到C,存在两种情况:1.P在A、B之间2.P在B、C之间,后计算发现此点与C重合;(2)分四种情况考虑,第一种情况:当Q未追上P时,两点相距4个单位长度. 第二种情况:当Q超过P时,两点相距4个单位长度. 第三种情况:当Q 从C点返回未和P相遇时,两点相距4个单位长度,第四种情况:当Q从C点返回和P相遇后,两点相距4个单位长度.3.[背景知识]数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.[问题情境]已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).[综合运用](1)运动开始前,A、B两点的距离为________;线段AB的中点M所表示的数________.(2)点A运动t秒后所在位置的点表示的数为________;点B运动t秒后所在位置的点表示的数为________;(用含t的代数式表示)(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B 两点重合,则中点M也与A,B两点重合)【答案】(1)18;-1(2)﹣10+3t;8﹣2t(3)解:设它们按上述方式运动,A、B两点经过x秒会相遇,根据题意得﹣10+3x=8﹣2x,解得x= ,﹣10+3x= .答:A、B两点经过秒会相遇,相遇点所表示的数是;(4)解:由题意得, =0,解得t=2,答:经过2秒A,B两点的中点M会与原点重合.M点的运动方向向右,运动速度为每秒个单位长度.故答案为18,﹣1;﹣10+3t,8﹣2t.【解析】【解答】解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示的数为 =﹣1;(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;【分析】(1)根据A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b及线段AB的中点M表示的数为即可求解;(2)点A运动t秒后所在位置的点表示的数=运动开始前A点表示的数+点A运动的路程,点B运动t秒后所在位置的点表示的数=运动开始前B点表示的数﹣点B运动的路程;(3)设它们按上述方式运动,A、B两点经过x秒会相遇,等量关系为:点A运动的路程+点B运动的路程=18,依此列出方程,解方程即可;(4)设A,B按上述方式继续运动t秒线段AB的中点M能否与原点重合,根据线段AB的中点表示的数为0列出方程,解方程即可.4.若有理数在数轴上的点位置如图所示:(1)判断代数式的符号;(2)化简:【答案】(1)解:因为所以(2)解:因为所以原式.【解析】【分析】(1)根据有理数的加减法,可得答案;(2)根据绝对值的性质,可化简去掉绝对值,根据合并同类项,可得答案.5.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.【答案】(1)解:∵a=﹣2,b=4,c=8,∴AB=6,BC=4,∵D为AB中点,F为BC中点,∴DB=3,BF=2,∴DF=5(2)解:①∵点A到原点的距离为3且a<0,∴a=﹣3,∵点B到点A,C的距离相等,∴c-b=b-a,∵c﹣b=b﹣a,a=﹣3,∴c=2b+3,答:b、c之间的数量关系为c=2b+3.②依题意,得x﹣c<0,x-a>0,∴|x﹣c|=c﹣x,|x-a|=x-a,∴原式=bx+cx+c﹣x﹣5(x-a)=bx+cx+c﹣x﹣5x+5a=(b+c﹣6)x+c+5a,∵c=2b+3,∴原式=(b+2b+3﹣6)x+c+5×(﹣2)=(3b﹣3)x+c-10,∵当 P 点在运动过程中,原式的值保持不变,即原式的值与x无关,∴3b﹣3=0,∴b=1.答:b的值为1【解析】【分析】(1)先求出AB、BC的长,然后根据中点的定义计算即可;(2)①由B为AC的中点可得,AB=BC,然后根据点B到点A,C的距离相等列式求解即可;②先去绝对值化简,然后根据当 P 点在运动过程中,原式的值保持不变,即可求出x的值.6.阅读理解:若A,B,C为数轴上的三点,且点C到点A的距离是点C到点B的距离的2倍,我们就称点C是【A,B】的好点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学测试有理数综合
班级 姓名 学号 得分
考生注意:1、本卷共有24个小题,共120分
2、考试时间为50分钟
一、选择题(本题共有10个小题,每小题都有A 、B 、C 、D 四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题3分,共30分)
1、下列说法正确的是( )
A 整数就是正整数和负整数
B 负整数的相反数就是非负整数
C 有理数中不是负数就是正数
D 零是自然数,但不是正整数
2、下列各对数中,数值相等的是( )
A -27与(-2)7
B -32与(-3)2
C -3×23与-32×2
D ―(―3)2与―(―2)3 3、在-5,-10
1,-3.5,-0.01,-2,-212各数中,最大的数是( ) A -12 B -10
1 C -0.01 D -5 4、若其中至少有一个正数的5个有理数的积是负数,那么这五个因数中,正数的个数是( )
A 1
B 2或4
C 5
D 1和3
5、绝对值大于或等于1,而小于4的所有的正整数的和是( )
A 8
B 7
C 6
D 5
6、计算:(-2)100+(-2)101的是( )
A 2100
B -1
C -2
D -2100
7、比-7.1大,而比1小的整数的个数是( )
A 6
B 7
C 8
D 9
8、如果一个数的平方与这个数的差等于0,那么这个数只能是( )
A 0
B -1
C 1
D 0或1
9、我国最长的河流长江全长约为6300千米,用科学记数法表示为( )
A 63×102千米
B 6.3×102千米
C 6.3×104千米
D 6.3×103千米
10、已知8.62=73.96,若x 2=0.7396,则x 的值等于( )
A 6.8
B ±0.68
C ±0.86
D ±86
二、填空题(本题共有8个小题,每小题3分,共27分)
11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,
规定向上为正,那么习惯上将2楼记为 ;地下第一层记作 ;数-2的实际意义为 ,数+9的实际意义为 。

12、互为相反数的两数(非零)的和是 ,商是 ;互为倒数的两数的积
是 。

13、某数的绝对值是5,那么这个数是 。

134756≈ (保留四个有效数字)
14、( )2=16,(-3
2)3= 。

15、数轴上和原点的距离等于32
1的点表示的有理数是 。

16、计算:-0.85×178+14×72-(14×3-9×0.85)= 。

17、使用计算器进行计算时,按键程序为 8 4 ,则结果为 。

18、+5.7的相反数与-7.1的绝对值的和是 。

19、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配 辆汽车。

三、解答题(本题共有7个小题,满分63分)
20、计算:(本题共有7个小题,每小题4分,共28分)
(1)8+(―4
1)―5―(―0.25) (2)―82+72÷36
(3)721×143÷(-9+19) (4)25×43―(―25)×21+25×(-4
1)
(5)(-81)÷241+9
4÷(-16) (6)(-1)3-(1-21)÷3×[2―(―3)2]
(7)3232)2(361)3()2(---⨯
---
21、一天小明和冬冬利用温差来测量山峰的高度。

冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?5%
22、有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24。

例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算) 现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24。

运算式如下:(1) ,(2) ,
(3) 。

另有四个有理数3,-5,7,-13,可通过运算式(4) 使其结果等于24。

(8%)
23、下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数)。

现在的北京时间是上午8∶00
(1)求现在纽约时间是多少?
(2
24、画一条数轴,并在数轴上表示:3.5和它的相反数,-2
1和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来。

6%
25、甲、乙、丙三位同学合乘一辆出租车同往一个方向,事先约定三人分摊车资。

甲在全程
的31处下车,乙在全程的3
2处下车,丙坐完全程下车,车费共54元。

问甲、乙、丙三位同学各付多少车费比较合理?请你设计一个方案。

6%
26、某数学俱乐部有一种“秘密”的记帐方式。

当他们收入300元时,记为-240;当他们用去300元时,记为+360。

猜一猜,当他们用去100元时,可能记为多少?当他们收入100元时,可能记为多少?说说你的理由。

5%
四、提高题(本题有2个小题,每小题10分,共20分)
1、右面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。

2、若a、b、c均为整数,且∣a-b∣3+∣c-a∣2=1,求∣a-c∣+∣c-b∣+∣b-a∣的值。

相关文档
最新文档