五年级小学数学下册期末复习试卷应用题(50题)和答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级小学数学下册期末复习试卷应用题(50题)和答案解析
一、人教五年级下册数学应用题
1.东风湖湿地公园绿化栽树,每12棵栽一行,或者每16棵栽一行,都正好栽完而没有剩余。

这些树不到50棵,这些树一共有多少棵?
2.王玲看一本故事书,第一天看了全书的,第二天看了全书的。

(1)两天一共读了全书的几分之几?
(2)还剩几分之几没看?
3.在一个长60cm,宽40cm的玻璃缸中放入一块石块,石块浸没于水中,这时水深20cm,取出石块后水深17cm,石块的体积是多少?
4.下面两根小棒,要把它们截成同样长的小段,不能有剩余,每小段小棒最长是多少厘米?一共可以截成几小段?
5.将58L水和一个铁块一起放入一个长7dm,宽5dm,高6dm的玻璃缸中(铁块完全浸没在水中),这时水面离缸口2dm。

你能求出铁块的体积是多少吗?
6.小刚去买文具,日记本3元一本、钢笔4元一支、文具盒12元一个。

如果小刚买了一些钢笔和文具盒,他付给营业员50元,找回17元,找的钱对吗?写出你的理由。

7.新华书店新到了三百本多本书打算分发给各个学校,每18本捆成一捆少1本;每24本捆成一捆也少1本。

这批书共有多少本?
8.一个长方体玻璃容器,底面是边长2分米的正方形,向容器中倒进6升的水,再把一个西瓜放进水中,这时水面高度是25厘米(水没有溢出),这个西瓜的体积是多少? 9.五(1)班有男生28人,是女生人数2倍少6人,女生人数占全班人数的几分之几?10.汽车总站是3路汽车和5路汽车的起点站,3路汽车每5分钟发车一次,5路汽车每8分钟发车一次。

两路汽车第一次同时发车的时间是6:00,最后一次同时发车的时间是22:00。

一天内一共同时发车多少次?
11.一个无盖的长方体铁皮水槽(如下图),做这个水槽至少需要多少平方分米铁皮?这个水槽最多可以盛水多少升?(单位:dm)
12.挖一个长50m、宽30m、深3m的水池。

(1)水池占地多少平方米?
(2)在水池底部和四壁抹上水泥,如果每平方米需要 3.5kg水泥,至少需要多少千克水泥?
13.有47块水果糖和38颗奶糖平均分给一个小组的同学,结果水果糖剩2块,奶糖剩3块,这个小组最多有几位同学?
14.明明的房间的四壁和房顶都贴上墙纸,房间长4米,宽3米,高3米。

该房间门窗面积是4.7平方米(门窗不贴墙纸),如果这样,这个房间至少需要多大面积的墙纸?15.富安小区要建一个游泳池,游泳池长12m,宽是6m,深2m。

(1)这个游泳池的占地面积是多少平方米?
(2)如果在游泳池的四周和底面贴上瓷砖,这个游泳池需要贴多少平方米的瓷砖?
(3)这个游泳池最多可以装多少升水?
16.“植树节”到了,有25个小伙伴要分成甲、乙两个组去植树,如果甲队人数为奇数,那么乙队人数为奇数还是偶数?如果有1人请假未到,这时甲队人数为偶数,那么乙队人数呢?
17.有两个没有标识容积大小的杯子,如图。

(1)请你设计实验比较这两个杯子的容积大小,工具不限,写一写你的方法。

(2)奇思想知道①号杯子的容积是多少mL,他家有一个长方体的容器(足够大),刻度尺和适量水,你能帮助他利用以上工具测量一下吗?写一写你的方法。

(3)笑笑家里也有一个长方体的容器,它的长是2.2dm,宽是2dm,高是1.5dm,有一天她看到妈妈买了一些黄豆回来做饭,出于对知识的探究欲望,她想知道一颗黄豆体积大约是多少,你能帮助她设计一个实验测量一下吗?写一写你的方法。

(可用工具:她家里的这个长方体容器,刻度尺和适量水)
18.南湖小区准备修建一个长4m,宽2.5m,高3.6m的长方体小型蓄水池。

(1)给这个蓄水池的地面铺正方形地砖,要使铺的地砖都是整块,地砖的边长最长是多少?一共需要这样的地砖多少块?
(2)在蓄水池的四壁上贴2.4米高的瓷砖,需要多少平方米的瓷砖?
19.一个长是8cm,宽是5cm的长方体木块,体积是120cm3。

(1)这个长方体的高是________cm。

(2)如果从这个长方体木块中截取一个最大的正方体,正方体的体积是原长方体体积的几分之几?
(3)这个长方体木块最多能截取()个像上面(2)题中一样的正方体,截完后原来长方体剩余木块的表面积是多少平方厘米?
20.一个正方体容器,棱长为20厘米,放入一个土豆后(完全浸没水中),水面升高了3厘米,这个土豆的体积是多少?
21.欢欢和乐乐都报名参加了作文培训,欢欢9天去一次,乐乐12天去一次,5月3日他俩同时去培训,下次他俩同时去培训是在几月几日?
22.学校要粉刷新教室的四周和屋顶,已知教室的长是8m,宽是6m,高是3m,门窗的面积是11.4平方米。

如果每平方米需要花6元涂料费,粉刷这个教室需要花费多少元?23.一块方钢长80厘米,横截面是边长3厘米的正方形,如果每立方厘米的钢重7.8克,这块方钢共重多少千克?
24.一个长方体玻璃鱼缸(无盖),长50厘米、宽40厘米、高30厘米。

(1)做这个鱼缸至少需要玻璃多少平方厘米?
(2)在鱼缸里注入40升水,水深大约多少厘米?
(3)往水里放入鹅卵石,测得水面上升了2.5厘米,求放入物体的体积一共是多少立方厘米?
25.鱼缸里水深2.8分米,放入一块珊瑚石完全浸没在水中,水面上升到3分米珊瑚石的体积是多少立方分米?
26.一个棱长是15cm的正方体水槽中,水深8cm,现将一块长12cm,宽是7.5cm的长方体石块,完全浸没在水中(水未溢出),水面上升5cm,石块的高是多少厘米?
27.希望小学有一间长10米、宽6米、高3.5米的长方体教室。

(1)这间教室的空间有多大?
(2)现在要在教室粉刷墙壁,扣除门、窗、黑板面积6平方米,这间教室要刷多少平方米?
28.挖一个长10米,宽6米、深2米的蓄水池。

(1)这个蓄水池的占地面积是多少平方米?
(2)这个蓄水池已经蓄水1.5米,最多还能蓄水多少立方米?
29.玲玲家有一个长方体的玻璃鱼缸,长8dm,宽4dm,高6dm。

(1)制作这个鱼缸至少需要多少玻璃?【鱼缸上面没有玻璃】
(2)鱼缸里原来有一些水,放入4个同样大的装饰球后(如右图),水面上升了0.05dm。

每个装饰球的体积是多少dm3?
30.一个长方体玻璃容器,从里面量长、宽均是2dm,向容器中倒入5L水,再把一个土豆放入水中。

这时量得容器内的水深13cm。

这个土豆的体积是多少?
【参考答案】***试卷处理标记,请不要删除
一、人教五年级下册数学应用题
1.解:12的倍数有:12、24、36、48、60……
16的倍数有:16、32、48、64……
既是12的倍数,又是16的倍数,且在50以内的数是48,
所以这些树一共有48棵。

答:这些树一共有48棵。

【解析】【分析】每12棵栽一行,或者每16棵栽一行,都正好栽完而没有剩余,说明这些树的棵树是12和16的倍数,再分别列出12和16的倍数,然后找到既是12的倍数,又是16的倍数,并且比50小的数就是答案了。

2.(1)
答:两天一共读了全书的。

(2)
答:还剩没有看。

【解析】【分析】(1)把两天看的分率相加即可求出一共读了全书的几分之几;
(2)用1减去两天读的分率即可求出还剩几分之几没看。

3.解:石块的体积=60×40×(20-17)
=2400×3
=7200(立方厘米)
答:石块的体积是7200立方厘米。

【解析】【分析】长方体的体积=长×宽×高,本题中石块的体积=玻璃缸的长×玻璃缸的宽×(放入石块时的水深-取出石块时的水深),代入数值计算即可。

4.解:16=2×2×2×2,44=2×2×2,
所以16和44的最大公因数是2×2=4,
所以每小段木棒最长是4厘米。

16÷4+44÷4
=4+11
=15(小段)
答:每小段木棒最长是4厘米,一共可以截成15小段。

【解析】【分析】求每小段木棒最长的厘米数,即是求16和44的最大公因数,先将16和44分解质因数,再找出公共因数,公共因数的乘积即为16和44的最大公因数(每小
段木棒最长的厘米数);一共可以截成的段数=第一根木棒的总长度÷每小段木棒最长的厘米数+第二根木棒的总长度÷每小段木棒最长的厘米数。

5. 7×5×(6-2)-58
=140-58
=82(立方分米)
答:铁块的体积是82立方分米。

【解析】【分析】玻璃缸中水的长宽高的积就是水和铁块的体积之和;水和铁块的体积之和-水的体积=铁块的体积,计算时注意单位。

6. 50-17=33(元)
33是奇数,找的钱不对。

答:找的钱不对。

理由是钢笔和文具盒的单价都是偶数,所以不管怎么买,花的钱也是偶数,付的钱50元也是偶数,所以找回的钱应该是偶数才对。

【解析】【分析】一个数×偶数=偶数;偶数+偶数=偶数,偶数-偶数=偶数,据此解答。

7.解:18=2×3×3
24=2×2×2×3
所以它们的最小公倍数是2×2×2×3×3=72
72的倍数有72、144、216、288、360、432等
360-1=359(本)
答:这批书共有359本。

【解析】【分析】此题主要考查了最小公倍数的应用,先把18和24分别分解质因数,然后求出它们的最小公倍数,根据条件“ 新华书店新到了三百本多本书”可知,把它们的最小公倍数分别扩大1倍、2倍、3倍……,找出符合条件的三百多的数,最后用这个数减去1即可得到这批书的本数,据此解答。

8. 6升=6立方分米
6÷(2×2)=6÷4=1.5(分米)
25厘米=2.5分米
2.5-1.5=1分米
2×2×1=4×1=4(立方分米)
答:这个西瓜的体积是4立方分米。

【解析】【分析】先计算出倒入6升水后容器中水面的高度=水的体积(升化成立方分米)÷容器的底面积(边长×边长),再用放入西瓜后水面的总高度(将厘米化成分米)减去倒入6升水后容器中水面的高度,计算出水面升高的分米数,再用长方体的底面积(边长×边长)×水面升高的分米数即可计算出西瓜的体积。

9.解:28+6=34(人)
34÷2=17(人)
28+17=45(人)
17÷45=
答:女生人数占全班人数的。

【解析】【分析】先计算出女生人数的2倍有多少人,用男生的人数加上男生比女生2倍少的人数;进行可求出女生的人数;再用男生的人数+女生的人数计算出总人数,最后用女生的人数除以总人数即可得出女生人数占全班人数的几分之几。

10.解:5×8=40(分),
22时-6时=16(时)=960(分),
960÷40=24(次)
24+1=25(次)
答:一天内一共同时发车25次。

【解析】【分析】此题主要考查了最小公倍数的应用,先求出两车每两次同时发车的间隔时间,也就是它们发车时间的最小公倍数,然后计算出从第一次同时发车到最后一次同时发车间隔的时间,最后用间隔的时间÷每两次同时发车的间隔时间+1=同时发车的总次数,据此列式解答。

11.解:12×5+(12×2+5×2)×2=128(dm2)
12×5×2=120(dm3)=120(L)
答:做这个水槽至少需要128平方分米铁皮,这个水槽最多可以盛水120升。

【解析】【分析】因为无盖,所以做这个水槽至少需要的铁皮面积就是5个面的面积,长×宽+长×高×2+宽×高×2=至少需要铁皮的面积;长×宽×高=长方体体积,据此先算出长方体体积,再把体积单位化为容积单位。

12.(1)解:50×30=1500(m2)
答:水池占地1500平方米。

(2)解:50×30+(50×3+30×3)×2=1980(m2)
1980×3.5=6930(kg)
答:至少需要6930千克水泥。

【解析】【分析】(1)已知长方体水池的长、宽、高,要求水池的占地面积,依据长方体的底面积=长×宽,据此列式解答;
(2)要求在水池底部和四壁抹上水泥,就是求无盖长方体的表面积,无盖长方体的表面积=长×宽+(长×高+宽×高)×2,据此列式计算;
要求需要的水泥质量,每平方米需要的水泥质量×抹水泥的面积=需要的水泥总质量,据此列式解答。

13.解:水果糖、奶糖分别分出:47-2=45(块),38-3=35(块)
把45、35分解质因数:45=3×3×5,35=5×7
45、35的最大公因数:5。

答:这个小组最多有5位同学。

【解析】【分析】用“分出块数=原有块数-剩余块数”,分别求出水果糖、奶糖分出块数;再求出二者的最大公因数,此题得解。

14.解:(4×3+3×3)×2+4×3-4.7
=(12+9)×2+12-4.7
=21×2+12-4.7
=42+12-4.7
=54-4.7
=49.3(平方米)
答:这个房间至少需要49.3平方米的墙纸。

【解析】【分析】长方体的表面积=(长×宽+长×高+宽×高)×2,本题中至少需要墙纸的面积=(长×高+宽×高)×2+长×宽-门窗的面积,代入数值计算即可。

15.(1)解:12×6=72(平方米)
答:这个游泳池的占地面积是72平方米。

(2)解:12×6+(12×2+6×2)×2
=72+(24+12)×2
=72+36×2
=72+72
=144(平方米)
答:这个游泳池需要贴144平方米的瓷砖。

(3)解:12×6×2
=72×2
=144(立方米)
=144000升
答:这个游泳池最多可以装水144000升水。

【解析】【分析】(1)游泳池的占地面积=游泳池的底面积=长×宽,代入数值计算即可;(2)需要贴瓷砖的平方米数=长×宽+(长×高+宽×高)×2,长方体的表面积-上面的面积,代入数值计算即可;
(3)水的体积=长×宽×高,最后将单位转化成升即可。

16.解:25-奇数=偶数;
25-1=24,
24-偶数=偶数。

答:有25个小伙伴要分成甲、乙两个组去植树,如果甲队人数为奇数,那么乙队人数为偶数;如果有1人请假未到,这时甲队人数为偶数,那么乙队人数为偶数。

【解析】【分析】此题主要考查了奇数和偶数的应用,奇数-奇数=偶数,奇数-偶数=奇数,偶数-偶数=偶数,据此解答。

17.(1)解:在①号杯子里面加满水,然后把①号杯子的水倒入②号容器,如果刚好加满,说明两个杯子容积相等;如果不能加满,说明②号杯子小于①号杯子的容积;如果加不完,说明①号杯子容积大于②号杯子容积。

(2)解:测量出长方体容器的长、宽、高分别是多少厘米。

然后把①号杯子装满水,再把水倒入长方体容器中,测量出容器中水的高度,然后根据长方体体积公式计算出水的体积,就是①号杯子的容积。

(3)解:①在这个长方体容器里面倒入1dm高度的水;
②数出100粒黄豆,把这100颗黄豆倒数容器中,再测量出水面的高度;
③用长方体容器的底面积乘水面上升的高度即可求出100颗黄豆的体积;
④用100粒黄豆的体积除以100即可求出一颗黄豆的体积。

【解析】【分析】(1)容积是容器所能容纳物体的体积,可以采用倒水的方法来比较它们容积的大小;
(2)可以根据把①号杯子里面的水倒入长方体容器中,然后根据长方体体积公式计算杯子的容积;
(3)采用排水法求出100颗黄豆的体积,进而求出1颗黄豆的体积大约是多少即可。

18.(1)解:4m=40dm;2.5m=25dm,
因为40和25的最大公因数是5,所以地砖的边长最长是5dm,
所以一共需要这样的地砖的块数=(40÷5)×(25÷5)
=8×5
=40(块)
答:地砖的边长最长是0.5米;一共需要这样的地砖40块。

(2)解:需要瓷砖的面积=(4×2.4+2.5×2.4)×2
=(9.6+6)×2
=15.6×2
=31.2(平方米)
答:需要31.2平方米的瓷砖。

【解析】【分析】(1)将4m和2.5m转化成dm,即4m=40dm;2.5m=25dm,地砖的边长最长是40和25的最大公因数,40和25的最大公因数是5dm,所以一共需要地砖的块数=(蓄水池的长÷最大公因数)×(蓄水池的宽÷最大公因数),代入数值计算即可;(2)需要瓷砖的面积=(蓄水池的长×四壁贴瓷砖的高度+蓄水池的宽×四壁贴瓷砖的高度)×2,代入数值计算即可。

19.(1)3
(2)解:3×3×3=9×3=27(立方厘米)
27÷120=
答:正方体的体积是原长方体体积的。

(3)解:8÷3=2(个)……2(厘米)
5÷3=1(个)……2(厘米)
3÷3=1(个)
2×1×1=2(个)
(8×5+8×3+5×3)×2=79×2=158(平方厘米)
答:这个长方体木块最多能截取2个像上面(2)题中一样的正方体,截完后原来长方体剩余木块的表面积是158平方厘米。

【解析】【解答】(1)120×(8×5)=120÷40=3(厘米),所以这个长方体的高是3cm。

【分析】(1)高=体积÷(长×宽);
(2)根据正方体的特征,截取的最大的正方体的棱长是3厘米,正方体的体积=棱长3,求一个数是另一个数的几分之几,用除法;
(3)长8厘米里面有2个3厘米,宽厘米5里面有1个3厘米,高3厘米里面有1个3厘米;据此可得能截取的正方体的个数为(2×1×1)个,平移割补后,剩余木块的表面积与原来长方体的表面积相同,据此解答即可。

20.解:20×20×3
=400×3
=1200(立方厘米)
答:这个土豆的体积为1200立方厘米。

【解析】【分析】水面升高部分水的体积就是土豆的体积,因此用容器的底面积乘水面升高的高度即可求出土豆的体积。

21.解:9=3×3,12=3×4,
9和12的最小公倍数是3×3×4=36,
5月3日+36日=5月3日+28日+8日=6月8日。

答:下次他俩同时去培训是在6月8日。

【解析】【分析】9和12的最小公倍数就是他们下次相遇时间隔的时间,第一次同去时间+间隔的时间=下次同去的时间。

22.解:(8×6+8×3×2+6×3×2-11.4)×6
=(48+48+36-11.4)×6
=120.6×6
=723.6(元)
答:粉刷这个教室需要花费723.6元。

【解析】【分析】要粉刷的面积=教室5个面的面积-门窗的面积,要粉刷的面积×6=粉刷这个教室需要花费的钱数。

23.解:3×3×80×7.8÷1000
=9×80×7.8÷1000
=720×7.8÷1000
=5616÷1000
=5.616(千克)
答:这块方钢共重5.616千克。

【解析】【分析】根据题意可知长方体的体积=底面积×高,计算出体积后,体积× 每立方厘米的质量=总质量,关键最后要单位换算。

24.(1)解:50×40+(50×30+40×30)×2
=50×40+(1500+1200)×2
=50×40+2700×2
=2000+5400
=7400(平方厘米)
答:做这个鱼缸至少需要玻璃7400平方厘米。

(2)解:40×1000=40000(立方厘米)
40000÷(50×40)
=40000÷2000
=20(厘米)
答:水深大约20厘米。

(3)解:50×40×2.5
=2000×2.5
=5000(立方厘米)
答:放入物体的体积一共是5000立方厘米。

【解析】【分析】(1)无盖的长方体的表面积=长×宽+(长×高+宽×高)×2;
(2)水深就是水的高,高=容积÷底面积;
(3)求物体的体积就等于容器内水上升的体积=底面积×高。

25.解: 6×5× (3-2.8)
=30×0.2
= 6(dm³)
答:水面上升到3分米珊瑚石的体积是6立方分米。

【解析】【分析】珊瑚石的体积=底面积×(放入珊瑚石后水面高度-原来水深)。

26.解:15×15×5÷(12×7.5)
=1125÷90
=12.5(厘米)
答:石块的高是12.5厘米。

【解析】【分析】石块的高=上升的体积÷(石块的长×宽)=正方体水槽的棱长×棱长×水面上升的高度×(石块的长×宽),据此代入数值解答即可。

27.(1)解:10 ×6×3.5
=60×3.5
=210(立方米)
答:这间教室的空间有210立方米。

(2)解:10×6+(10×3.5+3.5×6)×2-6
=60+(35+21)×2-6
=60+56×2-6
=60+112-6
=166(平方米)
答:这间教室要刷166平方米。

【解析】【分析】(1)长方体体积=长×宽×高,根据体积公式计算这间教室的空间;(2)地面是不需要粉刷的,根据长方体表面积公式,只计算一个底面,再加上四个侧面,然后减去门、窗、黑板的面积即可求出需要粉刷的面积。

28.(1)解:10×6=60(平方米)
答:这个蓄水池的占地面积是60平方米。

(2)解:10×6×(2-1.5)
=10×6×0.5
=60×0.5
=30(立方米)
答:最多还能蓄水30立方米。

【解析】【分析】(1)根据题意可知,已知长方体的长、宽、高,求底面积,用长×宽=长
方体的底面积;
(2)要求长方体的容积,用公式:长方体蓄水池内还能蓄水的容积=长×宽×还能蓄水的高度,据此列式解答。

29.(1)解:8×4+8×6×2+4×6×2
=32+96+48
=176(平方分米)
答:制作这个鱼缸至少需要176平方分米玻璃。

(2)解:8×4×0.05÷4
=8×0.05
=0.4(立方分米)
答:每个装饰球的体积是0.4立方分米。

【解析】【分析】(1)底面面积+前后两个面的面积+左右两个面的面积=制作这个鱼缸至少需要的玻璃面积;
(2)鱼缸的长×宽×水面上升的高度=4个装饰球的体积;4个装饰球的体积÷4=每个装饰球的体积。

30.解:5L=5dm3,
5÷2÷2
=2.5÷2
=1.25(分米)
=12.5(厘米)
2分米=20厘米,
20×20×(13-12.5)
=20×20×0.5
=400×0.5
=200(立方厘米)
答:这个土豆的体积是200立方厘米。

【解析】【分析】根据题意可知,先求出原来长方体容器里水的高度,长方体的容积÷长÷宽=长方体容器内水的深度,放入土豆后,水的深度增加,增加部分的体积就是土豆的体积,长方体的长×宽×上升的水位=土豆的体积,据此列式解答。

相关文档
最新文档