(人教版)高中数学必修四教案

合集下载

人教版高中数学必修四教案:3.1.2两角和与差的正弦、余弦和正切公式

人教版高中数学必修四教案:3.1.2两角和与差的正弦、余弦和正切公式

3.1.2 两角和与差的正弦、余弦、正切公式教材分析本节内容是数学4第三章三角恒等变换第一节两角和与差的正弦、余弦和正切公式的第二课时,是在学习了差角的余弦公式的基础上,进一步对差角的正弦、正切及和角的正弦、余弦和正切公式的探究.本节的六个公式是本章的重要内容,也是三角恒等变换的基础,对三角函数式的化简,求值、三角恒等式的证明等问题起着重要的支撑作用,同时,它又为后面学习倍角公式作铺垫.本节课的重点是公式的推导及公式的简单应用,难点是公式的记忆和灵活应用.通过公式的推导过程,揭示了公式间的联系,加深对公式的理解和记忆.教学中既要有意识地训练学生思维的有序性和对思维过程表述的准确性、简洁性,又要渗透转化、换元、分类讨论的数学思想,这些都是培养学生三角恒等变换能力所不能忽视的.课时分配本节内容用1课时的时间完成,首先在两角差的余弦公式的基础上,引导学生自主探究得到两角和与差的正弦、余弦、正切公式,并掌握公式的结构和变形形式.然后,通过例题运用公式解决简单的数学问题.教学目标重点:两角和与差的正弦、余弦和正切公式的探究过程,公式结构及应用.难点:两角和与差的正弦、余弦和正切公式的记忆和灵活应用.知识点:两角和与差的正弦、余弦和正切公式.能力点:能以两角差的余弦公式为基础,结合诱导公式与同角三角函数关系式,推导出差角、和角的正弦、余弦和正切公式.教育点:经历公式的探究过程,注重知识间的联系,培养学生的探索精神,提高学生的推理能力和运算能力.自主探究点:以两角差的余弦公式为基础,探究差角、和角的正弦、余弦和正切公式的推导方法. 考试点:灵活使用差角、和角的公式进行三角函数式的化简、求值和恒等变形.易错易混点:使用公式时,学生容易在分析角的范围上出错.拓展点:如何利用差角、和角公式把形如sin cos a x b x +式子化简为形如sin()A x ωϕ+的三角式. 教具准备 多媒体课件课堂模式 学案导学一、 引入新课师:同学们,上节课我们学习了差角的余弦公式,请大家首先回顾一下这个公式的形式是怎样的. 生:()cos cos cos sin sin αβαβαβ-=+. ——同名积,符号反师:由于公式()cos αβ-只可以用来解决与差角的余弦相关的三角变换问题,因而在应用中有很大的局限性,遇到差角的正弦、正切及和角的正弦、余弦、正切时,公式()cos αβ-就不能直接应用了,因此,我们有必要将公式()cos αβ-作进一步拓广,希望得到两角和与差的三角系列公式.这节课我们就来探究差角的正弦、正切公式及和角的正弦、余弦、正切公式.【设计意图】从熟悉的差角余弦公式出发,让学生意识到进一步探究差角、和角的正弦、余弦和正切公式的意义,是对旧知的扩展,进而引出本节课题,自然流畅.二、探究新知探究一:探究公式()cos cos cos sin sin αβαβαβ+=-.问题:由公式()C αβ-出发,如何推导公式:()cos ?αβ+=【师生活动】师:引导学生从两个方面展开联想:①函数名称的联系;②角的联系,αβ+与αβ-之间的联系.重点指出,要想利用差角的公式得到和角的公式,如果从形式上能将和角变成差角的形式,那就近了一步.生:自主思考,一般得出:①将αβ+转化为()αβ--;②在公式()cos αβ-中,以β-代β. 师生:利用换元的思想推导出()C αβ+,并进一步理解公式间的联系,共同分析对比()C αβ-与()C αβ+两公式的结构形式.()()cos cos cos cos()sin sin()cos cos sin sin αβαβαβαβαβαβ+=--=-+-=-⎡⎤⎣⎦ 即()C αβ+:()cos cos cos sin sin αβαβαβ+=-. ——同名积,符号反【设计意图】让学生参与公式的探究过程,加深理解公式间的联系,有利于公式的记忆,培养学生换元的数学思想.探究二:探究公式()sin sin cos cos sin αβαβαβ±=±.问题:在公式()C αβ-与()C αβ+的基础上,怎样推导()sin ?αβ+=与()sin ?αβ-=【师生活动】师:我们的目标是求两角和与差的正弦公式,而我们已经知道了相应的余弦公式,那么,一个自然的想法是什么?就是利用余弦公式求正弦公式.如何把()sin αβ+改写成余弦?生:自主探究,从原有知识结构中提取正弦与余弦的关系,将公式推导出来.()()sin cos cos ()cos()cos sin()sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤+=-+=--=-+-⎢⎥⎢⎥⎣⎦⎣⎦sin cos cos sin αβαβ=+即()S αβ+:()sin sin cos cos sin αβαβαβ+=+. ——异名积,符号同以β-代β得()S αβ-:()sin sin cos cos sin αβαβαβ-=-. ——异名积,符号同师生:共同整理推导过程,让学生认识到解决问题的关键是应用诱导公式把正弦化为余弦,体会转化与化归思想方法在解决问题中的重要性,并进一步分析所得公式的结构形式与()C αβ-、()C αβ+的区别.【设计意图】结合旧知,探究新知,既巩固已学知识,又加深理解公式间的联系,同时有利于公式的记忆,培养学生转化与化归的数学思想.探究三:探究公式()tan tan tan 1tan tan αβαβαβ±±=m . 问题:怎样用,αβ的正切表示()tan αβ+、()tan αβ-呢?【师生活动】师:由两角和与差的正弦、余弦公式如何探究两角和与差的正切公式?以和角为例,请自主探究.生:自主探究.一般能从同角三角函数的关系式出发进行探究,教师可作个别指导.但是,多数学生可能只是将和角的正弦、余弦公式代入展开而不去化简.()()()sin sin sin cos cos sin tan tan cos cos cos cos sin sin αβααβαβααβααβαβαβ++=→+==+- 师:上述公式是用单角的正、余弦表示和角的正切,那么,通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢?引导学生观察思考,当cos cos 0αβ≠时,分式的分子、分母同时除以cos cos αβ,得出和角的正切公式()T αβ+:()tan tan tan 1tan tan αβαβαβ++=-. 师:进一步提出引申思考的问题:在上述公式的推导过程中,角,αβ有什么条件要求吗?除此之外,公式本身还有什么限制吗?生:自主思考,可以得出α、β、αβ+都不等于()2k k Z ππ+∈.师生:指明公式成立的条件,使公式完整.进一步让学生类比思考差角的正切公式的推导,自主得出差角公式,并与和角公式比较,分析结构,帮助记忆.差角的正切公式()T αβ-:()tan tan tan 1tan tan αβαβαβ--=+. 【设计意图】让学生经历探究公式的过程,变老师教为学生学,突出学习的主体地位,有利于理解和掌握新知,训练学生动手动脑相结合的学习习惯.师:依据以上公式的推导过程,请思考差角、和角的6个公式之间有怎样的内在联系?【师生活动】生:自主分析,找出公式间的逻辑关系.师生:在学生自主探究的基础上,师生共同总结公式之间的紧密逻辑关系,并用框图形式表示出来.【设计意图】及时梳理知识,完善知识体系.整体把握公式间的逻辑关系,巩固对公式的理解与掌握,为下一步公式的灵活使用打好基础.三、理解新知公式的结构特点:()cos cos cos sin sin αβαβαβ=±m . ——同名积,符号反()sin sin cos cos sin αβαβαβ±=±. ——异名积,符号同()tan tan tan 1tan tan αβαβαβ±±=m . 注意:,,()222k k k k Z πππαβπαπβπ±≠+≠+≠+∈ 【设计意图】准确把握三组公式,为公式的灵活使用打好基础.四、运用新知例1.已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 分析:利用同角的平方关系22sin cos 1αα+=,求cos α,进而求tan α,再代入公式求值即可. 解:由3sin 5α=-,α是第四象限角,得4cos 5α===, 所以 3sin 35tan 4cos 45ααα-===- . 于是有43sin sin cos cos sin 444252510πππααα⎛⎫⎛⎫-=-=--= ⎪ ⎪⎝⎭⎝⎭;43cos cos cos sin sin 444252510πππααα⎛⎫⎛⎫+=-=--= ⎪ ⎪⎝⎭⎝⎭;3tan tan144tan 7341tan tan 144παπαπα---⎛⎫-===- ⎪⎛⎫⎝⎭++- ⎪⎝⎭. 在本题中sin 4πα⎛⎫- ⎪⎝⎭与 cos 4πα⎛⎫+ ⎪⎝⎭两结果一样,那么,对于任意角α,此等式成立吗?我们能否用第一章的知识证明?变式:如果本例中的条件“α是第四象限角”去掉,结果怎样表述呢?【设计意图】训练学生的解题能力,发现不同题目解题过程的区别与联系.变式中对求解过程的表述上会有更高的要求,培养学生分类讨论的思想方法.巩固练习:(1)已知35sin ,cos 513αβ==-,且α为第一象限角,,2πβπ⎛⎫∈ ⎪⎝⎭.求sin()αβ+和sin()αβ-的值.(2)已知,αβ均为锐角,且4cos 5α=,1tan()3αβ-=,求cos β的值. 答案:(1)3365,6365-; (2. 例2.利用和(差)角公式计算下列各式的值:(1)sin 72cos 42cos72sin 42-o o o o;(2)cos 20cos70sin 20sin 70-o o o o ; (3)1tan151tan15+-oo. 分析:本题的关键在于观察分析待化简求值的三角式的结构特征,再联想具有此特征的有关公式,经过适当变形,再顺用或逆用公式解决.解:(1)由公式()S αβ-,得:()1sin 72cos 42cos72sin 42sin 7242sin 302-=-==o o o o o o o ; (2)由公式()C αβ+,得:()cos 20cos70sin 20sin 70cos 2070cos900-=+==o o o o o o o ;(3)由公式()T αβ+及tan 451=o,得:()1tan15tan 45tan15tan 4515tan 601tan151tan 45tan15++==+==--o o o o o o o o o . 巩固练习:(1)cos 44sin14sin 44cos14-o o o o;(2)sin(54)cos(36)cos(54)sin(36)x x x x -++-+o o o o ;(3答案:(1)12-. (2)1. (3)1-. 例3.已知3,,4παβπ⎛⎫∈⎪⎝⎭,3sin()5αβ+=-,12sin()413πβ-=,求sin()4πα+的值. 分析:注意到已知角与待求角之间的关系:()()44ππααββ+=+--,从而把待求角转化为已知角的差的形式,再利用差角的正弦公式求解. 解:3,,4παβπ⎛⎫∈ ⎪⎝⎭Q , 3(,2)2παβπ∴+∈,3(,)424πππβ-∈. 3sin()5αβ+=-Q , 4cos()5αβ∴+=. 12sin()413πβ-=Q , 5cos()413πβ∴-=-. sin()sin[()()]sin()cos()cos()sin()4444ππππααββαββαββ∴+=+--=+-++-3541263()()51351365=-⨯-+⨯=.巩固练习:(1)已知sin α=,sin()αβ-=,,αβ均为锐角,求sin β的值.答案:2. 【设计意图】使学生掌握把待求角转化为已知角的和与差的形式的变化技巧.让学生在精析精练中,突破重点、难点,体会公式的灵活应用,从而巩固新知,提高能力.五、课堂小结教师提问:本节课我们学习了哪些知识?主要涉及到哪些数学思想方法?1.知识:①()cos cos cos sin sin αβαβαβ=±m .()sin sin cos cos sin αβαβαβ±=±.()tan tan tan 1tan tan αβαβαβ±±=m . 其中,,()222k k k k Z πππαβπαπβπ±≠+≠+≠+∈ 2.思想:转化与化归思想,特殊与一般思想,分类讨论思想.【设计意图】师生共同回忆所学内容,发挥学生学习的主体性,帮助学生记忆公式,梳理知识,培养良好的学习方法.六、布置作业1.阅读教材 P128-131;2.书面作业:必做题:P137 习题3.1 A 组7,8,9,10.选做题:(1)已知3cos 45πα⎛⎫-=⎪⎝⎭,512sin 413πβ⎛⎫+=- ⎪⎝⎭,3(,)44ππα∈,(0,)4πβ∈,求()sin αβ+的值.(2)已知sin α=,sin()αβ-=,αβ均为锐角,求αβ+的值.3.课外思考:化简:(1)1cos 2x x ;(2)sin cos x x -;(3x x ; (4)sin cos a x b x +.【设计意图】设计作业1,2,是引导学生先复习,准确掌握6个公式后,再做作业.书面作业的布置,是为了训练学生使用差角、和角公式,解决简单的数学问题,在公式的应用中,加深对公式的理解和掌握.课外思考题的设计是为了引导学生探究如何利用差角、和角公式把形如sin cos a x b x +的式子化简为形如sin()A x ωϕ+的三角式.七、教后反思1.本教案的亮点:从学生熟悉的两角差的余弦公式出发,以旧引新,符合学生的认知规律,加强知识间的联系,结构自然顺畅.例题与习题设计恰当,突出本节课的三个知识点(三组公式),主要选择基础题目,并安排了适当量的随堂练习,帮助学生总结解题方法和技巧,及时巩固新知.2.本节课公式较多,公式的推导、记忆与应用,都用时较多,各校学生基础不同,建议教师对巩固练习题目灵活掌握,但一定要在公式的推导上留给学生足够的时间.3.本节课的弱项:本节课容量较大,课堂上有限的时间不易照顾到对公式的全面应用,有关公式的灵活、变形使用还有待于在后续课堂上加强.八、板书设计。

高中数学人教A版必修四第一章 1.3诱导公式(一)【教案】

高中数学人教A版必修四第一章 1.3诱导公式(一)【教案】

必修四第一章 1.3 诱导公式(一)【教学目标】
1.知识与技能:
(1)识记诱导公式.
(2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.
2.过程与方法:
(1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.
(2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.
(3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力.
3.情感态度价值观:
(1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.
(2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.
【重点难点】
1.教学重点:诱导公式的推导及应用,三角函数式的求值、化简和证明等。

2.教学难点:相关角边的几何对称关系及诱导公式结构特征的认识,三角函数式的求值、化简和证明等。

【教学策略与方法】
1.教学方法:合作探究、启发诱导,学生动手尝试相结合.
2.教具准备:直尺、多媒体
【教学过程】。

高中数学 必修四 (1.4.3 正切函数的性质与图象)教案 新人教A版必修4

高中数学  必修四 (1.4.3 正切函数的性质与图象)教案 新人教A版必修4

1.4.3 正切函数的性质与图象教学过程导入新课思路1.(直接导入)常见的三角函数还有正切函数,前面我们研究了正、余弦函数的图象和性质,你能否根据研究正弦函数、余弦函数的图象与性质的经验,以同样的方法研究正切函数的图象与性质?由此展开新课.思路2.先由图象开始,让学生先画正切线,然后类比正弦、余弦函数的几何作图法来画出正切函数的图象.这也是一种不错的选择,这是传统的导入法. 推进新课 新知探究 提出问题①我们通过画正弦、余弦函数图象探究了正弦、余弦函数的性质.正切函数是我们高中要学习的最后一个基本初等函数.你能运用类比的方法先探究出正切函数的性质吗?都研究函数的哪几个方面的性质?②我们学习了正弦线、余弦线、正切线.你能画出四个象限的正切线吗?③我们知道作周期函数的图象一般是先作出长度为一个周期的区间上的图象,然后向左、右扩展,这样就可以得到它在整个定义域上的图象.那么我们先选哪一个区间来研究正切函数呢?为什么?④我们用“五点法”能简捷地画出正弦、余弦函数的简图,你能画出正切函数的简图吗? 你能类比“五点法”也用几个字总结出作正切简图的方法吗?活动:问题①,教师先引导学生回忆:正弦、余弦函数的性质是从定义域、值域、奇偶性、单调性、周期性这几个方面来研究的,有了这些知识准备,然后点拨学生也从这几个方面来探究正切函数的性质.由于还没有作出正切函数图象,教师指导学生充分利用正切线的直观性. (1)周期性 由诱导公式tan(x+π)=tanx,x∈R ,x≠2π+k π,k∈Z 可知,正切函数是周期函数,周期是π.这里可通过多媒体课件演示,让学生观察由角的变化引起正切线的变化的周期性,直观理解正切函数的周期性,后面的正切函数图象作出以后,还可从图象上观察正切函数的这一周期性. (2)奇偶性 由诱导公式tan(-x)=-tanx,x∈R ,x≠2π+k π,k∈Z 可知,正切函数是奇函数,所以它的图象关于原点对称.教师可进一步引导学生通过图象还能发现对称点吗?与正余弦函数相对照,学生会发现正切函数也是中心对称函数,它的对称中心是(2πk ,0)k∈Z . (3)单调性通过多媒体课件演示,由正切线的变化规律可以得出,正切函数在(2π-,2π)内是增函数,又由正切函数的周期性可知,正切函数在开区间(2π-+k π,2π+k π),k∈Z 内都是增函数.(4)定义域根据正切函数的定义tan α=xy,显然,当角α的终边落在y 轴上任意一点时,都有x=0,这时正切函数是没有意义的;又因为终边落在y 轴上的所有角可表示为k π+2π,k∈Z ,所以正切函数的定义域是{α|α≠k π+2π,k∈Z },而不是{α≠2π+2k π,k∈Z },这个问题不少初学者很不理解,在解题时又很容易出错,教师应提醒学生注意这点,深刻明了其内涵本质.(5)值域由多媒体课件演示正切线的变化规律,从正切线知,当x 大于2π-且无限接近2π-时,正切线AT 向Oy 轴的负方向无限延伸;当x 小于2π且无限接近2π时,正切线AT 向Oy 轴的正方向无限延伸.因此,tanx 在(2π-,2π)内可以取任意实数,但没有最大值、最小值.因此,正切函数的值域是实数集R .问题②,教师引导学生作出正切线,并观察它的变化规律,如图1.图1问题③,正切函数图象选用哪个区间作为代表区间更加自然呢?教师引导学生在课堂上展开充分讨论,这也体现了“教师为主导,学生为主体”的新课改理念.有的学生可能选取了[0,π]作为正切函数的周期选取,这正是学生作图的真实性的体现.此时,教师应调整计划,把课件中先作出[-2π,2π]内的图象,改为先作出[0,π]内的图象,再进行图象的平移,得到整个定义域内函数的图象,让学生观察思考.最后由学生来判断究竟选用哪个区间段内的函数图象既简单又能完全体现正切函数的性质,让学生通过分析得到先作区间(-2π,2π)的图象为好.这时条件成熟,教师引导学生来作正切函数的图象,如图2.根据正切函数的周期性,把图2向左、右扩展,得到正切函数y=tanx,x∈R,且x≠2π+k π(k∈Z )的图象,我们称正切曲线,如图3.图2 图3问题④,教师引导学生观察正切曲线,点拨学生讨论思考,只需确定哪些点或线就能画出函数y=tanx,x∈(2π-,2π)的简图.学生可看出有三个点很关键:(4π-,-1),(0,0),(4π,1),还有两条竖线.因此,画正切函数简图的方法就是:先描三点(4π-,-1),(0,0),(4π,1),再画两条平行线x=2π-,x=2π,然后连线.教师要让学生动手画一画,这对今后解题很有帮助. 讨论结果:①略.②正切线是AT. ③略.④能,“三点两线”法. 提出问题①请同学们认真观察正切函数的图象特征,由数及形从正切函数的图象讨论它的性质. ②设问:每个区间都是增函数,我们可以说正切函数在整个定义域内是增函数吗?请举一个例子.活动:问题①,从图中可以看出,正切曲线是被相互平行的直线x=2π+k π,k∈Z 所隔开的无穷多支曲线组成的.教师引导学生进一步思考,这点反应了它的哪一性质——定义域;并且函数图象在每个区间都无限靠近这些直线,我们可以将这些直线称之为正切函数的什么线——渐近线;从y 轴方向看,上下无限延伸,得到它的哪一性质——值域为R ;每隔π个单位,对应的函数值相等,得到它的哪一性质——周期π;在每个区间图象都是上升趋势,得到它的哪一性质——单调性,单调增区间是(2π-+k π,2π+k π),k∈Z ,没有减区间.它的图象是关于原点对称的,得到是哪一性质——奇函数.通过图象我们还能发现是中心对称,对称中心是(2πk ,0),k∈Z . 问题②,正切函数在每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.如在区间(0,π)上就没有单调性. 讨论结果:①略. ②略. 应用示例例1 比较大小.(1)tan138°与tan143°;(2)tan(413π-)与tan(517π-). 活动:利用三角函数的单调性比较两个同名三角函数值的大小,可以先利用诱导公式将已知角化为同一单调区间内的角,然后再比较大小.教师可放手让学生自己去探究完成,由学生类比正弦、余弦函数值的大小比较,学生不难解决,主要是训练学生巩固本节所学的基础知识,加强类比思想的运用.解:(1)∵y=tanx 在90°<x<180°上为增函数, ∴由138°<143°,得tan138°<tan143°.(2)∵tan(413π-)=-tan 413π=-tan(3π+4π)=-tan 4π, tan(517π-)=-tan 517π=-tan(3π+52π)=-tan 52π.又0<4π<52π<2π,而y=tanx 在(0, 2π)上是增函数,∴tan 4π<tan 52π.∴-tan 4π>-tan 52π,即tan(413π-)>tan(517π-).点评:不要求学生强记正切函数的性质,只要记住正切函数的图象或正切线即可. 例2 用图象求函数y=3tan -的定义域.活动:如图4,本例的目的是让学生熟悉运用正切曲线来解题.不足之处在于本例可以通过三角函数线来解决,教师在引导学生探究活动中,也应以两种方法提出解决方案,但要有侧重点,应体现函数图象应用的重要性.图4 图5解:由tanx-3≥0,得tanx≥3, 利用图4知,所求定义域为[k π+3π,k π+2π)(k∈Z ). 点评:先在一个周期内得出x 的取值范围,然后再加周期即可,亦可利用单位圆求解,如图5.本节的重点是正切线,但在今后解题时,学生哪种熟练就用哪种. 变式训练根据正切函数的图象,写出使下列不等式成立的x 的集合. (1)1+tanx≥0;(2)tanx+3<0. 解:(1)tanx≥-1,∴x∈[k π-4π,k π+2π),k∈Z ; (2)x∈[k π-2π,k π-3π),k∈Z .例3 求函数y=tan(2πx+3π)的定义域、周期和单调区间. 活动:类比正弦、余弦函数,本例应用的是换元法,由于在研究正弦、余弦函数的类似问题时已经用过换元法,所以这里也就不用再介绍换元法,可以直接将2πx+3π作为一个整体.教师可让学生自己类比地探究,只是提醒学生注意定义域. 解:函数的自变量x 应满足2πx+3π≠k π+2π,k∈Z , 即x≠2k+31,k∈Z . 所以函数的定义域是{x|x≠2k+31,k∈Z }. 由于f(x)=tan(2πx+3π)=tan(2πx+3π+π)=tan[2π(x+2)+ 3π]=f(x+2),因此,函数的周期为2.由-2π+k π<2πx+3π<2π+k π,k∈Z ,解得35-+2k<x<31+2k,k∈Z .因此,函数的单调递增区间是(35-+2k,31+2k),k∈Z .点评:同y=Asin(ωx+φ)(ω>0)的周期性的研究一样,这里可引导学生探究y=Atan(ωx+φ)(ω>0)的周期T=ωπ. 变式训练求函数y=tan(x+4π)的定义域,值域,单调区间,周期性. 解:由x+4π≠k π+2π,k∈Z 可知,定义域为{x|x∈R 且x≠k π+4π,k∈Z }.值域为R .由x+4π∈(k π-2π,k π+2π),k∈Z 可得,在x∈(k π-43π,k π+4π)上是增函数. 周期是π,也可看作由y=tanx 的图象向左平移4π个单位得到,其周期仍然是π.例4 把tan1,tan2,tan3,tan4按照由小到大的顺序排列,并说明理由.活动:引导学生利用函数y=tanx 的单调性探究解题方法.也可利用单位圆中的正切线探究解题方法.但要提醒学生注意本节中活动的结论:正切函数在定义域内的每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.学生可能的错解有: 错解1:∵函数y=tanx 是增函数,又1<2<3<4,∴tan1<tan2<tan3<tan4.错解2:∵2和3的终边在第二象限,∴tan2,tan3都是负数.∵1和4的终边分别在第一和第三象限,∴tan1,tan4都是正数.又∵函数y=tanx 是增函数,且2<3,1<4,∴tan2<tan3<tan1<tan4.教师可放手让学生自己探究问题的解法.发现错解后不要直接纠正,立即给出正确解法,可再让学生讨论分析找出错的原因. 解法一:∵函数y=tanx 在区间(2π,23π)上是单调递增函数,且tan1=tan(π+1),又2π<2<3<4<π+1<23π,∴tan2<tan3<tan4<tan1.解法二:如图6,1,2,3,4的正切函数线分别是AT 1,AT 2,AT 3,AT 4, ∴tan2<tan3<tan4<tan1.点评:本例重在让学生澄清正切函数单调性问题,这属于学生易错点.把正切函数y=tanx 的单调性简单地说成“在定义域内是增函数”是不对的. 知能训练课本本节练习1—5. 解答:1.在x 轴上任取一点O 1,以O 1为圆心,单位长为半径作圆,作垂直于x 轴的直径,将⊙O 1分成左右两个半圆,过右半圆与x 轴的交点作⊙O 1的切线,然后从圆心O 1引7条射线把右半圆分成8等份,并与切线相交,得到对应于83π-,4π-,8π-,0,8π,4π,83π等角的正切线.相应地,再把x 轴上从2π-到2π这一段分成8等份.把角x 的正切线向右平行移动,使它的起点与x 轴上的点x 重合,再把这些正切线的终点用光滑的曲线连结起来,就得到函数y=tanx,x∈(2π-,2π)的图象.点评:可类比正弦函数图象的作法. 2.(1){x|k π<x<2π+k π,k∈Z };(2){x|x=k π,k∈Z };(3){x|2π-+k π<x<k π,k∈Z }.点评:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式. 3.x≠6π+3πk ,k∈Z . 点评:可用换元法. 4.(1)2π;(2)2π. 点评:可根据函数图象得解,也可直接由函数y=Atan(ωx+φ),x∈R 的周期T=ωπ得解. 5.(1)不是.例如0<π,但tan0=tan π=0.(2)不会.因为对于任何区间A 来说,如果A 不含有2π+k π(k∈Z )这样的数,那么函数y=tanx,x∈A 是增函数;如果A 至少含有一个2π+k π(k∈Z )这样的数,那么在直线x=2π+k π两侧的图象都是上升的(随自变量由小到大).点评:理解正切函数的单调性. 课堂小结1.先由学生回顾本节都学到了哪些知识方法,有哪些启发、收获.本节课我们是在研究完正、余弦函数的图象与性质之后,研究的又一个具体的三角函数,与研究正弦、余弦函数的图象和性质有什么不同?研究正、余弦函数,是由图象得性质,而这节课我们从正切函数的定义出发得出一些性质,并在此基础上得到图象,最后用图象又验证了函数的性质.2.(教师点拨)本节研究的过程是由数及形,又由形及数相结合,也是我们研究函数的基本方法,特别是又运用了类比的方法、数形结合的方法、化归的方法.请同学们课后思考总结:这种多角度观察、探究问题的方法对我们今后学习有什么指导意义?作业课本习题1.4 A组6、8、9.。

高一数学人教版(必修1~必修4)全套教案集(共4册)精品打包下载

高一数学人教版(必修1~必修4)全套教案集(共4册)精品打包下载
(3)能使用 图表达集合间的关系,体会直观图示对理解抽象概念的作用.
2.过程与方法
让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.
3.情感.态度与价值观
(1)树立数形结合的思想.
(2)体会类比对发现新结论的作用.
二.教学重点.难点
重点:集合间的包含与相等关系,子集与其子集的概念.
难点:难点是属于关系与包含关系的区别.
(5)海南省在2004年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)方程 的所有实数根;
(8)不等式 的所有解;
(9)国兴中学2004年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这9个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.
(六)承上启下,留下悬念
1.课后书面作业:第13页习题1.1A组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材.
§1.1.2集合间的基本关系
一.教学目标:
1.知识与技能
(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
第一章集合与函数概念
集合
函数及其表示
函数的基本性质
第二章基本初等函数(Ⅰ)
指数函数
对数函数
幂函数
第三章函数的应用
函数与方程
函数模型及其应用
第一章集合与函数
§1.1.1集合的含义与表示
一.教学目标:
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;

高中数学必修4教案6篇

高中数学必修4教案6篇

高中数学必修4教案6篇教学目标1、把握平面对量的数量积及其几何意义;2、把握平面对量数量积的重要性质及运算律;3、了解用平面对量的数量积可以处理有关长度、角度和垂直的问题;4、把握向量垂直的条件。

教学重难点教学重点:平面对量的数量积定义教学难点:平面对量数量积的定义及运算律的理解和平面对量数量积的应用教学工具投影仪教学过程一、复习引入:1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请学生回忆本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、课后作业P107习题2.4A组2、7题课后小结(1)请学生回忆本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。

(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业P107习题2.4A组2、7题高中数学必修4优秀教案篇二教学预备教学目标一、学问与技能(1)理解并把握弧度制的定义;(2)领悟弧度制定义的合理性;(3)把握并运用弧度制表示的弧长公式、扇形面积公式;(4)娴熟地进展角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系。

(6) 使学生通过弧度制的学习,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

二、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并把握弧度制的定义,领悟定义的合理性。

依据弧度制的定义推导并运用弧长公式和扇形面积公式。

以详细的实例学习角度制与弧度制的互化,能正确使用计算器。

三、情态与价值通过本节的学习,使同学们把握另一种度量角的单位制---弧度制,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

人教版高中数学必修四 (空间中点、线、面的位置关系)

人教版高中数学必修四 (空间中点、线、面的位置关系)

教案漂市一中钱少锋点A不在直线l上l A∉2.两条直线位置关系符号表示图形表示直线a与l 相交Ala=直线a与l 平行l a//直线a与l 异面异面与la异面直线的定义:空间中的两条直线既不平行也相交,则称这两条直线异面.两条直线异面,则它们不同在任何一个平面内. 用平面衬托的方法表示异面直线.3.点与平面空间中的平面也可看成这个平面上的所有点组成的集合.位置关系符号表示图形表示点A 在平面α内 α∈A点A 不是平面α内的点 α∉A4. 直线与平面(1)直线在平面α内(或平面α过直线l ):直线l 上的所有点都在平面α内,记作α⊂l .(2)直线l 在平面α外:直线l 上至少有一个点不在平面α内,记作α⊄l .①直线l 与平面α相交:直线l 与平面α有且只有一个公共点A ,记作A l =α .②直线l 与平面α平行:直线l 与平面α没有公共点,记作α//l .5. 平面与平面 位置关系 符号表示 图形表示平面βα与相交l =βα平面βα与平行βα//三、直线与平面垂直1. 直线与平面垂直的定义:如果直线l与平面α相交于点A,且对平面α内任意一条过点A的直线m,都有ml⊥,则称直线l与平面α垂直(或l是平面α的一条垂线,α是直线l的一个垂面),记作α⊥l.其中点A称为垂足.2.点与面的距离:给定空间中的一个平面α及一个点A,过点A作只可以作平面α的一条垂线,如果记垂足为B,则称B为A在平面α内的射影(也称投影),线段AB为平面α的垂线段,AB的长为点A到平面α的距离.3.直线与平面的距离:当直线与平面平行时,直线上任意一点到平面的距离称为这条直线到这个平面的距离;4.两个平行平面的距离:当平面与平面平行时,一个平面上的任意一点到另一个平面的距离称为这两平行平面之间的距离.以可以取其中任一点来作点面距来求线面距离.两个平面平行时,其中一个平面的每一点到另一个平面距离都相等,所以可以转化为点面距来处理.例题例1 判断下列命题是否正确.(1)若直线l上有无数个点不在平面α内,则α//l.( )(2)若直线l与平面α平行,则l与平面α内的任意一条直线都平行. ( )(3)若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点. ( )【答案】(1)错;(2)错;(3)对.例2 在正方体1111DCBAABCD-中,(1)与直线1AA异面的棱有条;(2)与直线BA1相交的棱有条;(3)直线BA1与直线CB1的位置关系是;(4)直线BA1与直线CD1的位置关系对线面平行关系的定义的认识,线与面没有公共点即线与平面中的所有线都没有公共点,且直线上的所有点都不在平面内,这与直线上无数个点都不在平面上不同.两条直线的平行依赖于在同一平面内没有公共点,所以仅由直线与平面平行不可得到.是 .【答案】(1)排除相交和平行的情况,4条;(2)从一个顶点出发的棱有3条,所以共有6条; (3)异面,通过找到衬托平面来判断; (4)平行.例3 已知1111D C B A ABCD -是长方体,且2,3,41===AA AD AB .(1)求点A 到平面11B BCC 的距离;(2)求直线AB 到平面1111D C B A 的距离;(3)求平面11A ADD 与平面11B BCC 之间的距离. 【答案】(1)4;(2)2;(3)4.在正方体内,判断两条直线的位置关系,通过对图形的观察,熟练掌握位置关系描述和判断的方法.通过找线面垂直,完成距离的求解.【素材积累】1、一个房产经纪人死后和上帝的对话一个房产经纪人死后,和上帝喝茶。

高中数学 任意角的三角函数教案 新人教版必修4-新人教版高一必修4数学教案

高中数学 任意角的三角函数教案 新人教版必修4-新人教版高一必修4数学教案

任意角的三角函数(一)一、教学目标:1、知识与技能〔1〕掌握任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;〔2〕理解任意角的三角函数不同的定义方法;〔3〕了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;〔4〕掌握并能初步运用公式一;〔5〕树立映射观点,正确理解三角函数是以实数为自变量的函数.2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值〞来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合〞的对应关系与学生熟悉的一般函数概念中的“数集到数集〞的对应关系有冲突,而且“比值〞需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.二、教学重、难点重点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;终边相同的角的同一三角函数值相等〔公式一〕.难点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;三角函数线的正确理解.三、学法与教学用具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密,这就为后续内容的学习带来方便,也使三角函数更加好用了.教学用具:投影机、三角板、圆规、计算器四、教学设想第一课时任意角的三角函数〔一〕提问:锐角O的正弦、余弦、正切怎样表示?借助右图直角三角形,复习回顾.数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P 作x 轴的垂线,垂足为M ,那么线段OM 的长度为a ,线段MP 的长度为b .那么sin MP bOP rα==;cos OM a OP r α==; tan MP bOM aα==.思考:对于确定的角α,这三个比值是否会随点P 在α的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sin MP b OP α==; cos OM a OP α==; tan MP bOM aα==. 思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.【探究新知】1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦(sine),记做sin α,即sin y α=; 〔2〕x 叫做α的余弦(cossine),记做cos α,即cos x α=; 〔3〕y x 叫做α的正切(tangent),记做tan α,即tan (0)yx xα=≠. 注意:当α是锐角时,此定义与初中定义相同〔指出对边,邻边,斜边所在〕;当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y ,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢? 前面我们已经知道,三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离r =那么sin α=,cos α=,tan yxα=.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.4.例题讲评例1.求53π的正弦、余弦和正切值. 例2.角α的终边过点0(3,4)P --,求角α的正弦、余弦和正切值.教材给出这两个例题,主要是帮助理解任意角的三角函数定义.我也可以尝试其他方法:如例2:设3,4,x y =-=-那么5r ==.于是4sin 5y r α==-,3cos 5x r α==-,4tan 3y x α==. 5.巩固练习17P 第1,2,3题6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:例3.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.8.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=cos(2)cos k απα+= (其中k Z ∈) tan(2)tan k απα+=9.例题讲评例4.确定以下三角函数值的符号,然后用计算器验证: (1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan3π例5.求以下三角函数值:(1)'sin148010︒; (2)9cos4π; (3)11tan()6π- 利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值. 另外可以直接利用计算器求三角函数值,但要注意角度制的问题. 10.巩固练习17P 第4,5,6,7题11.学习小结(1)本章的三角函数定义与初中时的定义有何异同? (2)你能准确判断三角函数值在各象限内的符号吗? (3)请写出各三角函数的定义域;(4)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?五、评价设计1.作业:习题1.2 A组第1,2题.2.比较角概念推广以后,三角函数定义的变化.思考公式一的本质是什么?要做到熟练应用.另外,关于三角函数值在各象限的符号要熟练掌握,知道推导方法.第二课时任意角的三角函数〔二〕【复习回顾】1、三角函数的定义;2、 三角函数在各象限角的符号;3、 三角函数在轴上角的值;4、 诱导公式〔一〕:终边相同的角的同一三角函数的值相等;5、 三角函数的定义域.要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆. 【探究新知】1.引入:角是一个图形概念,也是一个数量概念〔弧度数〕.作为角的函数——三角函数是一个数量概念〔比值〕,但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?2.[边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆〔注意:这个单位长度不一定就是1厘米或1米〕.当角α为第一象限角时,那么其终边与单位圆必有一个交点(,)P x y ,过点P 作PM x ⊥轴交x 轴于点M ,那么请你观察:根据三角函数的定义:|||||sin |MP y α==;|||||cos |OM x α==随着α在第一象限内转动,MP 、OM 是否也跟着变化? 3.思考:〔1〕为了去掉上述等式中的绝对值符号,能否给线段MP 、OM 规定一个适当的方向,使它们的取值与点P 的坐标一致?〔2〕你能借助单位圆,找到一条如MP 、OM 一样的线段来表示角α的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O 为始点、M 为终点,规定:当线段OM 与x 轴同向时,OM 的方向为正向,且有正值x ;当线段OM 与x 轴反向时,OM 的方向为负向,且有正值x ;其中x 为P 点的横坐标.这样,无论那种情况都有cos OM x α==同理,当角α的终边不在x 轴上时,以M 为始点、P 为终点,规定:当线段MP 与y 轴同向时,MP 的方向为正向,且有正值y ;当线段MP 与y 轴反向 时,MP 的方向为负向,且有正值y ;其中y 为P 点的横坐标.这样,无论那种情况都有sin MP y α==4.像MP OM 、这种被看作带有方向的线段,叫做有向线段〔direct line segment 〕.5.如何用有向线段来表示角α的正切呢?如上图,过点(1,0)A 作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T ,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有tan y AT xα==我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.6.探究:〔1〕当角α的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?〔2〕当α的终边与x 轴或y 轴重合时,又是怎样的情形呢?7.例题讲解 例1.42ππα<<,试比较,tan ,sin ,cos αααα的大小.处理:师生共同分析解答,目的体会三角函数线的用处和实质. 8.练习19P 第1,2,3,4题9学习小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用. 【评价设计】1. 作业:比较以下各三角函数值的大小(不能使用计算器)(1)sin15︒、tan15︒〔2〕'cos15018︒、cos121︒〔3〕5π、tan 5π2.练习三角函数线的作图.同角三角函数的基本关系一、教学目标: 1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2)某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;〔5〕牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;〔6〕灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;〔7〕掌握恒等式证明的一般方法.2、过程与方法由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:〔1〕某任意角的正弦、余弦、正切值中的一个,求其余两个;〔2〕化简三角函数式;〔3〕证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式:1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.教学用具:圆规、三角板、投影四、教学设想【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】 1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗?如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由221MP OM +=,因此221x y +=,即22sin cos 1αα+=.根据三角函数的定义,当()2a k k Z ππ≠+∈时,有sin tan cos ααα=.这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.2. 例题讲评 例6.3sin 5α=-,求cos ,tan αα的值. sin ,cos ,tan ααα三者知一求二,熟练掌握.3. 巩固练习23P 页第1,2,3题4.例题讲评例7.求证:cos 1sin 1sin cos x xx x+=-. 通过本例题,总结证明一个三角恒等式的方法步骤. 5.巩固练习23P 页第4,5题 6.学习小结〔1〕同角三角函数的关系式的前提是“同角〞,因此1cos sin 22≠+βα,γβαcos sin tan ≠. 〔2〕利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.五、评价设计(1) 作业:习题组第10,13题.(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.。

人教课标版高中数学必修四《两角和(差)的正弦、余弦、正切公式》教案-新版

人教课标版高中数学必修四《两角和(差)的正弦、余弦、正切公式》教案-新版

3.1.2两角和与差的正弦、余弦和正切公式一、教学目标:(一)核心素养本节课是三角恒等变形的基础,是正弦线、余弦线、诱导公式的延伸,通过本节课的学习,了解两角和与差的正弦、余弦和正切公式的重要性,通过公式的推导,培养学生探索精神,进一步提高学生的推理能力和运算能力,使学生体会一般与特殊,换元等数学思想在三角恒等变换中的作用.(二)教学目标1.两角和的余弦公式的推导及应用;2.两角和与差的正弦公式的推导及应用;3.两角和与差的正切公式的推导及应用;4.运用公式进行化简、求值、证明.(三)学习重点1.两角和与差的正弦、余弦、正切公式的推导;2.熟练掌握公式的应用.(四)学习难点公式的推导及综合运用,合理选取公式,熟练掌握公式的逆用.二、教学过程(一)课前设计1.预习任务(1)读一读:阅读教材第128页至第131页.(2)想一想:利用两角差的余弦公式如何推导两角和的余弦公式?如何熟记和角公式与差角公式?2.预习自测(1)sin(3045)________+=..解析:【知识点】两角和的正弦公式的应用【数学思想】逻辑推理【解题过程】12sin(3045)sin 30cos 45cos30sin 452+=+=⨯+=点拨:熟记公式(2)cos55cos5sin 55sin 5________-=. 答案:12. 解析:【知识点】两角差的余弦公式 【数学思想】逻辑推理【解题过程】1cos55cos5sin 55sin 5cos(555)cos 602-=+== 点拨:熟记公式(3)若tan()24a π-=,则tan _______a =.答案:3-.解析:【知识点】两角差的正切公式的应用 【数学思想】逻辑推理【解题过程】tan tantan 14tan()241tan 11tan tan 4παπααπαα---===+⨯+,所以tan 3α=- 点拨:注意公式的逆用(4)已知3sin 5α=-a 是第四象限角,求sin(),cos(),tan()444πππααα-+-的值.;7- 解析:【知识点】两角和与差的弦、切公式的应用 【数学思想】逻辑推理【解题过程】因为3sin 5α=- a 是第四象限角,所以43cos ,tan 54αα==-,利用公式可得:sin()4πα-=cos()4πα+=tan()74πα-=-点拨:熟记公式. (二)课堂设计1.知识回顾(1)两角差的余弦公式:βαβαβαsin sin cos cos )cos(+=-的推导; (2)公式()C αβ-的应用. 2.问题探究探究一 从公式()C αβ-出发,如何探求两角和的余弦公式()C αβ+? ●活动 从公式()C αβ-出发,引导学生推导余弦公式()C αβ+我们已经知道两角差的余弦公式βαβαβαsin sin cos cos )cos(+=-,其中αβ、是任意角.大胆猜想两角和的余弦公式呢?从角αβ+与αβ-的关系进行联想,我们容易知道()+=αβαβ--,再根据诱导公式,所以[]cos()cos ()cos cos()sin sin()cos cos sin sin αβαβαβαβαβαβ+=--=-+-=- 于是我们得到了两角和的余弦公式,简记作()C αβ+:cos()cos cos sin sin αβαβαβ+=-【设计意图】引导学生发现和探究新知,培养学生探索知识的能力. 探究二 如何用αβ、的正、余弦来表示()sin αβ± ●活动① 回顾两角和与差的余弦公式和诱导公式()C αβ-:βαβαβαsin sin cos cos )cos(+=- ()C αβ+:cos()cos cos sin sin αβαβαβ+=-sin()cos ,cos()sin 22ππαααα-=-=【设计意图】引导学生思维上的转变.●活动② 利用两角和与差的余弦公式推导两角和与差的正弦公式sin()cos ()cos ()cos()cos sin()sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤+=-+=--=-+-⎢⎥⎢⎥⎣⎦⎣⎦sin cos cos sin αβαβ=+()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-⎡⎤⎣⎦得到两角和与差的正弦公式,简记作()S αβ+;()S αβ-.()S αβ+:βαβαβαsin cos cos sin )sin(+=+ ()S αβ-:βαβαβαsin cos cos sin )sin(-=-【设计意图】让学生掌握公式的推导过程. 探究三 探究如何推导两角和与差的正切公式 ●活动① 怎样用αβ、的正切表示()tan αβ±()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ+++==+-当cos cos 0αβ≠时,分子和分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβαβαβ++=-()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ+---=+-==⎡⎤⎣⎦--+ 我们得到两角和与差的正切公式,简记作()T αβ+;()T αβ-.()T αβ+:()tan tan tan 1tan tan αβαβαβ++=-()T αβ-:tan tan tan()1tan tan αβαβαβ--=+注意:)(2,2,2z ∈+≠+≠+≠+k k k a k ππβππππβα【设计意图】引导学生探究:化切为弦,化未知为已知,再化弦为切,利用单角的正切来表示和差的正切.●活动② 理解6个和、差角公式的内在联系【设计意图】借助对公式的更深入的理解,是学生能更加灵活运用公式.●活动③ 巩固基础,检查反馈例1 ①已知3cos ,(,)52πθθπ=-∈,求sin()3πθ+的值②已知12sin ,13θθ=-是第三象限角,求cos()6πθ+的值【知识点】和角公式的正确使用 【数学思想】逻辑推理【解题过程】①4sin 25πθπθ∈∴==(,)413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=②θ是第三象限角,5cos 13θ∴==-5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=【思路点拨】熟记公式 【答案】①sin()3πθ+=;②cos()6πθ+= 同类训练 已知tan 3α=,求tan()4πα+的值.【知识点】两角和的正切公式的应用 【数学思想】逻辑推理【解题过程】tan tan314tan()241311tan tan 4παπαπα+++===--⨯- 点拨:熟记公式答案:tan()24πα+=-例2 求下列各式的值:(1)sin 72cos 42cos 72sin 42- (2)cos 20cos 70sin 20sin 70-(3)1tan151tan15+-【知识点】公式的逆用 【数学思想】归纳推理【解题过程】(1)sin 72cos 42cos 72sin 42-=1sin(7242)sin 302-== (2)cos 20cos 70sin 20sin 70-=cos(2070)cos900+==(3)1tan151tan15+-=tan 45tan15tan(4515)tan 6031tan 45tan15+=+==-【思路点拨】正确认识公式的正用和逆用 【答案】12,0 同类训练 计算:(1)sin 7cos37sin 83sin 37︒︒-︒︒(2)21tan 75tan 75 -︒︒答案:12-;-解析:【知识点】和、差角公式 【数学思想】归纳推理 【解题过程】(1)sin 7cos37sin 83sin 37︒︒-︒︒=1sin 7cos37cos 7sin 37sin(737)sin(30)2︒︒-︒︒=︒-︒=-=-(2)tan 75tan(4530)2=+==原式=-点拨:利用公式可求特殊角的三角函数值 例3 化简:(1)1cos 2x x(2cos x x +【知识点】和、差角公式的逆用 【数学思想】转化思想【解题过程】1cos cos cos sin sin cos()2333x x x x x πππ-=-=+1cos cos )2(cos sin sin cos )2sin()2666x x x x x x x πππ+=+=+=+ 点拨:从题目所给是结构可以看出,它们呈现和(差)角公式的部分形态,所以可以考虑对公式进行变形使用,事实上,此处只需要进行逆用公式即可.答案:cos()3x π+;2sin()6x π+同类训练 化简(1cos )x x -(2x x -【知识点】公式的逆用 【数学思想】转化思想cos )2sin()4x x x π-=-)3x x x π-=+点拨:对和(差)角公式进行正确地逆用.事实上,对公式正确逆用,这是学好任何一个数学公式的必经之路.答案:2sin()4x π-;)3x π+●活动5 强化提升、灵活应用 例4 已知3123,cos(),sin()24135πβαπαβαβ<<<-=+=-,求cos 2α的值 答案:3365-解析:【知识点】使用和差角公式时,利用角的关系化异角为同角 【数学思想】化归思想【解题过程】33,2442ππβαππβ<<<∴-<-<- 30,42ππαβπαβ∴<-<<+<5sin()134cos()5αβαβ∴-==+= 33cos 2cos[()()]cos()cos()sin()sin()65ααβαβαβαβαβαβ∴=-++=-+--+=-点拨:常见角的变换:2()()ααβαβ=++- ()ααββ=+-2(),2()αβαβααβαβα+=++-=-+()(),()()222222αββααββααβαβ+-=---=+-+同类训练 已知αβ、是锐角,且11sin )14ααβ=+=-,求sin β解析:【知识点】合理使用和差角公式 【数学思想】转化思想【解题过程】α是锐角,且sin α=1cos 7α∴== 又11cos(),014αβαβπ+=-<+<,sin()αβ∴+==sin sin()sin()cos cos()sin βαβααβααβα∴=+-=+-+=点拨:善于抓住角的关系进行角的转化 3.课堂总结 知识梳理两角和与差的正弦、余弦、正切公式及推导()C αβ-:βαβαβαsin sin cos cos )cos(+=- ()C αβ+:cos()cos cos sin sin αβαβαβ+=-()S αβ+:βαβαβαsin cos cos sin )sin(+=+ ()S αβ-:βαβαβαsin cos cos sin )sin(-=- ()T αβ+:()tan tan tan 1tan tan αβαβαβ++=-()T αβ-:tan tan tan()1tan tan αβαβαβ--=+重难点归纳(1)利用和差角公式求一些特殊角的三角函数值; (2)利用角的变换求值;(3)能解决形如:sin cos y a x b x =+的函数问题;(4)利用两角和与差的正弦、余弦和正切公式进行三角恒等变换 (三)课后作业 基础型 自主突破1.sin(17)cos(28)sin(28)cos(17)x x x x +-+-+的值是( )A .12 B .12-C .D .答案:D解析:【知识点】公式的简单应用【解题过程】原式=2sin(1728)sin 45x x ++-== 点拨:熟记公式2.已知123cos ,(,2)132πααπ=∈,则cos()4πα+等于( )ABCD .答案:B解析:【知识点】公式的正用【解题过程】5sin 13α==-,cos()cos cos sin sin 444πππααα+=-=点拨:计算角的三角函数值时需注意角的范围3.在△ABC 中,sin sin cos cos A B A B <,则△ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰三角形 答案:B解析:【知识点】公式的灵活运用 【数学思想】逻辑推理【解题过程】cos cos sin sin 0A B A B -> cos()0A B ∴+>cos()0C π∴->,即cos 0,cos 0C C -><,2C ππ∴<<点拨:利用三角形内角和定理进行角的转换 4.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的( )A .最大值为1,最小值为1-B .最大值为1,最小值为21- C .最大值为2,最小值为2-D .最大值为2,最小值为1-【知识点】公式的逆用【数学思想】归纳推理【解题过程】1()2(sin )2sin()23f x x x x π==+,[,]22x ππ∈-,则5[,]366x πππ+∈- ()f x ∴最大值为2,最小值为1-点拨:先转化成sin()y x ωϕ=+的形式答案:D5.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值( ) A .21 B .22 C .22- D .22±【知识点】公式的灵活运用【数学思想】转化的思想【解题过程】因为2tan()7,tan tan 3αβαβ+=⋅=所以tan tan tan(),1tan tan αβαβαβ++=-⋅ 7tan tan 3αβ+= 所以1tan 2,tan 3αβ==或1tan ,tan 23αβ==;所以tan()αβ-等于1或1-则cos()αβ-=点拨:利用切化弦解决问题答案:D6.已知tan()2,4πα+=则212sin cos cos ααα+的值为________. 答案:23解析:【知识点】三角函数中“1”的替换【数学思想】转化思想 【解题过程】1tan tan()241tan πααα++==- 1tan 3α∴= 222221sin cos tan 122sin cos cos 2sin cos cos 2tan 13αααααααααα++∴===+++ 点拨:熟悉齐次分式的切化弦能力型 师生共研7.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B =______. 答案:3π解析:【知识点】公式的灵活运用【数学思想】逻辑推理【解题过程】tan tan tan tan()(1tan tan )tan A B C A BA B C ++=+⨯-+ tan (1tan tan )tan tan tan tan tan tan tan tan tan C A B CC A B C C A B C =-⨯-+=-++==2tan tan tan B A C ==tan 60B B ∴=∴=点拨:熟悉公式的变形8.若13cos cos sin sin ,cos(),55αβαβαβ-=-=则tan tan _______αβ=. 答案:12解析:【知识点】利用公式进行和差化积【数学思想】转化思想【解题过程】13cos cos sin sin ,cos cos sin sin ,55αβαβαβαβ-=+= 两式相加得:2cos cos 5αβ=,两式相减得:1sin sin 5αβ=,sin sin 1tan tan cos cos 2αβαβαβ== 点拨:找到角的关系,进行恒等变换探究型 多维突破9.已知(0,)αβπ∈、且71tan ,21)tan(-==-ββα,求βα-2的值 答案:34π- 解析:【知识点】灵活运用公式【数学思想】归纳推理思想【解题过程】()1tan tan 3ααββ=-+=⎡⎤⎣⎦()tan(2)tan 1αβαβα∴-=-+=⎡⎤⎣⎦11tan tan (0,)37αβαβπ=<=->∈、 50,6622ππαβπππαβ∴<<<<∴-<-<-324παβ∴-=- 点拨:求三角函数值时要确定角的范围10.已知向量a =(cos ,sin )αα,b =(cos ,sin )ββ,|a -b |= (1)求cos()αβ-的值(2)若0,022ππαβ<<-<<,且5sin 13β=-,求sin α的值 答案:35;3365 解析:【知识点】灵活运用公式【数学思想】归纳推理思想【解题过程】由|a -b|==,即4322cos(),cos()55αβαβ--=-= 由0,022ππαβ<<-<<,得0αβπ<-<,又35cos(),sin ,513αββ-==- 所以412sin(),cos ,513αββ-==[]33sin sin ()sin()cos cos()sin 65ααββαββαββ=-+=-+-= 点拨:三角恒等变形与向量的紧密联系自助餐1.若sin()cos cos()sin ,m αβααβα---=且β为第三象限角,则cos β的值为( )AB.CD.答案:B解析:【知识点】公式的简单应用【数学思想】【解题过程】由题知:sin()sin ,cos mm αβαββ--=∴=-==点拨:正确使用诱导公式2.αβγ、、都是锐角,γβαγβα++===则,81tan ,51tan ,21tan ( ) A .3π B .4πC .π65 D .π45 答案:B解析:【知识点】两角和的正切公式【数学思想】整体代换 【解题过程】11tan ,tan 25αβ==7tan()1904αβπαβ∴+=<∴<+<tan()tan 3tan()1,(0,)1tan()tan 4αβγπαβγαβγαβγ++∴++==++∈-+ 4παβγ∴++=点拨:角的合理转化3.若A 、B 是△ABC 的内角,且(1tan )(1tan )2+A B +=,则A B +等于_____. 答案:4π解析:【知识点】两角和与差的正切公式的逆用【数学思想】转化思想【解题过程】由题知1tan tan tan tan 2+A B A B ++=,则tan tan 1tan tan A B A B +=- tan tan tan()11tan tan A B A B A B +∴+==-且A 、B 是 △ABC 的内角,故4A B π+=点拨:求角的大小可以先求这个角的某个三角函数值4.已知cos()sin 6παα-+=则7sin()________6πα+=. 答案:45- 解析:【知识点】和角公式的逆用【数学思想】建模思想【解题过程】13cos()sin sin sin sin 622πααααααα-+=++=+=14cos )sin()sin()266574sin()sin()sin()6665ππααααπππαπαα+=+=∴+=∴+=++=-+=- 点拨:学会处理sin cos y a x b x =+型的函数问题5.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π解析:【知识点】两角和与差的正弦、余弦、正切公式的灵活运用【数学思想】转化思想【解题过程】原式=sin[(3)]cos[(3)]cos(3)sin(3)242664cos(3)sin(3)cos(3)sin(3)46641sin[(3)(3)]sin()64642x x x x x x x x x x ππππππππππππππ-+⋅-+-++=++-++=+-+=-== 点拨:解题时诱导公式可帮助三角函数名的转化6.已知 0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.答案:2解析:【知识点】求根公式【数学思想】化归思想 【解题过程】设22150(2sin 50)4(sin 50)2sin(5045)x ±---==± 12sin 95cos5,sin 5cos85,x x ∴====3275tan )2tan(+==- αβ点拨:利用本章的公式进行恒等变形.。

高一数学必修四教案优秀10篇

高一数学必修四教案优秀10篇

高一数学必修四教案优秀10篇高一数学必修四教案篇一教学准备教学目标o了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量·o通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别·o通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力· 教学重难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量·教学难点:平行向量、相等向量和共线向量的区别和联系·教学过程(一)向量的概念:我们把既有大小又有方向的量叫向量。

(二)(教材P74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)1、数量与向量有何区别?(数量没有方向而向量有方向)2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?课后小结1、描述向量的两个指标:模和方向·2、平面向量的概念和向量的几何表示;3、向量的模、零向量、单位向量、平行向量等概念。

反思教学方式及能力培养篇二为了强调学生的主体性,把时间还给学生,有的教师上课便叫学生自己看书,教师指导性差、没有提示和具体要求,看得如何没有检查也没有反馈等等。

一些课堂上教师片面追求小组合作这一学习形式,对小组合作学习的目的、时机及过程没有进行认真设计。

这些学习方式,学生表面上获得了自主的权利,可实际上并没有做到真正的自主。

课堂教学是开展反思性学习的主渠道。

在课堂教学中要有意识的引导学生从多方位、多角度进行反思性的学习;要引导学生自然地合理地提出问题、自然地合理地解决问题、自然地合理地拓展问题,从而提高逻辑思维能力和解决问题的能力。

人教A版高中数学必修四 第三章《简单的三角恒等变换》教案

人教A版高中数学必修四 第三章《简单的三角恒等变换》教案

3.2 简单的三角恒等变换(3个课时)一、课标要求: 本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.五、学法与教学用具学法:讲授式教学六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=.又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同? 代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2、求证:(1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、sin sin 2sin cos 22θϕθϕθϕ+-+=. 证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sincos 22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想? 例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3、求函数sin y x x =的周期,最大值和最小值.解:sin y x x =这种形式我们在前面见过,1sin 2sin 2sin 23y x x x x x π⎛⎫⎛⎫=+==+ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用. 小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业:157158P P -14T T -。

高中数学 第一章《三角函数》正弦、余弦函数的周期性教案 新人教版必修4-新人教版高一必修4数学教案

高中数学 第一章《三角函数》正弦、余弦函数的周期性教案 新人教版必修4-新人教版高一必修4数学教案

正弦、余弦函数的周期性教案一、教材分析:《正弦、余弦函数的周期性》是普通高中课程标准实验教科书必修四第一章第四节第二节课,其主要内容是周期函数的概念及正弦、余弦函数的周期性.本节课是学生学习了诱导公式和正弦、余弦函数的图象之后,对三角函数知识的又一深入探讨.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.通过本课的学习不仅能进一步培养学生的数形结合能力、推理论证能力、分析问题和解决问题的能力,而且能使学生把这些认识迁移到后续的知识学习中去,为以后研究三角函数的其它性质打下基础.所以本课既是前期知识的发展,又是后续有关知识研究的前驱,起着承前启后的作用.二、教学目标:学情分析:学生在知识上已经掌握了诱导公式、正弦、余弦函数图象及五点作图的方法;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经具有一定的数形结合、类比、特殊到一般等数学思想.本课的教学目标:(一)知识与技能1.理解周期函数的概念及正弦、余弦函数的周期性.2.会求一些简单三角函数的周期.(二)过程与方法从学生生活实际的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sin x图形的比较、概括抽象出周期函数的概念.运用数形结合方法研究正弦函数y=sin x 的周期性,通过类比研究余弦函数y=cosx的周期性.(三)情感、态度与价值观让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,享受成功的喜悦,感受数学的魅力.三、教学重点:周期函数的定义和正弦、余弦函数的周期性.四、教学难点:周期函数定义及运用定义求函数的周期.五、教学准备:三角板、多媒体课件六、教学流程:求下列函数的周期: (1)3sin4x y =,x R ∈;(2)sin()10y x π=+,x R ∈;(3)cos(2)3y x π=+,x R ∈(4)1sin()24y x π=-,x R ∈ 课外思考:1. 求函数()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+(其中,,A ωϕ为常数,且0,0A ω≠>)的周期.2.求下列函数的周期:(1)|sin |x y =,x R ∈;(2)|2cos |x y =,x R ∈ 附:板书设计附:1.本节课预计学生建构周期函数概念时有困难,特别是“正弦函数图象的周而复始变化实际上是函数值的周而复始变化” 的本质学生理解有一定困难.为了突破这个难点,借助了几何画板来帮助学生从形象思维过渡到抽象思维.2.预计部分学生对周期函数定义的自变量的任意性的理解有困难,为了突破这个难点,设计了三道判断题让学生分组讨论交流,通过学生思维碰撞来体会数学概念的严谨,通过学生互动建构自己对周期函数概念的认识.3.预计部分学生运用周期函数定义求函数周期有一定困难,为了解决这个困难,在设计中,例1第1问由师生共同完成,完成后小结解题的思路方法.再由学生完成第2问和第3问,再由师生共同点评.教案设计说明 《正弦、余弦函数的周期性》是普通高中课程标准实验教科书必修四第一章第四节第二节课,其主要内容是周期函数的概念及正弦、余弦函数的周期性.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.本课的重点为周期函数的定义和正弦、余弦函数的周期性,难点为周期函数定义及运用定义求函数的周期.本课的教学设计分为六个部分,包括:教材分析,目标分析(含学情分析),教学重难点,教学准备,教学流程,教学过程.设计反映了由学生熟悉的生活的周期现象出发,通过概括、抽象,并结合正弦函数的图象引导学生感受周期函数概念的形成过程,这是设计的数学本质基础;设计中结合本班学生的学习的实际情况,从而确定了教学活动的环节.以这些分析为基础从而确定教学目标,而过程设计则针对目标从九个环节进行具体的设计.教学过程设计自始至终贯穿数形结合思想.下面从如下几个方面进行详细说明.一、教学内容的数学本质及教学目标定位本节课主要内容是周期函数的概念及正弦、余弦函数的周期性.通过对正弦函数图象“周而复始”的变化规律特征的感知,使学生建立比较牢固的理解周期性的认知基础,然后再引导学生了解用代数表达式刻画图象“周而复始”的变化规律.本节课要探究的周期函数的概念的数学本质是从形和数两个方面去刻画“周而复始”的变化规律.学生在知识上已经学习了函数概念与基本初等函数等知识,已经掌握了三角函数图象的画法及五点法作图;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经接触过数形结合、类比、特殊到一般等数学思想.另外,我还对我班学生的具体情况做了如下分析:我班学生基础知识比较扎实、思维较活跃,学生层次差异不大,能够很好的掌握教材上的内容,能较好地做到数形结合,善于发现问题,深入研究问题,但是部分学生处理抽象问题的能力还有待进一步提高.于是,结合以上的学情分析,我从“知识与技能”、“过程与方法”和“情感态度与价值观”设定目标.其中知识与技能目标为:理解周期函数的概念及正弦、余弦函数的周期性,会求一些简单三角函数的周期.过程与方法则是:从学生实际中的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sin x图形的比较、概括抽象出周期函数的概念. 运用数形结合方法研究正弦函数y=sin x的周期性,通过类比研究余弦函数y=cosx的周期性.并且在过程中渗透了本课的情感态度目标:让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,享受成功的喜悦,感受数学的魅力.以上是对教学目标定位的说明.二、教学流程入探讨.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.通过本课的学习不仅能进一步培养学生的数形结合能力,分析问题和解决问题的能力,而且能使学生把这些认识迁移到后续的知识学习中去,为以后研究三角函数的其它性质打下基础.正弦函数、余弦函数的周期性,与后面高中物理研究的《单摆运动》、《简谐运动》、《机械波》等知识有着密切相关的联系.在数学和其它领域(物理学、生物学、医学等)中具有重要的作用,所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁.四、教学诊断分析1.学习正弦、余弦函数的周期性时,用图象法求周期学生容易理解;建构周期函数概念时学生有困难,特别是“正弦函数图象的周而复始的变化实际上是函数值的周而复始的变化”的本质学生感到有一定困难. 我首先让学生回顾如何利用正弦线画正弦函数y=sin x图象(动画演示),通过动画演示,让学生感知正弦函数图象“周而复始”的变化规律,再引导学生用代数表达式刻画图象“周而复始”的变化规律.2.部分学生对周期函数定义中的任意性理解容易出现错误,需要在教学中反复强调.3.本节课充分利用了多媒体技术的强大功能,把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意投入到现实的、探索性的教学活动中去.五、教法特点及预期效果分析结合教学目标以及学生的实际情况,我采用了启发引导与小组合作交流相结合的教学方式,而在知识构建过程中,在教师引导下,使学生经历了直观感知、观察发现、抽象概括等思维活动,提高数学思维能力;注重信息技术与数学课程的整合,提倡利用信息技术呈现以往教学中难以呈现的课程内容,鼓励学生运用信息技术进行探索和发现.本节课遵循学生的认知规律,通过典型具体例子的分析和学生自主地观察、探索活动,使学生理解周期概念的形成过程,体会蕴含在其中的数形结合的思想方法,把数学的学术形态通过适当的方式转化为学生易于接受的教育形态,教学内容利用生活中的问题和课本上已有的知识创设情境,使教学内容不仅贴近生活,并且来源于旧知识,设计内容一环扣一环,使学生对周期函数的概念理解和应用步步深入.在教学方法上运用多种方法,如观察、分析、归纳、讨论;在知识的学习过程中,重视知识的形成过程和概括过程.在解决问题中,引导学生分析、归纳方法,注意优化学生的思维品质;在教学手段上采用多媒体和黑板重点板书结合的教学方法.通过本节课学习,我力求达到:1 、形成学生主动参与,自主探究,合作交流的课堂气氛.2、学生进一步了解数学来源于生活,理解周期函数和周期的定义.3、让学生体会从感性到理性的思维过程,体会数形结合思想,让学生领悟问题探究的学习方法.由于本课内容不多,难度不大,相信大多数学生都能掌握本课知识,实现预期的目标.。

人教课标版高中数学必修四《积化和差与和差化积》教案(1)-新版

人教课标版高中数学必修四《积化和差与和差化积》教案(1)-新版

3.2 简单的三角恒等变换 3.2.1 积化和差与和差化积一、教学目标 (一)核心素养通过本节的学习,让学生自己导出“积化和差”及“和差化积”公式,领会这些三角恒等变形公式的意义和作用,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;增强学生灵活运用数学知识解决实际问题的能力. (二)学习目标 1.能够推导“和差化积”及“积化和差”公式;2.能较熟练地运用公式进行化简、求值、探索和证明一些恒等关系,进一步体会这些三角恒等变形公式的意义和作用,体会如何综合利用这些公式解决问题;3.揭示知识背景,培养学生的应用意识与建模意识.(三)学习重点 1.推导“和差化积”及“积化和差”公式;2.运用公式进行化简、求值、探索和证明一些恒等关系,进一步体会这些三角恒等变形公式的意义和作用,体会如何综合利用这些公式解决问题. (四)学习难点运用公式进行化简、求值、探索和证明一些恒等关系,进一步体会这些三角恒等变形公式的意义和作用,体会如何综合利用这些公式解决问题. 二、教学设计 (一)课前设计 1.预习任务(1)强化巩固前一节所学的三角公式,并填空: 两角和与差的正弦、余弦、正切公式sin()αβ+= sin cos cos sin αβαβ+; sin()αβ-=sin cos cos sin αβαβ- cos()αβ+= cos cos sin sin αβαβ-; cos()αβ-=cos cos sin sin αβαβ+ tan()αβ+=tan tan 1tan tan αβαβ+-;tan()αβ-=tan tan 1tan tan αβαβ-+;二倍角的正弦、余弦、正切公式sin 2α=2sin cos αα;cos 2α=2222cos sin 2cos 112sin αααα-=-=-;tan 2α=22tan 1tan αα- (2)阅读教材P140例2,熟悉公式的推导,并填空:sin cos αβ=[]1sin()sin()2αβαβ++-; sin sin θϕ+=2sincos 22θϕθϕ+- 2.预习自测(1)下列等式错误的是( )A .sin()sin()2sin cos AB A B A B ++-=B .sin()sin()2cos sin A B A B A B +--=C .cos()cos()2cos cos A B A B A B ++-=D .cos()cos()2sin cos A B A B A B +--= 【知识点】两角和与差的正、余弦公式【解题过程】由两角和与差的正、余弦公式展开左边即可【思路点拨】cos(A +B )=cos A cos B -sin A cos B ,cos(A -B )=cos A cos B +sin A cos B , sin(A +B )=sin A cos B +cos A sin B ,sin(A -B )=sin A cos B -cos A sin B .A 项正确,B 项正确,C 项正确.D 项,cos(A +B )-cos(A -B )=cos A cos B -sin A cos B-(cos A cos B +sin A cos B )=-2sin A cos B . 【答案】D(2)根据预习所学,尝试证明:Ⅰ.cos sin αβ=[]1sin()sin()2αβαβ+--; Ⅱ.sin sin θϕ-=2cos sin22θϕθϕ+-. 【知识点】积化和差、和差化积公式推导 【数学思想】类比思想、方程思想、换元思想 【解题过程】Ⅰ.∵sin()sin cos cos sin αβαβαβ+=+;①sin()sin cos cos sin αβαβαβ-=-;②将①-②得:sin()sin()2cos sin αβαβαβ+--= ∴cos sin αβ=[]1sin()sin()2αβαβ+--Ⅱ.由第一问的结论,sin()sin()2cos sin αβαβαβ+--= 设αβθ+=,αβϕ-=,则2θϕα+=,2θϕβ-=∴sin sin 2cossin22θϕθϕθϕ+--=【思路点拨】类比例2,用解方程的思想表示cos sin αβ,用换元的思想表示sin sin θϕ-. 【答案】见解题过程 (3)sin15sin 75︒︒=( )A .18B .14C .12D .1【知识点】积化和差【数学思想】化归思想,将非特殊角化为特殊角 【解题过程】[]1sin15sin 75cos(1575)cos(1575)2︒︒=-︒+︒-︒-︒[]11cos90cos 6024=-︒-︒= 【思路点拨】正确使用积化和差公式即可得解 【答案】B(4)函数sin()sin ,0,32y x x x ππ⎡⎤=+-∈⎢⎥⎣⎦的值域是( )A .[]2,2-B .12⎡-⎢⎣C .1,12⎡⎤⎢⎥⎣⎦ D .12⎡⎢⎣【知识点】和差化积【数学思想】化归思想,统一角度【解题过程】sin()sin =2cos()sin cos()3666y x x x x ππππ=+-+=+∵0,2x π⎡⎤∈⎢⎥⎣⎦ ∴2+,663x πππ⎡⎤∈⎢⎥⎣⎦ ∴12y ⎡∈-⎢⎣ 【思路点拨】正确使用和差化积公式即可得解 【答案】B (二)课堂设计 1.知识回顾(1)两角和与差的正弦、余弦、正切公式sin()αβ+= sin cos cos sin αβαβ+; sin()αβ-=sin cos cos sin αβαβ-cos()αβ+= cos cos sin sin αβαβ-; cos()αβ-=cos cos sin sin αβαβ+tan()αβ+=tan tan 1tan tan αβαβ+-;tan()αβ-=tan tan 1tan tan αβαβ-+;(2)二倍角的正弦、余弦、正切公式sin 2α=2sin cos αα;cos 2α=2222cos sin 2cos 112sin αααα-=-=-;tan 2α=22tan 1tan αα-(3)半角公式sin2α=cos 2α=tan 2α= 2.问题探究探究一 推导“和差化积”及“积化和差”公式 ●活动① 运用解方程的思想,推导积化和差公式[]1sin()sin()2sin cos sin cos sin()sin()2αβαβαβαβαβαβ++-=⇒=++- []1sin()sin()2cos sin cos sin sin()sin()2αβαβαβαβαβαβ+--=⇒=+--[]1cos()cos()2cos cos cos cos cos()cos()2αβαβαβαβαβαβ++-=⇒=++-[]1cos()cos()2sin sin sin sin cos()cos()2αβαβαβαβαβαβ+--=-⇒=-+--这组公式有何特点?应注意些什么?这组公式称为三角函数积化和差公式,熟悉结构,它的优点在于将“积式”化为“和差”,且实现了“降次”,有利于简化计算.【设计意图】用解方程的思想,由已有知识自然过渡引出新知识,便于学生接受. 例1 求125cos12sinππ的值 【知识点】积化和差公式应用【解题过程】515511sincossin()sin()sin sin()12122121212122232ππππππππ⎡⎤⎡⎤=++-=+-=⎢⎥⎢⎥⎣⎦⎣⎦ 【思路点拨】直接运用公式将角转换为特殊角即可.【答案】12同类训练:求125sin12sinππ的值【知识点】积化和差公式应用 【解题过程】515511sinsincos()cos()cos cos()12122121212122234ππππππππ⎡⎤⎡⎤=-+--=---=⎢⎥⎢⎥⎣⎦⎣⎦ 【思路点拨】直接运用公式将角转换为特殊角即可. 【答案】14●活动② 运用换元的思想,推导和差化积公式 在积化和差公式中,若令αβθ+=,αβϕ-=,则2θϕα+=,2θϕβ-=将其依次代入,可得什么?sin sin 2sincos22θϕθϕθϕ+-+=sin sin 2cos sin22θϕθϕθϕ+--= cos cos 2cos cos22θϕθϕθϕ+-+= cos cos 2sin sin22θϕθϕθϕ+--=- 观察这组公式的特点:这组公式称为和差化积公式,其特点是同名的正(余)弦之和(差)可以化为积的形式,它与积化和差公式相辅相成,配合使用.例2 已知11cos cos ,sin sin 23αβαβ-=-=-,求tan()αβ+的值【知识点】和差化积公式应用 【解题过程】∵1cos cos 2sinsin222αβαβαβ+--=-=① 1sin sin 2cossin223αβαβαβ+--==- ②又∵sin 02αβ-≠ ∴3tan 22αβ+-=- ∴3tan 22αβ+=∴22tan122tan()51tan 2αβαβαβ++==-+- 【思路点拨】由和差化积先得tan 2αβ+,再由二倍角公式得tan()αβ+【答案】125-同类训练 sin105°+sin15°等于( )A .B C D 【知识点】和差化积公式应用 【解题过程】sin105°+sin15°=21051510515sin cos22+-o o o o =2sin60°cos45°【思路点拨】由和差化积将角化为特殊角求值 【答案】C【设计意图】从正弦、余弦的和(差)角公式出发,逐步推导出积化和差、和差化积公式,再简单应用,增强学生对公式掌握的熟练度. 探究二 两组公式在三角函数变形中的应用三角函数的积化和差与和差化积,这两种互化,对于求三角函数的值、化简三角函数式及三角函数式的恒等变形,都有重要的作用,它们的作用和地位在三角函数的变形中是十分重要的.例3 求sin75°·cos15°的值 【知识点】积化和差公式应用 【数学思想】化归思想【解题过程】(法一)考虑到75°±15°都是特殊角,所以想到使用积化和差公式解决之.[]11sin 75.cos15sin(7515)sin(7515)(sin 90sin 60)22︒︒=︒+︒+︒-︒=︒+︒=(法二)由于75°与15°互为余角,可以统一角度21cos150sin 75.cos15sin 75.sin 75sin 752-︒︒︒=︒︒=︒==(法三)由于75°与15°可以由45°与30°组合而成,所以可用和差角的三角函数公式来解决sin 75sin(4530)sin 45cos30cos 45sin 30︒=︒+︒=︒︒+︒︒=cos15sin 75︒=︒=∴2sin 75.cos15︒︒==【思路点拨】三角函数求值或恒等变换,往往可以从不同角度考虑,进而使用不同的三角公式,获得问题的解决,可谓殊途同归,但是我们考虑问题时,一定要根据条件及结论、选择适当的方法,以求问题的解决.【设计意图】从不同角度使用不同的三角公式,都殊途同归使得问题解决,有利于锻炼学生从多角度思考问题并解决问题.同类训练 求sin37.5°cos7.5°=________. 【知识点】积化和差公式应用 【数学思想】化归思想 【解题过程】[]11sin 37.5.cos 7.5sin(37.57.5)sin(37.57.5)(sin 45sin 30)22︒︒=︒+︒+︒-︒=︒+︒= 【思路点拨】利用积化和差公式化非特殊角为特殊角即可例4 求sin 20.sin 40.sin 60.sin 80︒︒︒︒=___________; 【知识点】积化和差公式应用 【数学思想】化归思想【解题过程】∵sin 60︒=111sin 20sin 40sin 80(cos 60cos 20).sin 80sin 80cos 20sin 80242︒︒︒=-︒-︒︒=-︒+︒︒1111sin 80(sin100sin 60)sin 80sin1004444=-︒+︒+︒=-︒+︒+=∴3sin 20.sin 40.sin 60.sin 8016︒︒︒︒=【思路点拨】利用积化和差公式化化积为和差,将非特殊角化为特殊角 【答案】316同类训练 求cos 20cos 40cos80︒︒︒的值.【知识点】积化和差公式应用 【数学思想】化归思想 【解题过程】(法一)1cos 20cos 40cos80(cos 60cos 20).cos802︒︒︒=︒+︒︒1111cos80cos 20.cos80cos80(cos100cos 60)4244=︒+︒︒=︒+︒+︒ 1111cos80cos80cos 604448=︒-︒+︒= (法二)2sin 20cos 20cos 40cos80cos 20cos 40cos80=2sin 20︒︒︒︒︒︒︒︒2sin 40cos 40cos802sin 80cos80sin160sin 201=4sin 208sin 208sin 208sin 208︒︒︒︒︒︒︒====︒︒︒︒【思路点拨】法一利用积化和差公式化化积为和差,将非特殊角化为特殊角;法二是配凑法构造正弦二倍角公式,是化简形如cos cos 2cos 4cos 2n ααααL 、、、的三角函数式的常用办法.【答案】18例5 求sin 42cos12sin 54︒-︒+︒的值 【知识点】和差化积公式应用 【数学思想】化归思想【解题过程】sin 42cos12sin 54sin 42sin 78sin 54︒-︒+︒=︒-︒+︒2cos 60sin18sin 54sin 54sin18=-︒︒+︒=︒-︒2sin 36cos36cos 722cos36sin182cos36cos 72sin 36︒︒︒=︒︒=︒︒=︒1sin144sin 72cos 7212sin 36sin 362︒︒︒===︒︒【思路点拨】三个三角函数的和差形式,自然想到要使用和差化积公式.由于有现成的同名角函数为sin 42,sin 54︒︒,因此考虑将这二个函数做和差化积.但本题若采用此法则无后续手段,问题的解决将十分困难.不妨将cos12︒转化为sin 78︒,使得能出现特殊角,问题迎刃而解. 【答案】12同类训练 求246coscos cos777πππ++的值 【知识点】和差化积公式应用【数学思想】化归思想 【解题过程】24636coscos cos =2cos cos cos777777ππππππ+++ 23333=2cos cos 2cos 12cos (cos cos )1777777ππππππ+-=+-42-4cos cos cos sin3277774cos cos cos 11777sin 7ππππππππ=-=- 4224418-2cos cos sin -cos sin sin7777727111sinsinsin777πππππππππ-=-=-=- 1sin12712sin 7ππ=-=- 【思路点拨】由于本题三个函数都是余弦,而任两角的和、差都不为特殊角,所以可任选其中的两个先作和差化积.采用同样的方法也可以对1、3两项或2、3两项先使用和差化积公式,再利用余弦的倍角进一步完成本题.【答案】12-例6 求证:333sin 3sin cos3cos cos 2ααααα+= 【知识点】积化和差与和差化积公式综合应用【解题过程】左边=22(sin 3sin )sin (cos3cos )cos αααααα+2211(cos 4cos 2)sin (cos 4cos 2)cos 22αααααα=--++22221111cos 4sin cos 2sin cos 4cos cos 2cos 2222αααααααα=-+++111cos 4cos 2cos 2cos 2(cos 41)222ααααα=+=+ 231cos 2.2cos 2cos 22ααα===右边 ∴原式得证【思路点拨】使用积化和差公式降次,同时朝着统一角度为2α的方向变形 【答案】详见解题过程 同类训练 化简sin 2sin 3sin 5sin 32sin 5sin 7A A AA A A++++【知识点】积化和差与和差化积公式综合应用 【解题过程】原式(sin sin 5)2sin 32sin 3cos 22sin 3(sin 3sin 7)2sin 52sin 5cos 22sin 5A A A A A AA A A A A A+++==+++ 2sin 3(cos 21)sin 32sin 5(cos 21)sin 5A A AA A A+==+ 【思路点拨】使用和差化积公式统一角从而使式子化简 【答案】sin 3sin 5AA3.课堂总结 知识梳理 (1)积化和差公式[]1sin cos sin()sin()2αβαβαβ=++- []1cos sin sin()sin()2αβαβαβ=+--[]1cos cos cos()cos()2αβαβαβ=++-[]1sin sin cos()cos()2αβαβαβ=-+--(2)和差化积公式sin sin 2sincos22θϕθϕθϕ+-+=sin sin 2cos sin22θϕθϕθϕ+--= cos cos 2cos cos22θϕθϕθϕ+-+= cos cos 2sin sin22θϕθϕθϕ+--=- 重难点归纳(1)和差化积公式的左边全是同名函数的和或差,只有系数绝对值相同的同名函数的和与差才能直接运用公式化成积的形式,如果是一个正弦与一余弦的和或差必须先用诱导公式化成同名函数后,再运用积化和差公式化成积的形式;(2)三角函数的恒等变换常用的规则是:化繁为简、化高为低(降次),化复合角为单角(和差角公式),化切割为弦,化大角为小角,和差化积,积化和差. (三)课后作业 基础型 自主突破1.sin20°·cos70°+sin10°·sin50°=_________;【知识点】积化和差公式的应用【数学思想】化归思想 【解题过程】11sin 20.cos 70sin10.sin 50(sin 90sin 50)(cos 60cos 40)22︒︒+︒︒=︒-︒-︒-︒ 11111sin 50cos 4022424=-︒-+︒= 【思路点拨】运用积化和差公式将非特殊角化为特殊角,方便求值 【答案】142.cos72°-cos36°的值为( ) A .3-2 3 B .12 C .-12 D .3+2 3【知识点】和差化积公式的应用【数学思想】化归思想 【解题过程】原式723672362sin sin 2sin 54sin1822︒+︒︒-︒=-=-︒︒ =-2cos36°cos72°=-2·sin36°cos36°cos72°sin36°=-sin72°cos72°sin36°=-sin144°2sin36°=-12【思路点拨】化差为积,观察到5418︒︒、分别与3672︒︒、互余,且36,72︒︒为二倍角关系,变形方向就比较明确了.【答案】C3.若1cos()cos()3αβαβ+-=,则22cos sin αβ-等于( ) A .-23 B .-13 C .13 D .23【知识点】积化和差公式的应用【数学思想】化归思想 【解题过程】原式1cos()cos()(cos 2cos 2)2αβαβαβ=+-=+ 22221(2cos 1)(12sin )cos sin 2αβαβ⎡⎤=-+-=-⎣⎦∴221cos sin 3αβ-= 【思路点拨】化积为差,并用二倍角公式化简得22cos sin αβ-【答案】C4.已知23παβ-=,且1cos cos 3αβ+=,则cos()αβ+等于________. 【知识点】和差化积公式的应用【数学思想】化归思想 【解题过程】1cos cos 2coscos 2cos cos cos 223223αβαβπαβαβαβ+-+++==== ∴217cos()2cos 121299αβαβ++=-=⨯-=- 【思路点拨】化和为积,结合23παβ-=得cos 2αβ+,再由二倍角公式得cos()αβ+ 【答案】79- 5.函数sin()cos 6y x x π=-的最大值为( ) A .12 B .14 C .1 D .22【知识点】积化和差辅助求三角函数的最值 【数学思想】化归思想 【解题过程】1sin()cos sin()sin()6266y x x x x x x πππ⎡⎤=-=-++--⎢⎥⎣⎦ 1111sin(2)sin(2)262264x x ππ⎡⎤=--=--⎢⎥⎣⎦ ∴max 111244y =-= 【思路点拨】化积为和,将三角函数化为sin()y A x B ωϕ=++的形式是最值的常用方法【答案】B6.求证cos 2cos sin 5sin 2cos 4cos3αααααα-=【知识点】积化和差辅助三角恒等证明【数学思想】化归思想【解题过程】左边111(cos3cos )(cos 7cos3)(cos cos 7)222αααααα=++-=+ 右边1(cos 7cos )2αα=+ ∴左边=右边 ∴原等式得证【思路点拨】积化和差统计角【答案】详见解题过程能力型 师生共研7.求cot 704cos 70︒+︒的值【知识点】三角恒等变形【数学思想】化归思想 【解题过程】原式cos 70cos 704sin 70cos 704cos 70sin 70sin 70︒︒+︒︒=+︒=︒︒ cos 702sin140sin 20sin 40sin 40sin 70sin 70︒+︒︒+︒+︒==︒︒ 2sin 30cos10sin 40sin 80sin 40sin 70sin 70︒︒+︒︒+︒==︒︒ 2sin 60cos 20sin 70︒︒==︒【思路点拨】余切函数与余弦函数共存,首先应化切为弦,接着进行通分,最后再考虑分子的化简,由于分子的三角函数的系数不同,一拆为二就是必然的了.8.求tan10sec50︒+︒的值【知识点】三角恒等变形【数学思想】化归思想 【解题过程】原式cos801cot 80csc 40sin 80sin 40︒=︒+︒=+︒︒ cos802cos 40(cos80cos 40)cos 40sin 80sin 80︒+︒︒+︒+︒==︒︒ 2cos 60.cos 20cos 40cos 20cos 40sin 80sin 80︒︒+︒︒+︒==︒︒ 2cos30cos10sin 80︒︒==︒【思路点拨】本题若只是简单直接进行切割化弦,后续处理会很棘手,很难得到正确结果,但注意到1050︒︒、分别与8040︒︒、互为余角,且8040︒︒、为二倍角关系,便于统一角度.探究型 多维突破9.22sin 20cos 50sin 20.cos50︒+︒+︒︒=__________;【知识点】二倍角公式与和差化积的综合应用【数学思想】化归思想【解题过程】(法一)原式1cos 401cos100sin 20cos5022-︒+︒=++︒︒ cos100cos 4011(sin 70sin 30)22︒-︒=++︒-︒ 1131sin 70sin 30sin 70244=-︒︒+︒-= (法二)原式2(sin 20sin 40)sin 20.cos50=︒+︒-︒︒2(2sin 30cos10)sin 20.cos50=︒︒-︒︒211cos 20113cos 10(sin 70sin 30)sin 7022244+︒=︒-︒-︒=-︒+= 当然,也可以这样配方,原式2(sin 20sin 40)3sin 20.cos50=︒-︒+︒︒23(2cos30sin10)(sin 70sin 30)2=︒︒+︒-︒ 23333cos 203333sin 10sin 70sin 70242244-︒=︒+︒-=+︒-= 【思路点拨】法一:本题有两个平方式,遇到三角函数的平方式(包含三次,四次式等),常利用余弦的倍角公式作降次处理;法二:22,a b ab +在一起自然想到完全平方式,再进行和差化积、积化和差化角为特殊角. 【答案】3410.已知11sin sin ,cos cos 43αβαβ+=+=,求(1)cos()αβ-;(2)cos()αβ+ 【知识点】二倍角公式与和差化积的综合应用【数学思想】化归思想【解题过程】(法一)∵1sin sin 4αβ+=∴221sin 2sin sin sin 16ααββ++=………① ∵1cos cos 3αβ+= ∴221cos 2cos cos cos 9ααββ++=………②∴①+②得:263cos()288αβ-=- ②-①得:11cos 2cos 22cos()916αβαβ+++=- 即:72cos().cos()2cos()144αβαβαβ+-++= ∴[]77cos()288cos()125αβαβ+==-+ (法二)∵1sin sin 4αβ+= ∴12sin cos 224αβαβ+-=………③ ∵1cos cos 3αβ+= ∴12cos cos 223αβαβ+-=………④ ③2+④2得:2254cos 2144αβ-=,即[]2521cos()144αβ+-= ∴263cos()288αβ-=- ③÷④得:3tan 24αβ+=∴221tan 72cos()251tan 2αβαβαβ+-+==++ 【思路点拨】求cos()αβ-利用方法一简单,求cos()αβ+利用方法二简单.一般地,已知两角的正余弦的和与差,求两角和与差的正余弦,往往采用和差化积或者平方后求和与差【答案】263cos()288αβ-=-;7cos()25αβ+= 自助餐1.求cos37.5°·cos22.5°=_________;【知识点】积化和差公式的应用【数学思想】化归思想 【解题过程】11111cos37.5.cos 22.5(cos 60cos15)cos15cos(4530)24242︒︒=︒+︒=+︒=+︒-︒= 【思路点拨】运用积化和差公式将非特殊角化为特殊角,方便求值2.在△ABC 中,若2sin sin cos 2C A B =,则△ABC 是( )A .等边三角形B .等腰三角形C .不等边三角形D .直角三角形【知识点】积化和差公式的应用 【解题过程】∵[]11cos(A B)cos(A B)(1cosC)22--+=+,又A B C π+=- ∴cos(A B)cos()1cosC C π---=+ ∴cos(A B)1-=又∵A B ππ-<-< ∴0A B -=即A B = ∴△ABC 为等腰三角形【思路点拨】解三角形中常用A B C π+=-,借助诱导公式减少角的数量.【答案】B3.函数2cos()cos()33y x x ππ=++的最大值是______. 【知识点】积化和差公式的应用 【解题过程】∵21cos()cos()cos(2)cos()3323y x x x ππππ⎡⎤=++=++-⎢⎥⎣⎦ 111cos 2x cos cos 22342x π⎡⎤=-+=-⎢⎥⎣⎦ ∵1cos 21x -≤≤ ∴max 34y = 【思路点拨】通过积化和差,将式子变形为cos()B y A x ωϕ=++的形式便于求最值 【答案】344.化简:cos cos(120)cos(120)sin sin(120)sin(120)A B B B A A +︒++︒-+︒+-︒- 【知识点】和差化积应用于三角恒等变形 【解题过程】原式2sinsin cos 2cos120cos cos cos 22tan sin 2cos120sin sin sin 22cos sin 22A B B A A B A B A B A B B A B A B A +-+︒-+====+-+︒- 【思路点拨】和差化积统一角度 【答案】tan2A B + 5.在△ABC 中,若B =30°,求cos A sin C 的取值范围. 【知识点】和差化积应用于三角恒等变形 【解题过程】[][]1111cos sin sin(A C)sin(A C)sinB sin(A C)sin(A C)2242A C =+--=--=--∵1sin(A C)1-≤-≤ ∴1113sin(A C)4424-≤--≤ 【思路点拨】积化和差变形为sin(x )B y A ωϕ=++的形式方便求范围 【答案】13,44⎡⎤-⎢⎥⎣⎦6.已知5sin 12(x),(0,)22sin 2x f x xπ=-+∈ (1)将(x)f 表示成cos x 的多项式;(2)求(x)f 的最小值.【知识点】和差化积应用于三角恒等变形【解题过程】(1)5513sinsin sin 2cos sin 132222(x)2cos cos 2222sin 2sin 2sin 222x x x x x x x f x x x -=-+=== 2cos 2cos 2cos cos 1x x x x =+=+- (2)219(x)2(cosx )48f =+-且1cos 1x -<< ∴1cos 4x =-时,min 9(x)8f =- 【思路点拨】使用和差化积、积化和差统一角度,转化为以cos x 为元的二次函数求最值【答案】(1)2(x)2cos cos 1f x x =+-;(2)min 9(x)8f =-。

人教版高中数学必修4-1.1《任意角》教学设计

人教版高中数学必修4-1.1《任意角》教学设计

《任意角》教学设计一、教学目标(一)核心素养:通过这节课了解任意角的概念,掌握正角,负角,零度角及象限角的定义,掌握所有与α角终边相同的角(包括α角)的表示方法;培养学生通过观察生活实例发现相关的数学问题,培养学生运用运动变化的观点认识事物,能够达到学会用已学习的知识类比到新知识的能力.(二)学习目标1.推广角的概念、引入大于360︒角和负角;2.理解并掌握正角、负角、零角的定义;3.理解任意角以及象限角的概念;4.掌握所有与α角终边相同的角(包括α角)的表示方法;(三)学习重点理解任意角的概念;掌握终边相同角的表示方法.(四)学习难点掌握终边相同角的表示.二、教学设计(一)课前设计1.预习任务(1)回顾初中学习的角的概念.(2)阅读教材第2页到第5页的内容.2.预习自测(1)下列角中终边与330°相同的角是()A.30°B.-30°C.630°D.-630°【知识点】终边相同的角【解题过程】先作出330°的角的终边,在选项里面寻找预期终边相同.【思路点拨】作图注意旋转方向【答案】B.(2)-1120°角所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限【知识点】终边相同的角,象限角概念【解题过程】先作出-1120°的角的终边,在选项里面寻找其所在的象限.【思路点拨】作图注意旋转方向【答案】D.(3)若时针走过2小时40分,则分针走过的角是多少?【知识点】时间单位的转换,表盘一圈360°【解题过程】先算出2小时分针转过的角度,再加上40分钟所旋转的角度.【思路点拨】作图注意旋转方向【答案】480︒-(二)课堂设计1.知识回顾本节课是章始课,需要联系和回顾的是初中学习的角的概念.2.问题探究探究一从生活中感受角的新定义.●活动①生动展示旋转过程,并增强了爱国教育.观看一段跳水运动员的视频,重点是空中转体部分,并用慢动作回放过程.提问中间提及的角度我们以前没有学习过,那么该如何定义这个新的量呢?【设计意图】通过视频生动的让学生感受大于360°的角是怎么样形成的,引出任意角的必要性●活动②贴近自己的生活实际,再次切身体会任意角形成的过程.思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到。

人教版高中数学必修四教师资格试讲教案全套

人教版高中数学必修四教师资格试讲教案全套

课题1 任意角教学目标(一) 知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三) 情感与态度目标1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点任意角概念的理解;区间角的集合的书写. 教学难点终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.2实际生活中出现一系列关于角的问题 二、新课讲解: 1.角的有关概念:①角的定义:一条射线绕着它的端点0,从起始位置OA 旋转到终止位置OB,形成一个角α,点O 是角的顶点,射线OA 、OB 是角α的始边、终边 ②角的名称:③角的分类: ④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. ②课堂练习,小试牛刀在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴ 30°; ⑵ -120°; ⑶ 180°;注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限 3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360° ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角顶点AO注意:⑴ k∈Z⑵α是任一角;⑶终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角.(三)例题精讲例1.在0°到360°范围内,找出与-950°12'角终边相等的角,并判断它们是第几象限角.例2.写出终边在y轴上的角的集合(用0°到360°的角表示) .解:{α | α = 90°+ n·180°,n∈Z}.例3.写出终边在xy 上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.4.课堂小结①角的定义;②角的分类:③象限角;④终边相同的角的表示法.5.课后作业:①教材P5练习第1-5题;②预习弧度制课题2 任意角的三角函数一、教学目标:1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.树立映射观点,正确理解三角函数是以实数为自变量的函数;二、教学重点:三角函数的定义;三教学难点:利用与单位圆有关的有向线段,将任意角α的三角函数表示出来一.复习引入:初中锐角的三角函数是如何定义的?思考:我们已经学过锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角结论:在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦,余弦,正切依次为:,,a b asinA cosA tanA c c b ===锐角三角函数就是以锐角为自变量,以比值为函数值的函数思考1:角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义. 你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P 作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b .则sin MP bOP r α==; cos OM aOP r α==;tan MP bOM aα==. 思考2:对于确定的角α改变而改变呢?为什么?根据相似三角形的知识,对于确定的角α,三个比值不以点P 在的位置的改变而改变大小.我们可以将点P 取在使线段OP 的长1r =以得到用直角坐标系内的点的坐标表示锐角三角函数: sin MP b OP α==; cos OM a OP α==; tan MP bOM aα==. 单位圆:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆称为单位圆.上述P 点就是α的终边与单位圆的交点, 锐角α的三角函数可以用单位圆上点的坐标表示.二新课讲授1.任意角的三角函数的定义结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢? 显然,我们可以利用单位圆来定义任意角的三角函数.如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦(sine),记做sin α, 即 sin y α=;(2)x 叫做α的余弦(cossine),记做cos α,即cos x α=; (3)yx叫做α的正切(tangent),记做tan α, 即tan (0)yx xα=≠.思考3:在上述三角函数定义中,自变量是什么?对应关系有什么特点,函数值是什么?x说明:(1)当()2kk Zπαπ=+∈时,α的终边在y轴上,终边上任意一点的横坐标x都等于0,所以tanyxα=无意义,除此情况外,对于确定的值α,上述三各值都是唯一确定的实数.(2)当α是锐角时,此定义与初中定义相同;当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y,从而就必然能够最终算出三角函数值.(3)正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将这种函数统称为三角函数.2.利用定义求角的三角函数值例1.求53π的正弦,余弦和正切值.解:在直角坐标系中,作53AOBπ∠=,AOB∠的终边与单位圆的交点坐标为1(,25515sin,tan32323πππ=-==思考:如果将53π变为76π呢?例2.已知角α的终边过点0(3,4)P--,求角α的正弦,余弦和正切值.思考:如何根据例题1解答思考:一般的,设角a终边上任意一点的坐标为(x,y),它与原点的距离为r,则sin,cos,tany x ya a ar r x===,你能自己给出证明吗?思考如果将题目中的坐标改为(-3a,-4a),题目又应该怎么做?四.课堂小结五.布置作业练习1、2、3六课后反思七板书设计课题3 同角三角函数的基本关系教学目标:1、掌握同角三角函数的基本关系式、变式及其推导方法;2、会运用同角三角函数的基本关系式及变式进行化简、求值及恒等式证明;3、培养学生观察发现能力,提高分析问题能力、逻辑推理能力.增强数形结合的思想、创新意识。

2019人教版高中数学必修4全套教案(80页)

2019人教版高中数学必修4全套教案(80页)

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称: ③角的分类:
B 终边
始边
O 顶点
A
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么角的终边(端点除外) 在第几象限,我们就说这个角是第几象限角. 例 1.如图⑴⑵中的角分别属于第几象限角?
人教版高中数学必修精品教学资料
1.1.1 任意角
教学目标
知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念. 过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合 的书写.
情感与态度目标
提高学生的推理能力; 2.培养学生应用意识.
教学重点
例 5.写出终边在 y x 上的角的集合 S,并把 S 中适合不等式-360°≤β<720°的元素β
写出来. 4.课堂小结 ①角的定义; ②角的分类:
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角
③象限角; ④终边相同的角的表示法. 5.课后作业: ①阅读教材 P2-P5; ②教材 P5 练习第 1-5 题;
(Ⅳ)
由四个图看出:
当角 的终边不在坐标轴上时,有向线段 OM x, MP y ,于是有

人教课标版高中数学必修四《降幂公式、半角公式》教案-新版

人教课标版高中数学必修四《降幂公式、半角公式》教案-新版

3.1.4 降幂公式、半角公式一、教学目标 (一)核心素养通过让学生自己动手由二倍角公式的变形推导出降幂公式以及半角公式,并会运用公式进行灵活变形计算,在数学运算、逻辑推理中体会转化与化归、降元与换元的数学思想方法. (二)学习目标1.通过二倍角公式的变形推导出降幂公式,加深理解降元、三角恒等变换的基本思想方法. 2.经历二倍角变形公式推导出半角的正弦、余弦和正切公式,并明确“±”号的选取,进一步体会化归、换元的数学思想.3.能较熟练地运用公式进行化简、求值、证明,增强学生灵活运用数学知识和逻辑推理能力. (三)学习重点 1.降幂公式的推导.2.半角的正弦、余弦和正切公式以及公式的正用、逆用、变形应用. (四)学习难点1.降幂公式、半角公式与倍角公式之间的内在联系. 2.运用半角公式时正负号的选取. 二、教学设计 (一)课前设计 1.预习任务(1)“倍角”的含义是什么?“倍角”是描述两个角之间的关系,具有相对性.例如:2α是α的倍角,4α是2α的倍角,2α是4α的倍角.(2)二倍角公式22cos 22cos 112sin ααα=-=-可以怎样进行变形? 移项变形得到:21cos 2sin 2αα-=、21cos 2cos 2αα+=若已知二倍角函数值,开根号可得到单角函数值:sin α=、cos α=若已知单角函数值,换元后可得到半角函数值:sin2α=cos 2α=2.预习自测1.下列说法中正确的个数是( )①当α是第一象限角时,sin 2α=②对任意角α, 21cos tan 21cos ααα-=+都成立;③半角的正余弦公式实质就是将倍角的余弦公式逆求而得来的. A.0 B.2 C.1 D.3 答案:C解析:【知识点】降幂公式、半角公式概念辨析. 【数学思想】分类讨论思想.【解题过程】当α是第一象限角时,222k k ππαπ<<+,∴24k k απππ<<+,∴2α在第一、三象限,故sin 2α=tan 2α有意义且1+cos α≠0,即:2,(21)()22k k k k Z αππαππαπ≠+≠+≠+∈且即②错;由半角公式推导过程可知③正确.点拨:明确“±”号的选取以及公式适用条件. (2)求2cos 22.5︒的值.答案:12解析:【知识点】降幂公式的运用. 【数学思想】降元、化归思想.【解题过程】21+cos 451cos 22.5=22︒︒=+. 点拨:降元化为特殊角的三角函数进行求值. (3)求sin15,cos15,tan15值.2. 解析:【知识点】半角公式的运用. 【数学思想】化归思想.【解题过程】1-cos302sin15====;1+2cos15====sin156tan15=2cos156== 点拨:利用半角公式化为特殊角的三角函数进行求值. (4)已知532x ππ<<,则sin 2x=( )A .B .CD .答案:D .解析:【知识点】半角公式中“±”号的选取. 【数学思想】化归思想.【解题过程】5533sin 24222x x x ππππ<<∴<<∴=,,. 点拨:明确“±”号选取的原则. (二)课堂设计 1.知识回顾(1)二倍角的正弦、余弦、正切公式:2S :sin 22sin cos αααα=22222C :cos 2cos sin 2cos 112sin αααααα=-=-=-222tan T :tan 21tan αααα=- (2)二倍角公式的使用条件:①公式22S C αα、中的α∈R. ②公式2T α中的()42k k k Z ππαπαπ≠+≠+∈且(3)运用二倍角公式,首先要准确把握“二倍角”这个概念,明确“倍角”的相对性,它指的是两个角的一个“倍数”关系,不仅仅指2α是α的二倍角,还可以是2α、4α的二倍角等等.2.问题探究 探究一 降幂公式●活动① 二倍角公式的变形思考1:如何用cos2α表示2sin α、2cos α?利用二倍角公式进行移项变形,由22cos 212sin 2cos 1ααα=-=-得:21cos 2sin 2αα-=、21cos 2cos 2αα+=思考2: 21cos 2sin 2αα-=、21cos 2cos 2αα+=这两个式子有什么共同特点? 由左式的“二次式”转化为右式的“一次式”(即用此式可达到“降次”的目的) 我们称①21cos 2sin 2αα-=②21cos 2cos 2αα+=为降幂公式.【设计意图】教师与学生一起总结出降幂公式的特点,并告诉学生倍角公式和降幂公式被广泛用于三角函数式的化简、求值、证明.探究二 半角公式★▲ ●活动① 半角公式的推导 思考1:⑴α与2α有什么关系?⑵如何建立cos α与2α的三角函数之间的关系?解析:α是2α的两倍角;利用降幂公式,将公式中的α用2α代替即可得cos α与2α的三角函数之间的关系.在降幂公式21cos 2sin 2αα-=、21cos 2cos 2αα+=以及ααααα2cos 12cos 1cos sin tan 222+-==中,以α代替2α以2α代替α即得:∴21cos sin =22αα-① cos 22α=1+cos 2α② 21cos tan 21cos ααα-=+③ 思考2:上面①②③式还可以怎样变形处理? 结果还可以变形为:2sin)2αα=2cos)2αα=2tan)2αα=2T α中:(21)()k k Z απ≠+∈并称之为半角公式(不要求记忆),符号由2α所在象限决定.观察上面的①②③式,总结:用单角的三角函数表示它们的一半即是半角的三角函数. 思考3:半角正切公式还有其他的表示式吗?2sin 2sincossin 222tan21cos cos 2cos 22αααααααα===+① 2sin 2sin 1cos 22tan2sin cos2sincos222αααααααα-===② 该表达式中tan2α的符号由sin α确定,避免了符号的讨论,使用起来非常方便.【设计意图】通过进一步的三角恒等变形,培养学生推导能力,同时使学生认识到新公式产生的根源.●活动② 符号的确定思考1:若给出的角α是某一象限的角时,怎么确定半角三角函数表示式前的符号? 原则:公式相等的前提条件是左右两边符号一致,即左边的三角函数值在2α所在象限的符号就是右边的符号,根据下表决定符号:思考2:如果没有给出限定符号的条件,怎么办? 在根号前保留正负两个符号.【设计意图】通过让学生自己探究发现问题的过程,明确利用半角公式求三角函数值易错的地方.探究三 降幂公式、半角公式的应用★▲ ●活动① 归纳梳理,理解提升 (1)降幂公式: ①21cos 2sin 2αα-=②21cos 2cos 2αα+= (2)半角公式:2sin)2αα= 2cos )2αα= 2tan )2αα= 2T α中:(21)()k k Z απ≠+∈sin 1cos tan=21cos sin ααααα-=+ (3)半角公式符号选取原则:左边的三角函数值在2α所在象限的符号就是右边的符号.【设计意图】培养学生归类整理意识,并能熟练运用这些变形公式. ●活动② 巩固基础,检查反馈例1. 若sin80°=m ,则用含m 的式子表示cos5°=________.【知识点】半角公式的运用.【数学思想】化归思想.【解题过程】由题意得:sin80°=cos10°=m,∴cos5︒===【思路点拨】利用半角公式求值,并准确判断符号.同类训练cos x=79,且322xππ<<,则cos2x=______.答案:解析:【知识点】半角公式的运用.【数学思想】化归思想.【解题过程】∵322xππ<<,∴342xππ<<,2x是第二象限角,∴cos2x===.点拨:利用半角公式求值,并准确判断符号.例2. 求22cos18π-的值..解析:【知识点】降幂公式的运用.【数学思想】降元、化归思想.【解题过程】22cos1=cos11cos844πππ-+-==.点拨:降幂化为特殊角的三角函数进行求值.同类训练21+2cos cos2=θθ-_________.答案:2.解析:【知识点】倍角公式的灵活运用.【数学思想】降元、化归思想.【解题过程】21+2cos cos 2=1+1+cos2cos 2=2θθθθ--. 点拨:二倍角公式灵活化简.【设计意图】巩固降幂公式、半角公式,并熟练应用. ●活动③ 强化提升,灵活应用例3 已知43sin ,,52παπα=-<<求sin cos ,tan 222ααα,.【知识点】半角公式的运用. 【数学思想】化归思想. 【解题过程】∵3,2ππα<<∴3,224παπ<<又∵4sin 5α=-,∴3cos 5α=-.∴sin 2α==cos = 2α==sin 2tan= 22cos2ααα=-. 【思路点拨】利用半角公式时注意符号取值.;2. 同类训练 化简:1tan+8tan12ππ.答案:1+解析:【知识点】半角公式1cos tan 2sin ααα-=的运用. 【数学思想】化归思想.【解题过程】原式=1+cos 1-cos641sinsin46ππππ+=+=+点拨:利用半角公式1cos tan2sin ααα-=,可避免“±”的讨论. 【设计意图】巩固半角公式,注意灵活选取半角的正切公式.3.课堂总结 知识梳理 (1)降幂公式: ①21cos 2sin 2αα-=②21cos 2cos 2αα+= (2)半角公式:2sin)2αα=2cos )2αα=2tan )2αα= 2T α中: )(,)12(Z ∈+≠k k a πsin 1cos tan=21cos sin ααααα-=+ 重难点归纳(1)半角公式符号选取原则:左边的三角函数值在2α所在象限的符号就是右边的符号.(2)运用半角的正切公式sin 1cos tan =21cos sin ααααα-=+,为避免符号的选择,最好选用后面的两个公式.(三)课后作业 基础型 自主突破1.下列各式恒成立的是( )221cos 1cos 2A tanB cos 2sin 22tan2C tan D tan21tan 2ααααααααα-+==±=-.= .. . 答案:B .解析:【知识点】降幂公式、半角公式以及适用条件. 【数学思想】降元、化归思想.【解题过程】A 选项中,要求除)(,)12(Z ∈+≠k k πα外,还必须有)(,Z ∈≠k k πα;B 选项中,α可以取一切实数;C 选项中,要求)(,2Z ∈+≠k k ππα且)(,)12(Z ∈+≠k k πα;D 选项中,要求)(,)12(Z ∈+≠k k πα.点拨:明确角α的限制条件.2.设532ππα-<<- )A .sin 2αB .cos2αC .cos 2α- D .sin2α-答案:C .解析:【知识点】利用半角公式进行化简. 【数学思想】转化思想. 【解题过程】∵532ππα-<<-,则35224παπ-<<-,cos 22αα=-.点拨:注意“±”的选取. 3.设56,cos ,sin24a θθπθπ<<=求.答案:. 解析:【知识点】半角公式的运用. 【数学思想】化归思想.【解题过程】若56πθπ<<,则5322πθπ<<,∴53442πθπ<<,则sin =4θ=点拨:利用半角公式.4.已知4sin 02)sin cos tan 5222αααααπ=-<<(,求、和的值.答案:见解题过程.解析:【知识点】半角公式的运用.【数学思想】化归、分类讨论思想.【解题过程】①当α在第三象限时,此时3cos5α=-,2α在第二象限,sin2sin cos tan2222cos2ααααα===-②当α在第四象限时,此时3cos5α=,2α在第二象限,sin12sin cos tan2222cos2ααααα===-点拨:注意对角α的范围进行分类讨论.5.利用半角公式,求sin cos1212ππ-的值.答案:.解析:【知识点】半角公式的运用.【数学思想】化归思想.【解题过程】sin cos1212ππ-==.点拨:利用半角公式转化为特殊角的三角函数求解.6.函数21sin2sin2y x x=+,R∈x的值域是()A.13,22⎡⎤-⎢⎥⎣⎦B.31,22⎡⎤-⎢⎥⎣⎦C.1122⎡⎤⎢⎥⎣⎦D.1122⎡⎤--⎢⎥⎣⎦答案:C.解析:【知识点】降幂公式、两角差的正弦公式逆用. 【数学思想】降元、化归思想. 【解题过程】21111sin 2sin =sin 2+(1cos 2)22)22221).42y x x x x x x x π=+-=+=-+∵R ∈x ,∴sin(2)[1,1]4x π-∈-,∴函数的值域为1122⎡⎤⎢⎥⎣⎦.点拨:灵活利用公式进行变形化简. 能力型 师生共研74)παπ<<等于( ) A .sin16αB .2sin16αC .2cos 16αD .cos16α答案:B .解析:【知识点】半角公式的逆用. 【数学思想】化归思想.【解题过程】=2sin2sin.1616αα===原式点拨:使根号下不含三角函数8.求22sin 20cos 50sin 20cos50︒+︒+︒︒的值. 答案:34. 解析:【知识点】利用降幂公式、两角差的余弦公式化简.【数学思想】降元、化归思想. 【解题过程】22221cos 401cos100=cos 70cos502211[cos(7030)cos(7030)]cos(6010)cos(6010)21sin 70sin 30cos 60cos 10sin 60sin 101131cos 20(1cos 20)(1cos 20)28834-︒+︒++︒︒=+︒+︒-︒-︒+︒+︒︒-︒=-︒︒+︒︒-︒︒=-︒++︒--︒=原式 点拨:统一角、统一三角函数名称,化为特殊角的三角函数求值. 探究型 多维突破9.化简ααααα2cos 2)2cos 2)(sincos sin 1(+-++,其中(,2)αππ∈答案:cos α.解析:【知识点】三角函数式化简.【数学思想】化归思想.【解题过程】222cos (cos sin )(sin cos )222222cos 22cos (cos sin )2coscos 2222(,2),,cos0,=cos 2222cos2cos22αααααααααααπαααπππααα+-=---==∈∴<<∴<∴原式,原式点拨:式中有角α及2α,可用半角公式把α化为2α的三角函数.10.证明:(sin cos 1)(sin cos 1)tan sin 22αααααα+--+=.【知识点】三角函数式化简. 【数学思想】化归思想. 【解题过程】22[sin (1cos )][sin (1cos )]2sin cos sin 1cos 2cos 1cos tan2sin cos sin 2αααααααααααααα--+-=--+-===证明:左边 点拨:弦化切,统一三角函数名,利用半角正切公式化简. 答案:见解题过程. 自助餐1.已知α是第三象限角,且24sin 25α=-,则tan 2α等于( ) A .34-B .34C .43D .43-【知识点】半角的正切公式. 【数学思想】化归思想.【解题过程】由α是第三象限角及24sin 25α=-知7cos 25α=-, ∴24sin 425tan =721cos 3125ααα-==-+-.【思路点拨】利用半角的正切公式,切化弦. 【答案】D .2.等腰三角形顶角的余弦是13,则底角的正弦是_______,正切是_______.【知识点】半角公式的运用. 【数学思想】化归思想.【解题过程】设底角为α,则顶角为-2πα,而1cos(-2)3πα=,即1cos 23α=-,∴sin α==,cos α==sin tan cos ααα==【思路点拨】利用半角公式求解.. 3.函数2()sin cos f x x x x =在区间42ππ⎡⎤⎢⎥⎣⎦,上的最大值是( )A .1 B.C .32D.【知识点】降幂公式、辅助角公式. 【数学思想】降元、化归思想.【解题过程】由已知得1-cos 21()2sin(2)226x f x x x π==+-,当42x ππ⎡⎤∈⎢⎥⎣⎦,时,52636x πππ⎡⎤-∈⎢⎥⎣⎦,,1sin(2),162x π⎡⎤-∈⎢⎥⎣⎦,因此()f x 的最大值等于131=22+.【思路点拨】利用降幂公式、辅助角公式化简. 【答案】C .4.已知tan 2α=-,且满足42ππα<<的值为( ).A .B. C.- D.3-【知识点】二倍角公式、降幂公式的运用. 【数学思想】降元、化归思想.cos sin 1tan cos sin 1tan αααααα--=++.又∵22tan tan 21tan ααα==--22tan 0αα⇒--=,解得tan =α.又42ππα<<,∴tan α∴3=-+原式 【思路点拨】遇弦化切. 【答案】C .5.已知sin 222cos 2αα-=,则2sin +sin 2αα= .【知识点】倍角公式、升幂公式的运用. 【数学思想】化归思想、分类讨论思想.【解题过程】2sin 22=2cos 2,2sin cos 22(2cos 1)ααααα-∴-=-,即2sin cos 2cos ααα=,cos 0tan 2αα∴==或.① 当cos 0α=时,sin 1α=±,22sin +sin 2sin +2sin cos 101ααααα==+=;② 当tan 2α=时, 222222sin +2sin cos tan +2tan 4+48sin +sin 2sin +cos tan +14+15αααααααααα==== 【思路点拨】利用二倍角公式求解值时注意分类讨论.【答案】1或85.6.已知函数 )(,1cos 2cos sin 32)(2R ∈-+=x x x x x f(1)求函数()f x 的最小正周期及在区间02π⎡⎤⎢⎥⎣⎦,上的最大值和最小值;(2)若006()=542f x x ππ⎡⎤∈⎢⎥⎣⎦,,求0cos 2x 的值.【知识点】二倍角公式逆用,降幂公式的综合运用. 【数学思想】降元、化归思想.【解题过程】(1)由题意得:2()cos 2cos 2cos 22sin(2)6f x x x x x x x π=+-+=+∴函数()f x 的最小正周期为π.因为()2sin(2)6f x x π=+在区间06π⎡⎤⎢⎥⎣⎦,上为增函数,在区间62ππ⎛⎤⎥⎝⎦,上为减函数,又∵(0)=1,()2,()162f f f ππ==-所以函数()f x 在区间02π⎡⎤⎢⎥⎣⎦,上的最大值为2,最小值为-1.(2)由(1)可知00()2sin(2)6f x x π=+.又∵06()=5f x ,所以03sin(2)=65x π+,由042x ππ⎡⎤∈⎢⎥⎣⎦,得0272636x πππ⎡⎤+∈⎢⎥⎣⎦,.∴04cos(2)65x π+==-,∴0000cos 2cos[(2)]cos(2)cos +sin(2)sin 666666x x x x ππππππ=+-=++=【思路点拨】配凑角:002=2)66x x ππ+-(,将其化为已知角的三角函数值求解.【答案】见解题过程.。

人教课标版高中数学必修四《降幂公式、半角公式》教案(1)-新版

人教课标版高中数学必修四《降幂公式、半角公式》教案(1)-新版

3.1.4 降幂公式、半角公式一、教学目标 (一)核心素养通过让学生自己动手由二倍角公式的变形推导出降幂公式以及半角公式,并会运用公式进行灵活变形计算,在数学运算、逻辑推理中体会转化与化归、降元与换元的数学思想方法. (二)学习目标1.通过二倍角公式的变形推导出降幂公式,加深理解降元、三角恒等变换的基本思想方法. 2.经历二倍角变形公式推导出半角的正弦、余弦和正切公式,并明确“±”号的选取,进一步体会化归、换元的数学思想.3.能较熟练地运用公式进行化简、求值、证明,增强学生灵活运用数学知识和逻辑推理能力. (三)学习重点 1.降幂公式的推导.2.半角的正弦、余弦和正切公式以及公式的正用、逆用、变形应用. (四)学习难点1.降幂公式、半角公式与倍角公式之间的内在联系. 2.运用半角公式时正负号的选取. 二、教学设计 (一)课前设计 1.预习任务(1)“倍角”的含义是什么?“倍角”是描述两个角之间的关系,具有相对性.例如:2α是α的倍角,4α是2α的倍角,2α是4α的倍角.(2)二倍角公式22cos 22cos 112sin ααα=-=-可以怎样进行变形? 移项变形得到:21cos 2sin 2αα-=、21cos 2cos 2αα+=若已知二倍角函数值,开根号可得到单角函数值:sin α=、cos α=若已知单角函数值,换元后可得到半角函数值:sin2α=cos 2α=2.预习自测1.下列说法中正确的个数是( )①当α是第一象限角时,sin 2α=②对任意角α, 21cos tan 21cos ααα-=+都成立;③半角的正余弦公式实质就是将倍角的余弦公式逆求而得来的. A.0 B.2 C.1 D.3 答案:C解析:【知识点】降幂公式、半角公式概念辨析. 【数学思想】分类讨论思想.【解题过程】当α是第一象限角时,222k k ππαπ<<+,∴24k k απππ<<+,∴2α在第一、三象限,故sin 2α=tan 2α有意义且1+cos α≠0,即:2,(21)()22k k k k Z αππαππαπ≠+≠+≠+∈且即②错;由半角公式推导过程可知③正确.点拨:明确“±”号的选取以及公式适用条件. (2)求2cos 22.5︒的值.答案:12解析:【知识点】降幂公式的运用. 【数学思想】降元、化归思想.【解题过程】21+cos 451cos 22.5=22︒︒=+. 点拨:降元化为特殊角的三角函数进行求值. (3)求sin15,cos15,tan15值.2. 解析:【知识点】半角公式的运用. 【数学思想】化归思想.【解题过程】1-cos302sin15====;1+2cos15====sin156tan15=2cos156== 点拨:利用半角公式化为特殊角的三角函数进行求值. (4)已知532x ππ<<,则sin 2x=( )A .B .CD .答案:D .解析:【知识点】半角公式中“±”号的选取. 【数学思想】化归思想.【解题过程】5533sin 24222x x x ππππ<<∴<<∴=,,. 点拨:明确“±”号选取的原则. (二)课堂设计 1.知识回顾(1)二倍角的正弦、余弦、正切公式:2S :sin 22sin cos αααα=22222C :cos 2cos sin 2cos 112sin αααααα=-=-=-222tan T :tan 21tan αααα=- (2)二倍角公式的使用条件:①公式22S C αα、中的α∈R. ②公式2T α中的()42k k k Z ππαπαπ≠+≠+∈且(3)运用二倍角公式,首先要准确把握“二倍角”这个概念,明确“倍角”的相对性,它指的是两个角的一个“倍数”关系,不仅仅指2α是α的二倍角,还可以是2α、4α的二倍角等等.2.问题探究 探究一 降幂公式●活动① 二倍角公式的变形思考1:如何用cos2α表示2sin α、2cos α?利用二倍角公式进行移项变形,由22cos 212sin 2cos 1ααα=-=-得:21cos 2sin 2αα-=、21cos 2cos 2αα+=思考2: 21cos 2sin 2αα-=、21cos 2cos 2αα+=这两个式子有什么共同特点? 由左式的“二次式”转化为右式的“一次式”(即用此式可达到“降次”的目的) 我们称①21cos 2sin 2αα-=②21cos 2cos 2αα+=为降幂公式.【设计意图】教师与学生一起总结出降幂公式的特点,并告诉学生倍角公式和降幂公式被广泛用于三角函数式的化简、求值、证明.探究二 半角公式★▲ ●活动① 半角公式的推导 思考1:⑴α与2α有什么关系?⑵如何建立cos α与2α的三角函数之间的关系?解析:α是2α的两倍角;利用降幂公式,将公式中的α用2α代替即可得cos α与2α的三角函数之间的关系.在降幂公式21cos 2sin 2αα-=、21cos 2cos 2αα+=以及ααααα2cos 12cos 1cos sin tan 222+-==中,以α代替2α以2α代替α即得:∴21cos sin =22αα-① cos 22α=1+cos 2α② 21cos tan 21cos ααα-=+③ 思考2:上面①②③式还可以怎样变形处理? 结果还可以变形为:2sin)2αα=2cos)2αα=2tan)2αα=2T α中:(21)()k k Z απ≠+∈并称之为半角公式(不要求记忆),符号由2α所在象限决定.观察上面的①②③式,总结:用单角的三角函数表示它们的一半即是半角的三角函数. 思考3:半角正切公式还有其他的表示式吗?2sin 2sincossin 222tan21cos cos 2cos 22αααααααα===+① 2sin 2sin 1cos 22tan2sin cos2sincos222αααααααα-===② 该表达式中tan2α的符号由sin α确定,避免了符号的讨论,使用起来非常方便.【设计意图】通过进一步的三角恒等变形,培养学生推导能力,同时使学生认识到新公式产生的根源.●活动② 符号的确定思考1:若给出的角α是某一象限的角时,怎么确定半角三角函数表示式前的符号? 原则:公式相等的前提条件是左右两边符号一致,即左边的三角函数值在2α所在象限的符号就是右边的符号,根据下表决定符号:思考2:如果没有给出限定符号的条件,怎么办? 在根号前保留正负两个符号.【设计意图】通过让学生自己探究发现问题的过程,明确利用半角公式求三角函数值易错的地方.探究三 降幂公式、半角公式的应用★▲ ●活动① 归纳梳理,理解提升 (1)降幂公式: ①21cos 2sin 2αα-=②21cos 2cos 2αα+= (2)半角公式:2sin)2αα= 2cos )2αα= 2tan )2αα= 2T α中:(21)()k k Z απ≠+∈sin 1cos tan=21cos sin ααααα-=+ (3)半角公式符号选取原则:左边的三角函数值在2α所在象限的符号就是右边的符号.【设计意图】培养学生归类整理意识,并能熟练运用这些变形公式. ●活动② 巩固基础,检查反馈例1. 若sin80°=m ,则用含m 的式子表示cos5°=________.【知识点】半角公式的运用.【数学思想】化归思想.【解题过程】由题意得:sin80°=cos10°=m,∴cos5︒===【思路点拨】利用半角公式求值,并准确判断符号.同类训练cos x=79,且322xππ<<,则cos2x=______.答案:解析:【知识点】半角公式的运用.【数学思想】化归思想.【解题过程】∵322xππ<<,∴342xππ<<,2x是第二象限角,∴cos2x===.点拨:利用半角公式求值,并准确判断符号.例2. 求22cos18π-的值..解析:【知识点】降幂公式的运用.【数学思想】降元、化归思想.【解题过程】22cos1=cos11cos844πππ-+-==.点拨:降幂化为特殊角的三角函数进行求值.同类训练21+2cos cos2=θθ-_________.答案:2.解析:【知识点】倍角公式的灵活运用.【数学思想】降元、化归思想.【解题过程】21+2cos cos 2=1+1+cos2cos 2=2θθθθ--. 点拨:二倍角公式灵活化简.【设计意图】巩固降幂公式、半角公式,并熟练应用. ●活动③ 强化提升,灵活应用例3 已知43sin ,,52παπα=-<<求sin cos ,tan 222ααα,.【知识点】半角公式的运用. 【数学思想】化归思想. 【解题过程】∵3,2ππα<<∴3,224παπ<<又∵4sin 5α=-,∴3cos 5α=-.∴sin 2α==cos = 2α==sin 2tan= 22cos2ααα=-. 【思路点拨】利用半角公式时注意符号取值.;2. 同类训练 化简:1tan+8tan12ππ.答案:1+解析:【知识点】半角公式1cos tan 2sin ααα-=的运用. 【数学思想】化归思想.【解题过程】原式=1+cos 1-cos641sinsin46ππππ+=+=+点拨:利用半角公式1cos tan2sin ααα-=,可避免“±”的讨论. 【设计意图】巩固半角公式,注意灵活选取半角的正切公式.3.课堂总结 知识梳理 (1)降幂公式: ①21cos 2sin 2αα-=②21cos 2cos 2αα+= (2)半角公式:2sin)2αα=2cos )2αα=2tan )2αα= 2T α中: )(,)12(Z ∈+≠k k a πsin 1cos tan=21cos sin ααααα-=+ 重难点归纳(1)半角公式符号选取原则:左边的三角函数值在2α所在象限的符号就是右边的符号.(2)运用半角的正切公式sin 1cos tan =21cos sin ααααα-=+,为避免符号的选择,最好选用后面的两个公式.(三)课后作业 基础型 自主突破1.下列各式恒成立的是( )221cos 1cos 2A tanB cos 2sin 22tan2C tan D tan21tan 2ααααααααα-+==±=-.= .. . 答案:B .解析:【知识点】降幂公式、半角公式以及适用条件. 【数学思想】降元、化归思想.【解题过程】A 选项中,要求除)(,)12(Z ∈+≠k k πα外,还必须有)(,Z ∈≠k k πα;B 选项中,α可以取一切实数;C 选项中,要求)(,2Z ∈+≠k k ππα且)(,)12(Z ∈+≠k k πα;D 选项中,要求)(,)12(Z ∈+≠k k πα.点拨:明确角α的限制条件.2.设532ππα-<<- )A .sin 2αB .cos2αC .cos 2α- D .sin2α-答案:C .解析:【知识点】利用半角公式进行化简. 【数学思想】转化思想. 【解题过程】∵532ππα-<<-,则35224παπ-<<-,cos 22αα=-.点拨:注意“±”的选取. 3.设56,cos ,sin24a θθπθπ<<=求.答案:. 解析:【知识点】半角公式的运用. 【数学思想】化归思想.【解题过程】若56πθπ<<,则5322πθπ<<,∴53442πθπ<<,则sin =4θ=点拨:利用半角公式.4.已知4sin 02)sin cos tan 5222αααααπ=-<<(,求、和的值.答案:见解题过程.解析:【知识点】半角公式的运用.【数学思想】化归、分类讨论思想.【解题过程】①当α在第三象限时,此时3cos5α=-,2α在第二象限,sin2sin cos tan2222cos2ααααα===-②当α在第四象限时,此时3cos5α=,2α在第二象限,sin12sin cos tan2222cos2ααααα===-点拨:注意对角α的范围进行分类讨论.5.利用半角公式,求sin cos1212ππ-的值.答案:.解析:【知识点】半角公式的运用.【数学思想】化归思想.【解题过程】sin cos1212ππ-==.点拨:利用半角公式转化为特殊角的三角函数求解.6.函数21sin2sin2y x x=+,R∈x的值域是()A.13,22⎡⎤-⎢⎥⎣⎦B.31,22⎡⎤-⎢⎥⎣⎦C.1122⎡⎤⎢⎥⎣⎦D.1122⎡⎤--⎢⎥⎣⎦答案:C.解析:【知识点】降幂公式、两角差的正弦公式逆用. 【数学思想】降元、化归思想. 【解题过程】21111sin 2sin =sin 2+(1cos 2)22)22221).42y x x x x x x x π=+-=+=-+∵R ∈x ,∴sin(2)[1,1]4x π-∈-,∴函数的值域为1122⎡⎤⎢⎥⎣⎦.点拨:灵活利用公式进行变形化简. 能力型 师生共研74)παπ<<等于( ) A .sin16αB .2sin16αC .2cos 16αD .cos16α答案:B .解析:【知识点】半角公式的逆用. 【数学思想】化归思想.【解题过程】=2sin2sin.1616αα===原式点拨:使根号下不含三角函数8.求22sin 20cos 50sin 20cos50︒+︒+︒︒的值. 答案:34. 解析:【知识点】利用降幂公式、两角差的余弦公式化简.【数学思想】降元、化归思想. 【解题过程】22221cos 401cos100=cos 70cos502211[cos(7030)cos(7030)]cos(6010)cos(6010)21sin 70sin 30cos 60cos 10sin 60sin 101131cos 20(1cos 20)(1cos 20)28834-︒+︒++︒︒=+︒+︒-︒-︒+︒+︒︒-︒=-︒︒+︒︒-︒︒=-︒++︒--︒=原式 点拨:统一角、统一三角函数名称,化为特殊角的三角函数求值. 探究型 多维突破9.化简ααααα2cos 2)2cos 2)(sincos sin 1(+-++,其中(,2)αππ∈答案:cos α.解析:【知识点】三角函数式化简.【数学思想】化归思想.【解题过程】222cos (cos sin )(sin cos )222222cos 22cos (cos sin )2coscos 2222(,2),,cos0,=cos 2222cos2cos22αααααααααααπαααπππααα+-=---==∈∴<<∴<∴原式,原式点拨:式中有角α及2α,可用半角公式把α化为2α的三角函数.10.证明:(sin cos 1)(sin cos 1)tan sin 22αααααα+--+=.【知识点】三角函数式化简. 【数学思想】化归思想. 【解题过程】22[sin (1cos )][sin (1cos )]2sin cos sin 1cos 2cos 1cos tan2sin cos sin 2αααααααααααααα--+-=--+-===证明:左边 点拨:弦化切,统一三角函数名,利用半角正切公式化简. 答案:见解题过程. 自助餐1.已知α是第三象限角,且24sin 25α=-,则tan 2α等于( ) A .34-B .34C .43D .43-【知识点】半角的正切公式. 【数学思想】化归思想.【解题过程】由α是第三象限角及24sin 25α=-知7cos 25α=-, ∴24sin 425tan =721cos 3125ααα-==-+-.【思路点拨】利用半角的正切公式,切化弦. 【答案】D .2.等腰三角形顶角的余弦是13,则底角的正弦是_______,正切是_______.【知识点】半角公式的运用. 【数学思想】化归思想.【解题过程】设底角为α,则顶角为-2πα,而1cos(-2)3πα=,即1cos 23α=-,∴sin α==,cos α==sin tan cos ααα==【思路点拨】利用半角公式求解.. 3.函数2()sin cos f x x x x =在区间42ππ⎡⎤⎢⎥⎣⎦,上的最大值是( )A .1 B.C .32D.【知识点】降幂公式、辅助角公式. 【数学思想】降元、化归思想.【解题过程】由已知得1-cos 21()2sin(2)226x f x x x π==+-,当42x ππ⎡⎤∈⎢⎥⎣⎦,时,52636x πππ⎡⎤-∈⎢⎥⎣⎦,,1sin(2),162x π⎡⎤-∈⎢⎥⎣⎦,因此()f x 的最大值等于131=22+.【思路点拨】利用降幂公式、辅助角公式化简. 【答案】C .4.已知tan 2α=-,且满足42ππα<<的值为( ).A .B. C.- D.3-【知识点】二倍角公式、降幂公式的运用. 【数学思想】降元、化归思想.cos sin 1tan cos sin 1tan αααααα--=++.又∵22tan tan 21tan ααα==--22tan 0αα⇒--=,解得tan =α.又42ππα<<,∴tan α∴3=-+原式 【思路点拨】遇弦化切. 【答案】C .5.已知sin 222cos 2αα-=,则2sin +sin 2αα= .【知识点】倍角公式、升幂公式的运用. 【数学思想】化归思想、分类讨论思想.【解题过程】2sin 22=2cos 2,2sin cos 22(2cos 1)ααααα-∴-=-,即2sin cos 2cos ααα=,cos 0tan 2αα∴==或.① 当cos 0α=时,sin 1α=±,22sin +sin 2sin +2sin cos 101ααααα==+=;② 当tan 2α=时, 222222sin +2sin cos tan +2tan 4+48sin +sin 2sin +cos tan +14+15αααααααααα==== 【思路点拨】利用二倍角公式求解值时注意分类讨论.【答案】1或85.6.已知函数 )(,1cos 2cos sin 32)(2R ∈-+=x x x x x f(1)求函数()f x 的最小正周期及在区间02π⎡⎤⎢⎥⎣⎦,上的最大值和最小值;(2)若006()=542f x x ππ⎡⎤∈⎢⎥⎣⎦,,求0cos 2x 的值.【知识点】二倍角公式逆用,降幂公式的综合运用. 【数学思想】降元、化归思想.【解题过程】(1)由题意得:2()cos 2cos 2cos 22sin(2)6f x x x x x x x π=+-+=+∴函数()f x 的最小正周期为π.因为()2sin(2)6f x x π=+在区间06π⎡⎤⎢⎥⎣⎦,上为增函数,在区间62ππ⎛⎤⎥⎝⎦,上为减函数,又∵(0)=1,()2,()162f f f ππ==-所以函数()f x 在区间02π⎡⎤⎢⎥⎣⎦,上的最大值为2,最小值为-1.(2)由(1)可知00()2sin(2)6f x x π=+.又∵06()=5f x ,所以03sin(2)=65x π+,由042x ππ⎡⎤∈⎢⎥⎣⎦,得0272636x πππ⎡⎤+∈⎢⎥⎣⎦,.∴04cos(2)65x π+==-,∴0000cos 2cos[(2)]cos(2)cos +sin(2)sin 666666x x x x ππππππ=+-=++=【思路点拨】配凑角:002=2)66x x ππ+-(,将其化为已知角的三角函数值求解.【答案】见解题过程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章三角函数1.1任意角和弧度制1.1.1任意角一、教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法回忆-观察-讲解-归纳-推广.四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角如果一条射线没有做任何旋转,我们称它形成了一个零角.如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角,包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与x 轴的非负半轴重合。

那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.如教材图1.1-4中的30︒角、210︒-角分别是第一象限角和第三象限角.要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角.4.练习:(1)(口答)锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.(2)(回答)今天是星期三那么7()k k Z ∈天后的那一天是星期几? 7()k k Z ∈天前的那一天是星期几?100天后的那一天是星期几?5.探究:将角按上述方法放在直角坐标系中后,给定一个角,就有唯一的一条终边与之对应.反之,对于直角坐标系中任意一条射线OB (如图1.1-5),以它为终边的角是否唯一?如果不惟一,那么终边相同的角有什么关系?请结合4.(2)口答加以分析.[展示课件]不难发现,在教材图1.1-5中,如果32︒-的终边是OB ,那么328,︒︒-角的终边都是OB ,而328321360︒︒︒=-+⨯,39232(1)360︒︒︒-=-+-⨯.设{|32360,}S k k Z ββ︒︒==-+⋅∈,则328,392︒︒-角都是S 的元素,32︒-角也是S 的元素.因此,所有与32︒-角终边相同的角,连同32︒-角在内,都是集合S 的元素;反过来,集合S 的任一元素显然与32︒-角终边相同.一般地,我们有:所有与角α终边相同的角,连同角α在内,可构成一个集合{|360,}S k k Z ββα︒==+⋅∈,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.6例题讲评例1. 例1在0360︒︒~范围内,找出与95012'︒-角终边相同的角,并判定它是第几象限角.(注:0360︒︒-是指0360β︒︒≤<)例2.写出终边在y 轴上的角的集合.例3.写出终边直线在y x =上的角的集合S ,并把S 中适合不等式360α︒-≤720︒<的元素β写出来.7.练习 教材6P 第3、4、5题.注意: (1)k Z ∈;(2)α是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360︒的整数倍.8.学习小结(1) 你知道角是如何推广的吗?(2) 象限角是如何定义的呢?(3) 你熟练掌握具有相同终边角的表示了吗?会写终边落在x 轴、y 轴、直线y x =上的角的集合.五、评价设计作业:习题1.1 A 组第1,2,3题.1.1.2弧度制一、教学目标:(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集R之间建立的一一对应关系.(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.二、教学重、难点重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.难点: 理解弧度制定义,弧度制的运用.三、教学设想【创设情境】有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.【探究新知】1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本67P P ~,自行解决上述问题.2.弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写).3.探究:如图,半径为r 的圆的圆心与原点重合,角α的终边与x 轴的正半轴重合,交圆于点A ,终边与圆交于点B .请完成表格.我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来y x A αO B决定.4.思考:如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么a 的弧度数是多少?角α的弧度数的绝对值是:rl =α,其中,l 是圆心角所对的弧长,r 是半径. 5.根据探究中180rad π︒=填空:1___rad ︒=,1___rad =度显然,我们可以由此角度与弧度的换算了.6.例题讲解例1.按照下列要求,把'6730︒化成弧度:(1) 精确值;(2) 精确到0.001的近似值.例2.将3.14rad 换算成角度(用度数表示,精确到0.001).注意:角度制与弧度制的换算主要抓住180rad π︒=,另外注意计算器计算非特殊角的方法.7. 填写特殊角的度数与弧度数的对应表:角的概念推广以后,在弧度制下,角的集合与实数集R 之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.8.例题讲评 例3.利用弧度制证明下列关于扇形的公式:(1)l R α=; (2)212S R α=; (3)12S lR =.其中R 是半径,l 是弧长,(02)ααπ<<为圆心角,S 是扇形的面积. 例4.利用计算器比较sin1.5和sin85︒的大小.注意:弧度制定义的理解与应用,以及角度与弧度的区别.9.练习 教材10P .五、作业:习题1.1 A 组第7,8,9题.1.2 任意角的三角函数1.2.1任意角的三角函数(一)一、教学目标:(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;二、教学重、难点重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.三、教学设想第一课时 任意角的三角函数(一)【创设情境】提问:锐角O借助右图直角三角形,复习回顾. 引入:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。

数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P 作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b .则sin MP b OP r α==; cos OM a OP r α==; tan MP b OM aα==. 思考:对于确定的角α,这三个比值是否会随点P 在α的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sin MP b OP α==; cos OM a OP α==; tan MP b OM aα==. 思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.【探究新知】1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y,那么:(1)y叫做α的正弦(sine),记做sinα,即sin yα=;(2)x叫做α的余弦(cossine),记做cosα,即cos xα=;(3)yx 叫做α的正切(tangent),记做tanα,即tan(0)yxxα=≠.注意:当α是锐角时,此定义与初中定义相同(指出对边,邻边,斜边所在);当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢?前面我们已经知道,三角函数的值与点P在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离r=,那么sin α=,cos α=,tan yxα=.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数. 4.例题讲评 例1.求53π的正弦、余弦和正切值. 例2.已知角α的终边过点0(3,4)P --,求角α的正弦、余弦和正切值.教材给出这两个例题,主要是帮助理解任意角的三角函数定义.我也可以尝试其他方法:如例2:设3,4,x y =-=-则5r ==.于是 4sin 5y r α==-,3cos 5x r α==-,4tan 3y x α==. 5.巩固练习17P 第1,2,3题6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:7.例题讲评例3.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.8.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系?显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+= cos(2)cos k απα+= (其中k Z ∈) tan(2)tan k απα+=9.例题讲评 例4.确定下列三角函数值的符号,然后用计算器验证:(1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan3π例5.求下列三角函数值: (1)'sin148010︒; (2)9cos4π; (3)11tan()6π- 利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值. 另外可以直接利用计算器求三角函数值,但要注意角度制的问题. 10.巩固练习17P 第4,5,6,7题 五、评价1.作业:习题1.2 A 组第1,2题.2.比较角概念推广以后,三角函数定义的变化.思考公式一的本质是什么?要做到熟练应用.另外,关于三角函数值在各象限的符号要熟练掌握,知道推导方法.第二课时任意角的三角函数(二)【复习回顾】1、三角函数的定义;2、三角函数在各象限角的符号;3、三角函数在轴上角的值;4、诱导公式(一):终边相同的角的同一三角函数的值相等;5、三角函数的定义域.要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆.【探究新知】1.引入:角是一个图形概念,也是一个数量概念(弧度数).作为角的函数——三角函数是一个数量概念(比值),但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?2.[边描述边画]以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米).当角α为第一象限角时,则其终边与单位圆必有一个交点(,)P x y,过点P作PM x⊥轴交x轴于点M,则请你观察:根据三角函数的定义:|||||sin|OM xα====;|||||cos|MP yα随着α在第一象限内转动,MP、OM是否也跟着变化?3.思考:(1)为了去掉上述等式中的绝对值符号,能否给线段MP、OM规定一个适当的方向,使它们的取值与点P的坐标一致?(2)你能借助单位圆,找到一条如MP、OM一样的线段来表示角α的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O为始点、M为终点,规定:当线段OM与x轴同向时,OM的方向为正向,且有正值x;当线段OM与x轴反向时,OM的方向为负向,且有正值x;其中x为P点的横坐标.这样,无论那种情况都有==cosOM xα同理,当角α的终边不在x轴上时,以M为始点、P为终点,规定:当线段MP与y轴同向时,MP的方向为正向,且有正值y;当线段MP与y轴反向时,MP的方向为负向,且有正值y;其中y为P点的横坐标.这样,无论那种情况都有==MP yαsin4.像MP OM、这种被看作带有方向的线段,叫做有向线段(direct line segment).5.如何用有向线段来表示角α的正切呢?如上图,过点(1,0)A作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T ,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有tan y AT xα==我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.6.探究:(1)当角α的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?(2)当α的终边与x 轴或y 轴重合时,又是怎样的情形呢?7.例题讲解 例1.已知42ππα<<,试比较,tan ,sin ,cos αααα的大小.处理:师生共同分析解答,目的体会三角函数线的用处和实质. 8.练习19P 第1,2,3,4题 9学习小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用. 【评价设计】1.作业:比较下列各三角函数值的大小(不能使用计算器)(1)sin15︒、tan15︒ (2)'cos15018︒、cos121︒ (3)5π、tan 5π2.练习三角函数线的作图.1.2任意角的三角函数 1.2.2同角三角函数的基本关系一、教学目标:1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2)已知某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;(5)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;(7)掌握恒等式证明的一般方法. 二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、教学设想 【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗?如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由221MP OM +=,因此221x y +=,即22sin cos 1αα+=.根据三角函数的定义,当()2a k k Z ππ≠+∈时,有sin tan cos ααα=. 这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.2. 例题讲评例6.已知3sin 5α=-,求cos ,tan αα的值.sin ,cos ,tan ααα三者知一求二,熟练掌握.3. 巩固练习23P 页第1,2,3题4.例题讲评 例7.求证:cos 1sin 1sin cos x xx x+=-. 通过本例题,总结证明一个三角恒等式的方法步骤. 5.巩固练习23P 页第4,5题 6.学习小结(1)同角三角函数的关系式的前提是“同角”,因此1cos sin 22≠+βα,γβαcos sin tan ≠. (2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论. 五、评价设计 (1) 作业:习题1.2A 组第10,13题.(2)熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关系式;注意三角恒等式的证明方法与步骤.第二章 平面向量§2.1 平面向量的实际背景及基本概念 教学目标:1. 了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量. 2. 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3. 通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.学 法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念. 教学思路:一、情景设置:如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图)ABCD结论:猫的速度再快也没用,因为方向错了.分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习:(一)向量的概念:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)1、数量与向量有何区别?2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?(三)探究学习1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:; ④向量的大小――长度称为向量的模,记作||.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小. A(起点) B (终点)a5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关...........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)............说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.(四)理解和巩固:例1 书本86页例1.例2判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)例3下列命题正确的是(A.a与b共线,b与c共线,则a与c也共B.任意两个相等的非零向量的始点与终点是C.向量a与b不共线,则a与bD.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.例4 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量OA、、相等的向量.变式一:与向量长度相等的向量有多少个?(11个)变式二:是否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?(FE,)DOCB,课堂练习:1.判断下列命题是否正确,若不正确,请简述理由.①向量与是共线向量,则A、B、C、D四点必在一直线上;②④四边形ABCD是平行四边形当且仅当AB=⑤一个向量方向不确定当且仅当模为0⑥共线的向量,若起点不同,则终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB、AC在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.。

相关文档
最新文档