阜南县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阜南县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 函数在一个周期内的图象如图所示,此函数的解析式为( )
sin()y A x ωϕ=+A . B . C . D .2sin(23
y x π
=+
22sin(2)3y x π=+
2sin(23x y π=-2sin(2)3
y x π=
-2. 定义集合运算:A*B={z|z=xy ,x ∈A ,y ∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为( )
A .0
B .2
C .3
D .6
3. 已知命题p :“∀x ∈R ,e x >0”,命题q :“∃x 0∈R ,x 0﹣2>x 02”,则( )
A .命题p ∨q 是假命题
B .命题p ∧q 是真命题
C .命题p ∧(¬q )是真命题
D .命题p ∨(¬q )是假命题
4. 已知A ,B 是以O 为圆心的单位圆上的动点,且
||=,则•=( )
A .﹣1
B .1
C .﹣
D .
5. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( )
A .(0,1)
B .(1,2)
C .(2,3)
D .(3,4)6. (﹣6≤a ≤3)的最大值为( )
A .9
B .
C .3
D .
7. “x ≠0”是“x >0”是的(
)
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
8. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( )
A .m ⊂α,n ∥m ⇒n ∥α
B .m ⊂α,n ⊥m ⇒n ⊥α
C .m ⊂α,n ⊂β,m ∥n ⇒α∥β
D .n ⊂β,n ⊥α⇒α⊥β
9. 已知f (x )是定义在R 上的奇函数,且f (x ﹣2)=f (x+2),当0<x <2时,f (x )=1﹣log 2(x+1),则当0<x <4时,不等式(x ﹣2)f (x )>0的解集是( )
A .(0,1)∪(2,3)
B .(0,1)∪(3,4)
C .(1,2)∪(3,4)
D .(1,2)∪(2,3)
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
10.已知集合(其中为虚数单位),,则( )23111
{1,(,,}122
i A i i i i -=-+-+2{1}B x x =<A B =I
A .
B .
C . {1}-{1}{-
D .11.已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )
A .a=3
B .a=﹣3
C .a=±3
D .a=5或a=±3
12.△的内角,,所对的边分别为,,,已知,则
ABC A B C a =b =6
A π
∠=
( )111]
B ∠=A .
B .
或
C .
或
D .
4
π
4
π
34
π
3
π
23
π
3
π
二、填空题
13.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论:①函数y=[sinx]是奇函数;
②函数y=[sinx]是周期为2π的周期函数;③函数y=[sinx]﹣cosx 不存在零点;
④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.其中正确的是 .(填上所有正确命题的编号)
14.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2
)a n +sin 2
,则该数列的前16项和为 .
15.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .
16.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 .17.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,
则S 的最小值是 .
18.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为
.
三、解答题
19.已知函数f (x )=
,求不等式f (x )<4的解集.
20.已知函数f (x )=(sinx+cosx )2+cos2x (1)求f (x )最小正周期;
(2)求f (x )在区间[
]上的最大值和最小值.
21.在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ()=1,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M ,N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.
22.(本小题12分)在多面体中,四边形与是边长均为正方形,平面
ABCDEFG ABCD CDEF a CF ⊥,平面,且.
ABCD BG ⊥ABCD 24AB BG BH ==(1)求证:平面平面;AGH ⊥EFG (2)若,求三棱锥的体积.
4a =G ADE -
【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.
23.已知曲线C的极坐标方程为4ρ2cos2θ+9ρ2sin2θ=36,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系;
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值.
24.未来制造业对零件的精度要求越来越高.3D打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件.该技术应用十分广泛,可以预计在未来会有广阔的发展空间.某制造企业向A高校3D打印实验团队租用一台3D打印设备,用于打印一批对内径有较高精度要求的零件.该团队在实验室打印出了一批这样的零件,从中随机抽取10件零件,度量其内径的茎叶图如如图所示(单位:μm).
(Ⅰ)计算平均值μ与标准差σ;
(Ⅱ)假设这台3D打印设备打印出品的零件内径Z服从正态分布N(μ,σ2),该团队到工厂安装调试后,试打了5个零件,度量其内径分别为(单位:μm):86、95、103、109、118,试问此打印设备是否需要进一步调试,为什么?
参考数据:P(μ﹣2σ<Z<μ+2σ)=0.9544,P(μ﹣3σ<Z<μ+3σ)=0.9974,0.95443=0.87,0.99744=0.99,
0.04562=0.002.
阜南县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1. 【答案】B 【解析】
考点:三角函数的图象与性质.()sin()f x A x ωϕ=+2. 【答案】D
【解析】解:根据题意,设A={1,2},B={0,2},则集合A*B 中的元素可能为:0、2、0、4,又有集合元素的互异性,则A*B={0,2,4},其所有元素之和为6;故选D .
【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.
3. 【答案】 C
【解析】解:命题p :“∀x ∈R ,e x >0”,是真命题,命题q :“∃x 0∈R ,x 0﹣2>x 02”,即﹣x 0+2<0,
即:
+<0,显然是假命题,
∴p ∨q 真,p ∧q 假,p ∧(¬q )真,p ∨(¬q )假,故选:C .
【点评】本题考查了指数函数的性质,解不等式问题,考查复合命题的判断,是一道基础题.
4. 【答案】B
【解析】解:由A ,B 是以O 为圆心的单位圆上的动点,且||=
,
即有||2+|
|2=|
|2,
可得△OAB 为等腰直角三角形,
则,的夹角为45°,
即有
•=|
|•|
|•cos45°=1×
×
=1.
故选:B .
【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.
5. 【答案】A
【解析】解:令f(x)=x3﹣,
∵f′(x)=3x2﹣ln=3x2+ln2>0,
∴f(x)=x3﹣在R上单调递增;
又f(1)=1﹣=>0,
f(0)=0﹣1=﹣1<0,
∴f(x)=x3﹣的零点在(0,1),
∵函数y=x3与y=()x的图象的交点为(x0,y0),
∴x0所在的区间是(0,1).
故答案为:A.
6.【答案】B
【解析】解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f (a)的最大值为,
故(﹣6≤a≤3)的最大值为=,
故选B.
【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.
7.【答案】B
【解析】解:当x=﹣1时,满足x≠0,但x>0不成立.
当x>0时,一定有x≠0成立,
∴“x≠0”是“x>0”是的必要不充分条件.
故选:B.
8.【答案】D
【解析】解:在A选项中,可能有n⊂α,故A错误;
在B选项中,可能有n⊂α,故B错误;
在C选项中,两平面有可能相交,故C错误;
在D选项中,由平面与平面垂直的判定定理得D正确.
故选:D.
【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
9.【答案】D
【解析】解:∵f(x)是定义在R上的奇函数,且f(x﹣2)=f(x+2),
∴f(0)=0,且f(2+x)=﹣f(2﹣x),
∴f(x)的图象关于点(2,0)中心对称,
又0<x<2时,f(x)=1﹣log2(x+1),
故可作出fx(x)在0<x<4时的图象,
由图象可知当x∈(1,2)时,x﹣2<0,f(x)<0,
∴(x﹣2)f(x)>0;
当x∈(2,3)时,x﹣2>0,f(x)>0,
∴(x﹣2)f(x)>0;
∴不等式(x﹣2)f(x)>0的解集是(1,2)∪(2,3)
故选:D
【点评】本题考查不等式的解法,涉及函数的性质和图象,属中档题.
10.【答案】D
【解析】
考点:1.复数的相关概念;2.集合的运算
11.【答案】B
【解析】解:∵A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},∴2a﹣1=9或a2=9,
当2a﹣1=9时,a=5,A∩B={4,9},不符合题意;
当a2=9时,a=±3,若a=3,集合B违背互异性;
∴a=﹣3.
故选:B.
【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.
12.【答案】B 【解析】
试题分析:由正弦定理可得
或,故选B.
()sin 0,,4
B B B π
π=
∴=∈∴=Q 34π考点:1、正弦定理的应用;2、特殊角的三角函数.
二、填空题
13.【答案】 ②③④
【解析】解:①函数y=[sinx]是非奇非偶函数;
②函数y=[sinx]的周期与y=sinx 的周期相同,故是周期为2π的周期函数;③函数y=[sinx]的取值是﹣1,0,1,故y=[sinx]﹣cosx 不存在零点;
④函数数y=[sinx]、y=[cosx]的取值是﹣1,0,1,故y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.故答案为:②③④.
【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键.
14.【答案】 546 .
【解析】解:当n=2k ﹣1(k ∈N *)时,a 2k+1=a 2k ﹣1+1,数列{a 2k ﹣1}为等差数列,a 2k ﹣1=a 1+k ﹣1=k ;当n=2k (k ∈N *)时,a 2k+2=2a 2k
,数列{a 2k }为等比数列,.
∴该数列的前16项和S 16=(a 1+a 3+…+a 15)+(a 2+a 4+…+a 16)=(1+2+…+8)+(2+22+…+28)=+
=36+29﹣2=546.
故答案为:546.
【点评】本题考查了等差数列与等比数列的通项公式及前n 项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题.
15.【答案】 ∃x 0∈R ,都有x 03<1 .
【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x ∈R ,都有x 3≥1”的否定形式为:命题:“∃x 0∈R ,都有x 03<1”.
故答案为:∃x 0∈R ,都有x 03<1.
【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.
16.【答案】 2
【解析】解:∵x 2+y 2=4的圆心O (0,0),半径r=2,
∴点(0,1)到圆心O(0,0)的距离d=1,
∴点(0,1)在圆内.
如图,|AB|最小时,弦心距最大为1,
∴|AB|min=2=2.
故答案为:2.
17.【答案】 .
【解析】解:设剪成的小正三角形的边长为x,则:S==,(0<x<
1)
令3﹣x=t,t∈(2,3),
∴S===,当且仅当t=即t=2时等号成立;
故答案为:.
18.【答案】 6 .
【解析】解:∵=(2x﹣y,m),=(﹣1,1).
若∥,
∴2x﹣y+m=0,
即y=2x+m,
作出不等式组对应的平面区域如图:
平移直线y=2x+m,
由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大.
由,
解得,代入2x﹣y+m=0得m=6.
即m的最大值为6.
故答案为:6
【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值.根据向量平行的坐标公式是解决本题的关键.
三、解答题
19.【答案】
【解析】解:函数f(x)=,不等式f(x)<4,
当x≥﹣1时,2x+4<4,解得﹣1≤x<0;
当x<﹣1时,﹣x+1<4解得﹣3<x<﹣1.
综上x∈(﹣3,0).
不等式的解集为:(﹣3,0).
20.【答案】
【解析】解:(1)∵函数f(x)=(sinx+cosx)2+cos2x=1+sin2x+cos2x=1+sin(2x+),
∴它的最小正周期为=π.
(2)在区间上,2x+∈[,],故当2x+=时,f(x)取得最小值为1+×(﹣
)=0,
当2x+=时,f(x)取得最大值为1+×1=1+.
21.【答案】
【解析】解:(Ⅰ)由
从而C的直角坐标方程为
即
θ=0时,ρ=2,所以M (2,0)
(Ⅱ)M 点的直角坐标为(2,0)
N 点的直角坐标为
所以P 点的直角坐标为
,则P 点的极坐标为,
所以直线OP 的极坐标方程为,ρ∈(﹣∞,+∞)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
22.【答案】
【解析】(1)连接,由题意,知,,∴平面.
FH CD BC ⊥CD CF ⊥CD ⊥BCFG 又∵平面,∴.
GH ⊂BCFG CD ⊥GH 又∵,∴……………………………2分
EF CD P EF GH ⊥由题意,得,,,∴,14BH a =
34CH a =12BG a =2222516
GH BG BH a =+=,,22225()4FG CF BG BC a =-+=22222516
FH CF CH a =+=则,∴.……………………………4分222FH FG GH =+GH FG ⊥又∵,平面.……………………………5分
EF FG F =I GH ⊥EFG ∵平面,∴平面平面.……………………………6分
GH ⊂AGH AGH ⊥EFG
23.【答案】
【解析】解:(Ⅰ)由4ρ2cos2θ+9ρ2sin2θ=36得4x2+9y2=36,
化为;
(Ⅱ)设P(3cosθ,2sinθ),
则3x+4y=,
∵θ∈R,∴当sin(θ+φ)=1时,3x+4y的最大值为.
【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.
24.【答案】
【解析】解:(I)平均值μ=100+=105.
标准差σ==6.
(II)假设这台3D打印设备打印出品的零件内径Z服从正态分布N(105,62),
∴P(μ﹣2σ<Z<μ+2σ)=P(93<Z<117)=0.9544,可知:落在区间(93,117)的数据有3个:95、103、109,因此满足2σ的概率为:
0.95443×0.04562≈0.0017.
P(μ﹣3σ<Z<μ+3σ)=P(87<Z<123)=0.9974,可知:落在区间(87,123)的数据有4个:95、103、109、118,因此满足3σ的概率为:
0.99744×0.0026≈0.0026.
由以上可知:此打印设备不需要进一步调试.
【点评】本题考查了茎叶图、平均值与标准差、正态分布,考查了推理能力与计算能力,属于中档题.。