三山区三中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三山区三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与
sin sin 0bx B y C -+=的位置关系是( )
A .平行
B . 重合
C . 垂直
D .相交但不垂直
2. 函数
的定义域是( )
A .[0,+∞)
B .[1,+∞)
C .(0,+∞)
D .(1,+∞)
3. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )
A .
B .
C .
D .
4. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.312
5. 已知全集U R =,{|239}x A x =<≤,{|02}B y y =<≤,则有( ) A .A ØB B .A B B = C .()R A B ≠∅ð D .()R A B R =ð
6. 已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题
的是( )
A .p ∧q
B .¬p ∧¬q
C .¬p ∧q
D .p ∧¬q
7. 已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )
A .导函数为
B .函数f (x )的图象关于直线对称
C .函数f (x )在区间(﹣

)上是增函数
D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移
个单位长度得到
8. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .
14 B .1
2
C .1
D .2 9. 阅读下面的程序框图,则输出的S=( )
A .14
B .20
C .30
D .55
10.椭圆=1的离心率为( ) A .
B .
C .
D .
11.奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)
12.已知数列{n a }满足n
n n a 2
728-+=(*
∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( ) A .
211 B .227 C . 32259 D .32
435 二、填空题
13.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则
= .
14.设p :实数x 满足不等式x 2﹣4ax+3a 2<0(a <0),q :实数x 满足不等式x 2﹣x ﹣6≤0,已知¬p 是¬q 的必要非充分条件,则实数a 的取值范围是 .
15.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .
16.椭圆
+
=1上的点到直线l :x ﹣2y ﹣12=0的最大距离为 .
17x 和所支出的维修费用y (万元)的统计资料如表:
根据上表数据可得y 与x 之间的线性回归方程=0.7x+
,据此模型估计,该机器使用年限为14年时的维修
费用约为 万元.
18.(﹣)0+[(﹣2)3]
= .
三、解答题
19.已知函数2(x)1ax f x =
+是定义在(-1,1)上的函数, 12
()25
f =
(1)求a 的值并判断函数(x)f 的奇偶性
(2)用定义法证明函数(x)f 在(-1,1)上是增函数;
20.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,
设函数()()2n f x x R =??a b
的图象关于点(,1)12
p
对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;
(II )若()()4
f x f p
£对一切实数恒成立,求)(x f y =的单调递增区间.
【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.
21.(本题满分12分)已知向量(sin cos ))a x x x =+,)cos sin ,(cos x x x b -=,R x ∈,记函数 b a x f ⋅=)(.
(1)求函数)(x f 的单调递增区间;
(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,且满足C a c b cos 22=-,求)(B f 的取值范围.
【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.
22.已知p :“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”;q :“方程x 2﹣x+m ﹣4=0的两根异号”.若p ∨q 为真,¬p 为真,求实数m 的取值范围.
23.在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (0,4);B (﹣3,0),C (1,1) (1)求点C 到直线AB 的距离; (2)求AB 边的高所在直线的方程.
24.(本题满分13分)已知圆1C 的圆心在坐标原点O ,且与直线1l :062=+-y x 相切,设点A 为圆上 一动点,⊥AM x 轴于点M ,且动点N 满足OM OA ON )2
133(21-+=,设动点N 的轨迹为曲线C . (1)求曲线C 的方程;
(2)若动直线2l :m kx y +=与曲线C 有且仅有一个公共点,过)0,1(1-F ,)0,1(2F 两点分别作21l P F ⊥,
21l Q F ⊥,垂足分别为P ,Q ,且记1d 为点1F 到直线2l 的距离,2d 为点2F 到直线2l 的距离,3d 为点P
到点Q 的距离,试探索321)(d d d ⋅+是否存在最值?若存在,请求出最值.
三山区三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】C 【解析】
试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,
则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系.
2. 【答案】A
【解析】解:由题意得:2x ﹣1≥0,即2x ≥1=20
, 因为2>1,所以指数函数y=2x
为增函数,则x ≥0.
所以函数的定义域为[0,+∞)
故选A
【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域.
3. 【答案】D
【解析】解:∵正△ABC 的边长为a ,∴正△ABC 的高为

画到平面直观图△A ′B ′C ′后,“高”变成原来的一半,且与底面夹角45度,
∴△A ′B ′C ′的高为=

∴△A ′B ′C ′的面积S==

故选D .
【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
4. 【答案】A
【解析】解:由题意可知:同学3次测试满足X ∽B (3,0.6),
该同学通过测试的概率为=0.648.
故选:A .
5. 【答案】A
【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A . 6. 【答案】D
【解析】解:p :根据指数函数的性质可知,对任意x ∈R ,总有3x
>0成立,即p 为真命题, q :“x >2”是“x >4”的必要不充分条件,即q 为假命题, 则p ∧¬q 为真命题, 故选:D
【点评】本题主要考查复合命题的真假关系的应用,先判定p ,q 的真假是解决本题的关键,比较基础
7. 【答案】B
【解析】解:对于A ,函数f ′(x )=﹣3sin (2x ﹣)•2=﹣6sin (2x ﹣
),A 错误;
对于B ,当x=
时,f (
)=3cos (2×

)=﹣3取得最小值,
所以函数f (x )的图象关于直线对称,B 正确;
对于C ,当x ∈(﹣

)时,2x ﹣
∈(﹣

),
函数f (x )=3cos (2x ﹣)不是单调函数,C 错误;
对于D ,函数y=3co s2x 的图象向右平移个单位长度,
得到函数y=3co s2(x ﹣
)=3co s (2x ﹣
)的图象,
这不是函数f (x )的图象,D 错误. 故选:B .
【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.
8. 【答案】B
【解析】
试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以
()1
4160,2
λλ+-==
,故选B. 考点:1、向量的坐标运算;2、向量平行的性质. 9. 【答案】C
【解析】解:∵S 1=0,i 1=1; S 2=1,i 2=2; S 3=5,i 3=3; S 4=14,i 4=4;
S 5=30,i=5>4 退出循环, 故答案为C .
【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题.
10.【答案】D
【解析】解:根据椭圆的方程=1,可得a=4,b=2

则c=
=2

则椭圆的离心率为e==,
故选D .
【点评】本题考查椭圆的基本性质:a 2=b 2+c 2,以及离心率的计算公式,注意与双曲线的对应性质的区分.
11.【答案】A
【解析】解:根据题意,可作出函数图象:
∴不等式f (x )<0的解集是(﹣∞,﹣1)∪(0,1) 故选A .
12.【答案】D 【解析】
试题分析: 数列n n n a 2728-+
=,112528++-+=∴n n n a ,112527
22
n n n n
n n a a ++--∴-=-
()11
2522729
22
n n n n n ++----+=
=,当41≤≤n 时,n n a a >+1,即12345a a a a a >>>>;当5≥n 时,n n a a <+1,即...765>>>a a a .因此数列{}n a 先增后减,32259,55==∴a n 为最大项,8,→∞→n a n ,
2
11
1=a ,∴最小项为211,M m +∴的值为32435
32259211=+.故选D.
考点:数列的函数特性.
二、填空题
13.【答案】 ﹣5 .
【解析】解:求导得:f ′(x )=3ax 2
+2bx+c ,结合图象可得 x=﹣1,2为导函数的零点,即f ′(﹣1)=f ′(2)=0,

,解得
故==﹣5
故答案为:﹣5
14.【答案】

【解析】解:∵x 2﹣4ax+3a 2
<0(a <0), ∴(x ﹣a )(x ﹣3a )<0, 则3a <x <a ,(a <0), 由x 2
﹣x ﹣6≤0得﹣2≤x ≤3,
∵¬p 是¬q 的必要非充分条件, ∴q 是p 的必要非充分条件,
即,即
≤a <0,
故答案为:
15.【答案】 {x|﹣1<x <1} .
【解析】解:∵A={x|﹣1<x<3},B={x|x<1},
∴A∩B={x|﹣1<x<1},
故答案为:{x|﹣1<x<1}
【点评】本题主要考查集合的基本运算,比较基础.
16.【答案】4.
【解析】解:由题意,设P(4cosθ,2sinθ)
则P到直线的距离为d==,
当sin(θ﹣)=1时,d取得最大值为4,
故答案为:4.
17.【答案】7.5
【解析】解:∵由表格可知=9,=4,
∴这组数据的样本中心点是(9,4),
根据样本中心点在线性回归直线=0.7x+上,
∴4=0.7×9+,
∴=﹣2.3,
∴这组数据对应的线性回归方程是=0.7x﹣2.3,
∵x=14,
∴=7.5,
故答案为:7.5
【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.
18.【答案】.
【解析】解:(﹣)0+[(﹣2)3]
=1+(﹣2)﹣2
=1+
=.
故答案为:.
三、解答题
19.【答案】(1)1a =,()f x 为奇函数;(2)详见解析。

【解析】
试题分析:(1)11222
125514a f a ⎛⎫=== ⎪⎝⎭+,所以1a =,则函数()2
1x f x x =+,函数()f x 的定义域为()1,1-,关于原点对称,又()()
()22
11x x
f x f x x x --==-=-++-,所以函数()f x 为奇函数;(2)设12,x x 是区间()1,1-上两个不等是实数,且12x x <,则210x x x ∆=->,()()21
2122
21
11x x y f x f x x x ∆=-=
-=++ ()()
()()
()()()()()()()()
2221122112122112222222212121111111111x x x x x x x x x x x x x x x x x x x x +-+-+---==++++++,因为
()11,1x ∈-,()21,1x ∈-,
且12x x <,所以1211x x -<<,则1210x x ->,所以()()()()
211222
2
1
10
11x x x x x x -->++,即0y ∆>,所以函数()f x 在
区间()1,1-上为增函数。

试题解析:(1)12225
5
f a ⎛⎫== ⎪
⎝⎭
所以=1a , 定义域为()1,1-,关于原点对称,且()()
()2
2
11x x
f x f x x
x --=
=-
=-++-,所以()f x 为奇函数; (2)设12,x x 是区间()1,1-上两个不等是实数,且12x x <,则210x x x ∆=->
()()21
21222111x x y f x f x x x ∆=-=-=++()()()()()()()()
22211221122222
21211111111x x x x x x x x x x x x +-+--=++++ 因为()11,1x ∈-,()21,1x ∈-,且12x x <, 所以1211x x -<<,则1210x x ->,所以()()()()
2112222110
11x x x x x x -->++,
即0y ∆>,
所以函数()f x 在区间()1,1-上为增函数。

考点:1.函数的奇偶性;2.函数的单调性。

20.【答案】 21.【答案】
【解析】(1)由题意知,)cos )(sin cos (sin 2
3
cos sin )(x x x x x x x f +-+
=⋅= )3
2sin(2cos 232sin 21π-=-=x x x ……………………………………3分 令223222πππππ+≤-≤-k x k ,Z k ∈,则可得12
512π
πππ+≤≤-k x k ,Z k ∈.
∴)(x f 的单调递增区间为]12
5,12[π
πππ+-k k (Z k ∈).…………………………5分
22.【答案】
【解析】解:若命题p 是真命题:“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”,则
<1,解得1﹣

若命题q 是真命题:“方程x 2﹣x+m ﹣4=0的两根异号”,则m ﹣4<0,解得m <4. 若p ∨q 为真,¬p 为真, 则p 为假命题,q 为真命题.


∴实数m 的取值范围是


【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.
23.【答案】
【解析】解(1)∵,
∴根据直线的斜截式方程,直线AB:,化成一般式为:4x﹣3y+12=0,
∴根据点到直线的距离公式,点C到直线AB的距离为;
(2)由(1)得直线AB的斜率为,∴AB边的高所在直线的斜率为,
由直线的点斜式方程为:,化成一般式方程为:3x+4y﹣7=0,
∴AB边的高所在直线的方程为3x+4y﹣7=0.
24.【答案】
【解析】【命题意图】本题综合考查了圆的标准方程、向量的坐标运算,轨迹的求法,直线与椭圆位置关系;本题突出对运算能力、化归转化能力的考查,还要注意对特殊情况的考虑,本题难度大.
(2)由(1)中知曲线C 是椭圆,将直线2l :m kx y +=代入 椭圆C 的方程12432
2
=+y x 中,得
01248)34(222=-+++m kmx x k
由直线2l 与椭圆C 有且仅有一个公共点知, 0)124)(34(4642222=-+-=∆m k m k ,
整理得342
2+=k m …………7分
且211||k k m d +-=,2
21||k
k m d ++=
1当0≠k 时,设直线2l 的倾斜角为θ,则|||tan |213d d d -=⋅θ,即||
2
13k
d d d -= ∴2
2
22121213211|
|4||||)()(k
m k d d k d d d d d d d +=-=-+=+
||||16
14
3
||42m m m m +
=+-=
…………10分
∵342
2+=k m ∴当0≠k 时,3||>m ∴33
43
13||1||=
+>+
m m ,∴34)(321<+d d d ……11分 2当0=k 时,四边形PQ F F 21为矩形,此时321==d d ,23=d
∴34232)(321=⨯=+d d d …………12分
综上
1、
2可知,321)(d d d ⋅+存在最大值,最大值为34 ……13分。

相关文档
最新文档