【10份试卷合集】浙江省绍兴市2019-2020学年中考数学六模试卷

合集下载

绍兴市名校联考2019-2020学年中考数学模拟检测试题

绍兴市名校联考2019-2020学年中考数学模拟检测试题

绍兴市名校联考2019-2020学年中考数学模拟检测试题一、选择题1.已知反比例函数2y-x=,点A(a-b,2),B(a-c,3)在这个函数图象上,下列对于a,b,c的大小判断正确的是()A.a<b<cB.a<c<bC.c<b<aD.b<c<a2.如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°3.已知P是反比例函数8(0)y xx=>图象上一点,点B的坐标为(1,0),A是y轴正半轴上一点,且AP⊥BP,AP:BP=1:2,那么四边形AOBP的面积为()A.6.5B.8C.10D.74.如图,点A、B、C是⊙O上的三点,且AB=OB,则∠ACB的度数为()A.60°B.45°C.30°D.22.5°5.如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A. B.13 C. D.186.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离(米)与小明出发的时间(分)之间的函数图象.下列结论中不正确的是( )A.公园离小明家1600米B.小明出发分钟后与爸爸第一次相遇C.小明与爸爸第二次相遇时,高家的距离是960米D.小明在公园停留的时间为5分钟7.2018年广东省经济保持平稳健康发展,经国家统计局核定,实现地区生产总值(GDP )9730000000000元,将数据9730000000000用月科学记数法表示为( )A.1093710⨯B.1193710⨯C.129.3710⨯D.130.93710⨯ 8.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟)20 40 60 90 学生数 2 3 4 1A .众数是60B .平均数是21C .抽查了10个同学D .中位数是509.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为()A .1(1)282x x -=B .1(1)282x x += C .(1)28x x -= D .(1)28x x += 10.y =x 2+(1﹣a )x+1是关于x 的二次函数,当x 的取值范围是1≤x≤3时,y 在x =1时取得最大值,则实数a 的取值范围是( )A .a≤﹣5B .a≥5C .a =3D .a≥311.若关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是( )①方程23+20x x -=是倍根方程;②若(2)()0x mx n --=是倍根方程,则4n m =或n m =③若点()p q ,在双曲线2y x =的图像上,则关于x 的方程230px x q ++=是倍根方程; A .① B .①② C .①③ D .①②③12.不等式2x+3>3x+2的解集在数轴上表示正确的是( )A .B .C .D .二、填空题13.如图,△ACB 中,∠ACB=90°,在AB 的同侧分别作正△ACD 、正△ABE 和正△BCF. 若四边形CDEF 的周长是24,面积是17,则AB 的长是_______.14.数据-5,-3,-3,0,1,3的众数是_______.15.把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为_____.16.在△ABC中,AB=AC,BC=12,已知圆O是△ABC的外接圆,且半径为10,则BC边上的高为_____.17.如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EF∥BC,分别交BD、CD于G、F 两点.若点P、Q分别为DG、CE的中点,则PQ的长为_____.18.设函数y=3x与y=-2x-6的图象的交点坐标为(a,b),则1a+2b的值是________.三、解答题19.如图,以Rt△ABC的直角边AB为直径作⊙O交斜边AC于点D,过圆心O作OE∥AC,交BC于点E,连接DE.(1)判断出DE与⊙O的位置关系并说明理由;(2)求证:2DE2=CD•OE;20.如图1,反比例函数kyx(k>0)图象经过等边△OAB的一个顶点B,点A坐标为(2,0),过点B作BM⊥x轴,垂足为M.(1)求点B的坐标和k的值;(2)若将△ABM沿直线AB翻折,得到△ABM',判断该反比例函数图象是从点M'的上方经过,还是从点M'的下方经过,又或是恰好经过点M',并说明理由;(3)如图2,在x轴上取一点A1,以AA1为边长作等边△AA1B1,恰好使点B1落在该反比例函数图象上,连接BB1,求△ABB1的面积.21.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.22.如图,在矩形ABCD中,AB=4,BC=5,E是BC边上的一个动点,DF⊥AE,垂足为点F,连结CF (1)若AE=BC①求证:△ABE≌△DFA;②求四边形CDFE的周长;③求tan∠FCE的值;(2)探究:当BE为何值时,△CDF是等腰三角形.23.如图所示,在等腰Rt△ABC中,∠CAB=90°,P是△ABC内一点,将△PAB绕A逆时针旋转90°得△DAC.(1)试判断△PAD的形状并说明理由;(2)连接PC,若∠APB=135°,PA=1,PB=3,求PC的长.24.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?25.如图,某风景区内有一瀑布,AB表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D处测得瀑布顶端A的仰角β为45°,沿坡度i=1:3的斜坡向上走100米,到达观景台C,在C处测得瀑布顶端A的仰角α为37°,若点B、D、E在同一水平线上.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,2≈1.41,10≈3.16)(1)观景台的高度CE为米(结果保留准确值);(2)求瀑布的落差AB(结果保留整数).【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B D A C D C C B A B D D13.1914.-315.y=-x16.2或1817.1318.-2三、解答题19.(1)DE是⊙O的切线;(2)证明见解析.【解析】【分析】(1)连接OD、BD,根据切线的判定即可求证答案;(2)易证△BCD∽△ACB,从而BCAC=CDBC,即BC2=CD•AC,由(1)知DE=BE=CE=12BC,所以4DE2=CD•AC,从而可证明2DE2=CD•OE;【详解】(1)DE是⊙O的切线,理由:如图,连接OD,BD,∵AB是⊙O的直径,∴∠ADB=∠BDC=90°,∵OE ∥AC ,OA =OB ,∴BE =CE ,∴DE =BE =CE ,∴∠DBE =∠BDE ,∵OB =OD ,∴∠OBD =∠ODB ,∴∠ODE =∠OBE =90°,∵点D 在⊙O 上,∴DE 是⊙O 的切线;(2)∵∠BCD =∠ABC =90°,∠C =∠C ,∴△BCD ∽△ACB , ∴BC CD AC BC=, ∴BC 2=CD•AC,由(1)知DE =BE =CE =12BC , ∴4DE 2=CD•AC,由(1)知,OE 是△ABC 是中位线,∴AC =2OE ,∴4DE 2=CD•2OE,∴2DE 2=CD•OE;【点睛】本题考查圆的综合问题,涉及相似三角形的性质与判定,切线的判定,圆周角定理等知识,需要学生灵活运用所学知识.20.(1)k ;(2)该反比例函数图象是从点M'的下方经过;理由见解析;(3)△ABB 1的面积为【解析】【分析】(1)由△OAB 为等边三角形及OA =2,可得出OM ,BM 的长,进而可得出点B 的坐标,由点B 的坐标利用反比例函数图象上点的坐标特征可求出k 的值;(2)过点M′作M′C⊥x 轴,垂足为点C ,由折叠的性质,可知:AM′=AM =1,∠BAM′=∠BAM =60°,在Rt △ACM′中,通过解直角三角形可求出AC ,CM′的长,进而可得出OC 的长,利用反比例函数图象上点的坐标特征可求出反比例函数图象与直线CM′交点的纵坐标,将其与点M′的纵坐标比较后即可得出结论;(3)过点B 1作B 1D ⊥x 轴,垂足为点D ,设AA 1=a ,则AD =12a ,B 1D =2a ,OD =2+12a ,进而可得出点B 1的坐标,利用反比例函数图象上点的坐标特征可求出a 的值,进而可得出MD ,B 1D ,AD 的长,再结合S △ABB1=S 梯形BMDB1−S △BMA −S △ADB1即可求出△ABB 1的面积.【详解】(1)∵△OAB 为等边三角形,OA =2,∴OM =12OA =1,BM∴点B 的坐标为(1∵反比例函数(0)k y x x=>图象经过点B ,∴k (2)该反比例函数图象是从点M'的下方经过,理由如下:过点M′作M′C⊥x 轴,垂足为点C ,如图1所示.由折叠的性质,可知:AM′=AM =1,∠BAM ′=∠BAM =60°,∴∠M′AC=180°﹣∠BAM ﹣∠BAM′=60°.在Rt △ACM′中,AM′=1,∠ACM′=90°,∠M′AC=60°,∴∠AM′C=30°,∴AC =12AM′=12,CM′=2AM′=2. ∴OC =OA+AC =52,∴点M′的坐标为(52当x =52时,y ==,∵5<2, ∴该反比例函数图象是从点M'的下方经过.(3)过点B 1作B 1D ⊥x 轴,垂足为点D ,如图2所示.设AA 1=a ,则AD =12a ,B 1D a ,OD =2+12a ,∴点B 1的坐标为(2+12a ).∵点B 1在该反比例函数y =的图象上,∴(2+12a )•2a解得:a 1=﹣﹣2(舍去),a 2=﹣2,∴MD =AM+AD ,B 1D =,AD =12a 1, ∴S △ABB1=S 梯形BMDB1−S △BMA −S △ADB1 =12(BM+B 1D )•MD﹣12BM•AM﹣12B 1D•AD, 11111)222=-⨯⨯,=.【点睛】本题考查了等边三角形、反比例函数图象上点的坐标特征、折叠的性质、解直角三角形以及三角形的面积,解题的关键是:(1)根据等边三角形的性质,找出点B的坐标;(2)通过解直角三角形,找出M′的坐标;(3)利用等边三角形的性质及反比例函数图象上点的坐标特征,求出AA1的长度.21.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可。

绍兴市2019-2020学年中考数学模拟试卷

绍兴市2019-2020学年中考数学模拟试卷

绍兴市2019-2020学年中考数学模拟试卷一、选择题1.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A.1B.2C.3D.42.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现一处错误:将最低成绩写得更低了,计算结果一定不受影响的是( ) A .中位数 B .平均数 C .方差 D .合格人数3.如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA ⊥PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( )A.3B.4C.6D.84.在某次数学测验中,随机抽取了10份试卷,其成绩如下:73,78,79,81,81,81,83,83,85,91,则这组数据的众数、中位数分别为( ) A.81,82 B.83,81C.81,81D.83,825.如图,在O 中,AB 是直径,CD 是弦,AB CD ⊥,垂足为点E ,连接CO ,AD ,若30BOC ∠=︒,则BAD ∠的度数是( )A .30°B .25︒C .20︒D .15︒6.关于x 的一元二次方程2(23)210a x x ---=有实数根,则a 满足( )A.a≥1B.a>1且a≠32C.a≥1且a≠32D.a≠327.α为锐角,且1cos(90)2α︒-=,则α的度数是( )A.30°B.45︒C.60︒D.90︒8.若x﹣2y+1=0,则2x÷4y×8等于()A.1 B.4 C.8 D.﹣169.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与交于B、C两点,则弦BC的长的最小值为( )A.22 B.24 C.D.10.在边长为2的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△BEF的面积为y,则能反映y与x之间关系的图象为( )A.B.C.D.11.下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆12.下列由年份组成的各项图形中,是中心对称图形的是( )A.B.C.D.二、填空题13.如图,AB是⊙O的直径,点D、E是半圆的三等分点,AE、BD的延长线交于点C,若CE=2,则图中阴影部分的面积为___.14.如图,在ABC ∠中,90A ∠=,点,D E 分别在,AC BC 边上,3BD CD DE ==,且1452C CDE ∠+∠=,若6AD =,则BC 的长是__________.15.如果分式有意义,那么x 的取值范围是_____.16.计算:|﹣=_____.17.观察下列关于自然数的式子:4×12﹣12,4×22﹣32,4×32﹣52,……,根据上述规律,则第2019个式子的值为_____18.分解因式:x 3﹣49x =_____. 三、解答题19.一个不透明的口袋中有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个,小明将球搅匀后从中摸出一个球是红球的概率是0.25. (1)求口袋中红球的个数;(2)若小明第一次从中摸出一个球,放回搅匀后再摸出一个球,请通过树状图或者列表的方法求出小明两次均摸出红球的概率.20.如图,△ABC 内接于⊙O ,AD 为⊙O 的直径,AD 与BC 相交于点E ,且BE =CE . (1)请判断AD 与BC 的位置关系,并说明理由; (2)若BC =6,ED =2,求AE 的长.21012sin 45(12︒-⨯-+22.A 和B 两位同学在化简11(2)()()22a ab a b a b +-+-时的解答过程如下:A 同学:原式=2221()4a ab a b +--(第一步) =22214a ab a b +--(第二步) =2234a ab b +-(第三步) B 同学:原式=2221()2a ab a b +--(第一步)=22212a ab a b +-+(第二步) =2212a ab b -++(第三步) (1)请你判断两位同学的解答过程正确吗?A :_____ ,B :______ (正确的打√,错误的打×)对于出错的同学,请指出他是从第几步开始出错的?错误的原因是什么?(2)如果你在(1)中判断两位同学的解答都是错误的,请写出你认为正确的解答过程,否则请跳过此题.23.计算或化简(1﹣3tan30212-⎛⎫- ⎪⎝⎭(2)(x+3)(x ﹣3)﹣(x ﹣2)224.冰雪之王总决赛(以下简称“雪合战”)在我市落下帷幕.已知不同小组的甲、乙两队的五次预选赛成绩分别如下列不完整的统计表及统计图所示(每次比赛的成绩为0分,10分,20分三种情况). 甲队五次预选赛成绩统计表(1)补全条形统计图;(2)求甲队成绩的平均数及x 的值;(3)从甲、乙两队前3次比赛中随机各选一场比赛的成绩进行比较,求选择到的甲队成绩优于乙队成绩的概率.乙队五次预选赛成绩条形统计图25.如图,在四边形ABCD 中,AC 、BD 相交于点O ,且AO =CO ,AB ∥CD . (1)求证:AB =CD ;(2)若∠OAB =∠OBA ,求证:四边形ABCD 是矩形.【参考答案】*** 一、选择题13.43π14 15.x≠31617.807518.x (x+7)(x ﹣7). 三、解答题19.(1)口袋中红球有1个;(2)小明两次均摸出红球的概率:P (红,红)=116. 【解析】 【分析】(1)设红球有x 个,根据概率公式列出方程,然后求解即可;(2)根据题意列出图表得出所有等情况数和小明两次均摸出红球的个数,再根据概率公式即可得出答案. 【详解】(1)设红球有x 个,依题意得:x0.2521x=++解得:x =1,经检验:x =1是原方程的解 答:口袋中红球有1个. (2)根据题意列表如下:所以小明两次均摸出红球的概率:P (红,红)=116. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 20.(1)AD ⊥BC ,理由见解析;(2)92【解析】【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论.【详解】(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,BE CE OE OE OB OC=⎧⎪=⎨⎪=⎩∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=134,∴AD=132,∵AE=AD﹣DE,∴AE=132﹣2=92.【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.21.1 2 -【解析】【分析】直接利用零指数幂的性质以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【详解】2﹣1+12﹣1+12=﹣12. 【点睛】本题考查了实数运算,涉及了特殊角的三角函数值,0次幂,负指数幂等运算,正确化简各数是解题关键.22.(1)A:× B:×错因见解析;(2)2234a ab b -++ 【解析】 【分析】根据单项式乘以多项式的法则及平方差公式即可解答. 【详解】 (1)A:× B:×A :从第二步开始出错, 错因是括号前面是“-”,去掉括号后,括号b 2项未变号A :在第三步也出现错误,错因是合并同类项时,系数加减符号确定错误(或漏写了负号) (若学生未指出这一步,可不扣分)B: 从第一步开始出错, 错因是单项式×多项式时,1122a a ⋅系数漏乘 (2)正确解答过程:原式()22222222113244a ab a b a ab a b a ab b =+--=+-+=-++ 【点睛】本题考查是单项式乘以多项式的法则、平方差公式及去括号、合并同类项等知识,掌握运算法则及乘法公式并知道各种运算中的易错点是关键.23.(14;(2)4x ﹣13 【解析】 【分析】(1)先根据二次根式的性质,特殊角的三角函数值,负整数指数幂进行计算,再求出即可; (2)先算乘法,再换上同类项即可. 【详解】解:(1)原式= 4= 44;(2)原式=x 2﹣9﹣x 2+4x ﹣4=4x ﹣13. 【点睛】本题考查了二次根式的性质,特殊角的三角函数值,负整数指数,整式的混合运算等知识点,能求出每一部分的值是解(1)的关键,能正确根据整式的运算法则进行化简是解此题的关键. 24.(1)见解析(2)20(3)49【解析】 【分析】(1)由甲、乙两队五次预选赛成绩的众数相同,且甲队成绩的众数为20可得乙第4场的成绩为20,据此可补全图形;(2)先计算出乙的平均成绩,据此可得甲的平均成绩,再根据平均数的公式列出关于x的方程,解之可得;(3)列表得出所有等可能结果,从中找到甲队成绩优于乙队成绩的结果数,利用概率公式计算可得.【详解】(1)甲、乙两队五次预选赛成绩的众数相同,且甲队成绩的众数为20,∴乙队成绩的众数为20,则第4场的成绩为20,补全图像如下:乙队五次预选赛成绩条形统计图(2)乙队五次成绩的平均数为1(1010202020)16 5⨯++++=,∴甲队成绩的平均数为16,由1(2002020)165x⨯++++=可得20x=;(3)列表如下:所以选择到的甲队成绩优于乙队成绩的概率为49.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计的有关概念.25.(1)见解析;(2)见解析.【解析】【分析】(1)根据AB∥CD,即可证明∠OAB=∠OCD,再结合题意证明△OAB≌△OCD,即可证明AB=CD.(2)在(1)的基础上证明四边形ABCD是平行四边形,再结合对角线即可证明四边形ABCD是矩形. 【详解】(1)证明:∵AB∥CD,∴∠OAB=∠OCD,在△OAB和△OCD中,AOB COD OA 0COAB OCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAB ≌△OCD , ∴AB =CD .(2)证明:∵△OAB ≌△OCD , ∴AB =CD , ∵AB ∥CD ,∴四边形ABCD 是平行四边形, ∴OA =12AC ,OB =12BD , ∵∠OAB =∠OBA , ∴OA =OB , ∴AC =BD ,∴平行四边形ABCD 是矩形. 【点睛】本题主要考查矩形的判定定理,关键在于利用全等三角形证明对边相等.。

浙江省绍兴市2019-2020学年中考数学一模试卷含解析

浙江省绍兴市2019-2020学年中考数学一模试卷含解析

浙江省绍兴市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,ABCD Y 中,E 是BC 的中点,设AB a,AD b ==u u u r r u u u r r ,那么向量AE u u u r 用向量a b r r 、表示为( )A .12a b +r rB .12a b -r rC .12a b -+r rD .12a b --r r2.下列基本几何体中,三视图都是相同图形的是( )A .B .C .D .3.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位4.如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于( )A .120︒B .105︒C .60︒D .45︒5.如图,直角边长为2的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t ,两图形重合部分的面积为S ,则S 关于t 的图象大致为( )A.B.C.D.6.济南市某天的气温:-5~8℃,则当天最高与最低的温差为()A.13 B.3 C.-13 D.-37.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158 159 160 160 160 161 169乙组158 159 160 161 161 163 165以下叙述错误的是()A.甲组同学身高的众数是160B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大8.下列运算正确的是()A.a3•a2=a6B.(a2)3=a5C.9=3 D.2+5=259.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q10.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0<x1<1,1<x2<2与y轴交于(0,-2),下列结论:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正确结论的个数为( )A.1个B.2个C.3个D.4个11.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.3y-2x=B.2y3x=C.3y2x=D.2y-3x=12.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数 众数 平均数方差 9.2 9.39.1 0.3A .中位数B .众数C .平均数D .方差二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,正方形ABOC 和正方形DOFE 的顶点B ,F 在x 轴上,顶点C ,D 在y 轴上,且S △ADC =4,反比例函数y=kx(x >0)的图像经过点E , 则k=_______ 。

浙江省绍兴市2019-2020学年中考数学模拟试题含解析

浙江省绍兴市2019-2020学年中考数学模拟试题含解析

浙江省绍兴市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于( )A .35°B .45°C .55°D .25°2.若方程x 2﹣3x ﹣4=0的两根分别为x 1和x 2,则11x +21x 的值是( ) A .1B .2C .﹣34D .﹣43 3.14的绝对值是( ) A .﹣4 B .14 C .4 D .0.44.如图,左、右并排的两棵树AB 和CD ,小树的高AB=6m ,大树的高CD=9m ,小明估计自己眼睛距地面EF=1.5m ,当他站在F 点时恰好看到大树顶端C 点.已知此时他与小树的距离BF=2m ,则两棵树之间的距离BD 是( )A .1mB .43mC .3mD .103m 5.甲、乙两人分别以4m/s 和5m/s 的速度,同时从100m 直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t (s ),甲乙两人的距离为S (m ),则S 关于t 的函数图象为( )A .B .C .D .6.在直角坐标平面内,已知点M(4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,那么r 的取值范围为( )A .0r 5<<B .3r 5<<C .4r 5<<D .3r 4<<7.下列计算中正确的是( )A .x 2+x 2=x 4B .x 6÷x 3=x 2C .(x 3)2=x 6D .x -1=x8.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为( )A .18×108B .1.8×108C .1.8×109D .0.18×10109.下列大学的校徽图案是轴对称图形的是( )A .B .C .D .10.下列计算,正确的是( )A .222()-=-B .(2)(2)2-⨯-=C .3223-=D .8210+=11.在0.3,﹣3,0,﹣3这四个数中,最大的是( )A .0.3B .﹣3C .0D .﹣312.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知x a y b =⎧⎨=⎩是方程组2325x y x y -=⎧⎨+=⎩的解,则3a ﹣b 的算术平方根是_____. 14.如图,AB ∥CD ,点E 是CD 上一点,∠AEC =40°,EF 平分∠AED 交AB 于点F ,则∠AFE =___度.15.已知反比例函数21k y x +=的图像经过点(2,1)-,那么k 的值是__. 16.因式分解:323x y x -=_______________.17.如图,已知正方形ABCD 中,∠MAN=45°,连接BD 与AM ,AN 分别交于E ,F 点,则下列结论正确的有_____.①MN=BM+DN②△CMN 的周长等于正方形ABCD 的边长的两倍;③EF 1=BE 1+DF 1;④点A 到MN 的距离等于正方形的边长⑤△AEN 、△AFM 都为等腰直角三角形.⑥S △AMN =1S △AEF⑦S 正方形ABCD :S △AMN =1AB :MN⑧设AB=a ,MN=b ,则b a≥12﹣1.18.计算(x 4)2的结果等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?20.(6分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C 到公路的距离CD=200m ,检测路段的起点A 位于点C 的南偏东60°方向上,终点B 位于点C 的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A 处行驶到B 处的时间为10s .问此车是否超过了该路段16m/s 的限制速度?(观测点C 离地面的距离忽略不计,参考数据:2≈1.41,3≈1.73)21.(6分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE =45°,BE=4,DE=10, 求直角梯形ABCD的面积.22.(8分)如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O 交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G(1)求证:直线AB是⊙O的切线;(2)求证:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.23.(8分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)a=%,并补全条形图.(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?24.(10分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.25.(10分)已知平行四边形.尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:.26.(12分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.27.(12分)如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.【详解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故选:A.【点睛】本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.2.C【解析】试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和12bx xa +=-与两根之积12c x x a⋅=,然后利用异分母分式的变形,将求出的两根之和x 1+x 2=3与两根之积x 1•x 2=﹣4代入,即可求出12121211x x x x x x ++=⋅=3344=--. 故选C .考点:根与系数的关系3.B【解析】分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.详解:因为-14的相反数为14所以-14的绝对值为14. 故选:B点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.4.B【解析】【分析】由∠AGE=∠CHE=90°,∠AEG=∠CEH 可证明△AEG ∽△CEH ,根据相似三角形对应边成比例求出GH 的长即BD 的长即可.【详解】由题意得:FB=EG=2m ,AG=AB ﹣BG=6﹣1.5=4.5m ,CH=CD ﹣DH=9﹣1.5=7.5m ,∵AG ⊥EH ,CH ⊥EH ,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH ,∴△AEG ∽△CEH ,∴EG AG =EH CH =EG GH CH + ,即 24.5=27.5GH +, 解得:GH=43, 则BD=GH=43m , 故选:B .【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.5.B匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答.【详解】∵甲、乙两人分别以4m/s和5m/s的速度,∴两人的相对速度为1m/s,设乙的奔跑时间为t(s),所需时间为20s,两人距离20s×1m/s=20m,故选B.【点睛】此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答.6.D【解析】【分析】先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.【详解】解:∵点M的坐标是(4,3),∴点M到x轴的距离是3,到y轴的距离是4,∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,∴r的取值范围是3<r<4,故选:D.【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.7.C【解析】【分析】根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.【详解】A. x2+x2=2x2,故不正确;B. x6÷x3=x3,故不正确;C. (x3)2=x6,故正确;D. x﹣1=1x,故不正确;本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.8.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:1800000000=1.8×109,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.B【解析】【分析】根据二次根式的加减法则,以及二次根式的性质逐项判断即可.【详解】解:∵22-()=2,∴选项A不正确;∵22-⨯-()()=2,∴选项B正确;∵32﹣2=22,∴选项C不正确;∵8+2=32≠10,∴选项D不正确.故选B.【点睛】本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.11.A【解析】【分析】根据正数大于0,0大于负数,正数大于负数,比较即可【详解】∵-3<-3<0<0.3∴最大为0.3故选A.【点睛】本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.12.C【解析】【分析】因为R不动,所以AR不变.根据三角形中位线定理可得EF= 12AR,因此线段EF的长不变.【详解】如图,连接AR,∵E、F分别是AP、RP的中点,∴EF为△APR的中位线,∴EF= 12AR,为定值.∴线段EF的长不改变.故选:C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】【分析】灵活运用方程的性质求解即可。

浙江省绍兴市2019-2020学年中考数学经典试题

浙江省绍兴市2019-2020学年中考数学经典试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣72.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )A.m<1 B.m>﹣1 C.m>1 D.m<﹣13.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D4.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于( )A.22B.1 C2D2﹣l5.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.C.2 D.46.关于x的不等式2(1)4xa x><-⎧⎨-⎩的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3D.a≤37.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m8.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=32cm,则∠BAC的度数为()A.15°B.75°或15°C.105°或15°D.75°或105°9.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是A.B.C.D.10.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80°C.110°D.140°二、填空题(本题包括8个小题)11.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.12.如图,以AB为直径的半圆沿弦BC折叠后,AB与BC相交于点D.若13CD BD,则∠B=________°.13.方程22310x x+-=的两个根为1x、2x,则1211+x x的值等于______.14.关于x的方程1101axx+-=-有增根,则a=______.15.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.16.若正六边形的内切圆半径为2,则其外接圆半径为__________.17.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.18.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,则可列方程为__________.三、解答题(本题包括8个小题)19.(6分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60 10 0.0560≤x<70 30 0.1570≤x <80 40 n 80≤x <90 m 0.35 90≤x≤100500.25请根据所给信息,解答下列问题:m = ,n = ;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?20.(6分)一艘观光游船从港口A 以北偏东60°的方向出港观光,航行80海里至C 处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C 处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)21.(6分)如图,在直角坐标系xOy 中,直线y mx =与双曲线ny x=相交于A (-1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1.求m 、n 的值;求直线AC 的解析式.22.(8分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率. 23.(8分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?24.(10分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.25.(10分)计算:3-2|+2﹣1﹣cos61°﹣(12)1.26.(12分)观察下列各个等式的规律:第一个等式:222112--=1,第二个等式:223212--=2,第三个等式:224312--=3…请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.【详解】∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得:b=-9,故选C.【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法.2.C【解析】试题解析:关于x的一元二次方程2x2x m0-+=没有实数根,()224241440∆=-=--⨯⨯=-<,b ac m mm>解得: 1.故选C.3.B【解析】【分析】≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.1.732【详解】≈-,1.732()---≈,1.7323 1.268()---≈,1.73220.268()---≈,1.73210.732因为0.268<0.732<1.268,所以表示的点与点B最接近,故选B.4.D【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,,∴AD⊥BC,B′C′⊥AB,∴AD=12BC=1,AF=FC′=22AC′=1,∴DC′=AC′-AD=2-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=12×1×1-12×(2-1)2=2-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.5.C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,∴2+=8{2=1m nn m-,解得=3{=2mn.∴2=232=4=2m n-⨯-.即2m n-的算术平方根为1.故选C.6.D【解析】分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.详解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选D.点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.D【解析】【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴,即,解得:AB=6,故选:D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.8.C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=32,∠CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=32,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.9.B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC2、210只有选项B 的各边为1、2、5与它的各边对应成比例.故选B . 【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理. 10.C 【解析】分析:作AC 对的圆周角∠APC ,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC 的度数.详解:作AC 对的圆周角∠APC ,如图,∵∠P=12∠AOC=12×140°=70° ∵∠P+∠B=180°, ∴∠B=180°﹣70°=110°, 故选:C .点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题(本题包括8个小题) 11.1:1. 【解析】试题分析:由DE ∥BC ,可得△ADE ∽△ABC ,根据相似三角形的面积之比等于相似比的平方可得S △ADE :S △ABC =(AD :AB )2=1:1. 考点:相似三角形的性质. 12.18° 【解析】 【分析】由折叠的性质可得∠ABC=∠CBD ,根据在同圆和等圆中,相等的圆周角所对的弧相等可得=AC CD ,再由13CD BD 和半圆的弧度为180°可得 AC 的度数×5=180°,即可求得AC 的度数为36°,再由同弧所对的圆周角的度数为其弧度的一半可得∠B=18°. 【详解】解:由折叠的性质可得∠ABC=∠CBD , ∴=AC CD , ∵13CD BD =, ∴AC 的度数+ CD 的度数+ BD 的度数=180°, 即AC 的度数×5=180°, ∴AC 的度数为36°, ∴∠B=18°. 故答案为:18. 【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 还考查了圆弧的度数与圆周角之间的关系. 13.1. 【解析】 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:根据题意得1232x x +=-,1212x x =-, 所以1211+x x =1212x x x x +=3212--=1. 故答案为1. 【点睛】本题考查了根与系数的关系:若1x 、2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a+=-,12c x x a=. 14.-1【解析】 根据分式方程11ax x +--1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1. 故答案为-1.点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.15.1【解析】【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.故答案为1.16.43【解析】【分析】根据题意画出草图,可得OG=2,60OAB∠=︒,因此利用三角函数便可计算的外接圆半径OA.【详解】解:如图,连接OA、OB,作OG AB⊥于G;则2OG=,∵六边形ABCDEF正六边形,∴OAB是等边三角形,∴60OAB∠=︒,∴43sin603OGOA===︒,∴正六边形的内切圆半径为2,则其外接圆半径为433.故答案为433.【点睛】本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.17.1.【解析】寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n 个图形有(n +1)2-1个小五角星. ∴第10个图形有112-1=1个小五角星. 18.8374x x -=+ 【解析】 【分析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决 【详解】解:由题意可设有x 人, 列出方程:8374x x +﹣=, 故答案为8374x x +﹣=. 【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程. 三、解答题(本题包括8个小题) 19.(1)70,0.2(2)70(3)750 【解析】 【分析】(1)根据题意和统计表中的数据可以求得m 、n 的值;(2)根据(1)中求得的m 的值,从而可以将条形统计图补充完整;(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人. 【详解】解:(1)由题意可得,m =200×0.35=70,n =40÷200=0.2, 故答案为70,0.2; (2)由(1)知,m =70,补全的频数分布直方图,如下图所示; (3)由题意可得,该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人), 答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.【点睛】本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 20.54小时 【解析】 【分析】过点C 作CD ⊥AB 交AB 延长线于D .先解Rt △ACD 得出CD=AC=40海里,再解Rt △CBD 中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C 处所需的时间.【详解】解:如图,过点C 作CD ⊥AB 交AB 延长线于D . 在Rt △ACD 中,∵∠ADC=90°,∠CAD=30°,AC=80海里, ∴CD=AC=40海里.在Rt △CBD 中,∵∠CDB=90°,∠CBD=90°﹣37°=53°, ∴BC=≈=50(海里),∴海警船到大事故船C 处所需的时间大约为:50÷40=(小时).考点:解直角三角形的应用-方向角问题 21.(1)m =-1,n =-1;(2)y =-12x +12【解析】 【分析】(1)由直线y mx =与双曲线ny x=相交于A(-1,a)、B 两点可得B 点横坐标为1,点C 的坐标为(1,0),再根据△AOC 的面积为1可求得点A 的坐标,从而求得结果;(2)设直线AC 的解析式为y =kx +b ,由图象过点A (-1,1)、C (1,0)根据待定系数法即可求的结果. 【详解】(1)∵直线y mx =与双曲线ny x=相交于A(-1,a)、B 两点, ∴B 点横坐标为1,即C(1,0) ∵△AOC 的面积为1, ∴A(-1,1)将A(-1,1)代入y mx =,ny x=可得m =-1,n =-1; (2)设直线AC 的解析式为y =kx +b ∵y =kx +b 经过点A (-1,1)、C (1,0) ∴1,{0,k b k b -+=+=解得k =-12,b =12. ∴直线AC 的解析式为y =-12x +12. 【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键. 22.(1)14;(2)112. 【解析】试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解. 解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种, ∴抽到数字“﹣1”的概率为14; (2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果, ∴第一次抽到数字“2”且第二次抽到数字“0”的概率为112. 23. (1) 每次下调10% (2) 第一种方案更优惠. 【解析】 【分析】(1)设出平均每次下调的百分率为x ,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.【详解】解:(1)设平均每次下调的百分率为x,根据题意得5000×(1-x)2=4050解得x=10%或x=1.9(舍去)答:平均每次下调10%.(2)9.8折=98%,100×4050×98%=396900(元)100×4050-100×1.5×12×2=401400(元),396900<401400,所以第一种方案更优惠.答:第一种方案更优惠.【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键. 24.(1) 60,90;(2)见解析;(3) 300人【解析】【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:15×360°=90°;60故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560+=300(人), 则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人. 【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.25. 【解析】 【分析】利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可. 【详解】解:原式=1121122--= 【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键.26.(1)225412--=4;(2)22(1)12n n +--=n . 【解析】 【详解】试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式; (2)根据题目中的式子的变化规律可以猜想出第n 等式并加以证明.试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:225412--=4; (2)第n 个等式是:22(1)12n n +--=n .证明如下: ∵22(1)12n n +--=[(1)][(1)]12n n n n +++-- =2112n +- =n∴第n 个等式是:22(1)12n n +--=n .点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )A .73B .81C .91D .1092.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表: 甲 2 6 7 7 8 乙23488关于以上数据,说法正确的是( ) A .甲、乙的众数相同 B .甲、乙的中位数相同 C .甲的平均数小于乙的平均数D .甲的方差小于乙的方差3.已知⊙O 的半径为5,若OP=6,则点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内B .点P 在⊙O 外C .点P 在⊙O 上D .无法判断4.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >25.如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18, 1.5OE =,则四边形EFCD 的周长为( )A .14B .13C .12D .106.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23,则四边形MABN 的面积是( )A .63B .123C .183D .2437.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系 如图所示,给出以下结论:①a =8;②b =92;③c =1.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③8.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是( )A .①②③④B .②①③④C .③②①④D .④②①③9.将二次函数2y x 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+10.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A .13B .14C .15D .16二、填空题(本题包括8个小题)11.已知点A(2,0),B(0,2),C(-1,m)在同一条直线上,则m 的值为___________. 12.如果抛物线y=(m ﹣1)x 2的开口向上,那么m 的取值范围是__. 13.一个正多边形的一个外角为30°,则它的内角和为_____.14.一个布袋里装有10个只有颜色不同的球,这10个球中有m 个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m 的值约为__________.15.二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为___16.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .17.用半径为6cm ,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm .18.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数___________. 三、解答题(本题包括8个小题)19.(6分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.20.(6分)先化简,再求值:22m 35m 23m 6m m 2-⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2x 3x 10++=的根. 21.(6分)为上标保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A 港口的物资为x 吨,求总运费y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;求出最低费用,并说明费用最低时的调配方案.22.(8分)如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.23.(8分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.24.(10分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立身高AM 与其影子长AE 正好相等,接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB =1.25 m ,已知李明直立时的身高为1.75 m ,求路灯的高CD 的长.(结果精确到0.1 m)25.(10分)计算532224mmm m-⎛⎫+-÷⎪--⎝⎭.26.(12分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.求∠CFA度数;求证:AD∥BC.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】试题解析:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=1.故选C.考点:图形的变化规律.2.D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.3.B【解析】【分析】比较OP 与半径的大小即可判断.【详解】r 5=,d OP 6==,d r ∴>,∴点P 在O 外,故选B .【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种.设O 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外d r ⇔>;②点P 在圆上d r ⇔=;①点P 在圆内d r ⇔<.4.D【解析】【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x=的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1. 故选:D .【点睛】 本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键.5.C【解析】【详解】∵平行四边形ABCD ,∴AD ∥BC ,AD=BC ,AO=CO ,∴∠EAO=∠FCO ,∵在△AEO 和△CFO 中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO ,∴AE=CF ,EO=FO=1.5,∵C 四边形ABCD =18,∴CD+AD=9,∴C 四边形CDEF =CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF 的周长进行转化.6.C【解析】连接CD ,交MN 于E ,∵将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,∴MN ⊥CD ,且CE=DE .∴CD=2CE .∵MN ∥AB ,∴CD ⊥AB .∴△CMN ∽△CAB .∴2CMN CAB S CE 1S CD 4∆∆⎛⎫== ⎪⎝⎭.∵在△CMN 中,∠C=90°,MC=6,NC=∴CMN 11S ?CM CN 622∆=⋅=⨯⨯=∴CAB CMN S 4S 4∆∆==⨯=.∴CAB CMN MABN S S S ∆∆=-==四边形C .7.A【解析】【详解】解:∵乙出发时甲行了2秒,相距8m ,∴甲的速度为8/2=4m/ s .∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s .∵a 秒后甲乙相遇,∴a =8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m ,∴b =500-408=92 m . 因此②正确.∵甲走到终点一共需耗时500/4=125 s ,,∴c =125-2=1 s . 因此③正确.终上所述,①②③结论皆正确.故选A .8.B【解析】【分析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.9.B【解析】【分析】抛物线平移不改变a 的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h )1+k ,代入得:y=(x+1)1-1.∴所得图象的解析式为:y=(x+1)1-1;故选:B .【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.10.C【解析】【详解】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°.所以AFI BGC DHE GHI 、、、都是等边三角形.所以31AI AF BG BC ====,.3317GI GH AI AB BG ∴==++=++=,7232DE HE HI EF FI ==--=--=,7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15;故选C .二、填空题(本题包括8个小题)11.3【解析】设过点A (2,0)和点B (0,2)的直线的解析式为:y kx b =+,则202k b b +=⎧⎨=⎩ ,解得:12k b =-⎧⎨=⎩ , ∴直线AB 的解析式为:2y x =-+,∵点C (-1,m )在直线AB 上,∴(1)2m --+=,即3m =.故答案为3.。

绍兴市名校2019-2020学年中考数学教学质量检测试题

绍兴市名校2019-2020学年中考数学教学质量检测试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A.10 cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下2.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形3.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为()A.40°B.60°C.80°D.100°4.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5 B.6 C.7 D.85.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k =2时,G 1与G 2平行,且平行线之间的距离为.下列选项中,描述准确的是( )A .①②正确,③错误B .①③正确,②错误C .②③正确,①错误D .①②③都正确6.如图,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC'的位置,此时露在水面上的鱼线B′C′为33m ,则鱼竿转过的角度是( )A .60°B .45°C .15°D .90°7.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( )A .12y y <B .12y y >C .12 y y =D .1y 、2y 的大小不确定8.已知一组数据1、2、3、x 、5,它们的平均数是3,则这一组数据的方差为( )A .1B .2C .3D .49.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( )A .12B .13C .310D .1510.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠二、填空题(本题包括8个小题)11.如图,小明在A 时测得某树的影长为3米,B 时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.12.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”). 13.因式分解:2xy 4x -= .14.某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.15.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.16.因式分解:a3﹣2a2b+ab2=_____.17.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.18.已知x+y=8,xy=2,则x2y+xy2=_____.三、解答题(本题包括8个小题)19.(6分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。

浙江省绍兴市2019-2020学年中考数学最后模拟卷含解析

浙江省绍兴市2019-2020学年中考数学最后模拟卷含解析

浙江省绍兴市2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知x=1是方程x 2+mx+n=0的一个根,则代数式m 2+2mn+n 2的值为( )A .–1B .2C .1D .–22.用配方法解方程x 2﹣4x+1=0,配方后所得的方程是( )A .(x ﹣2)2=3B .(x+2)2=3C .(x ﹣2)2=﹣3D .(x+2)2=﹣33.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表. 节约用水量(单位:吨) 1 1.1 1.4 1 1.5 家庭数 4 6 5 3 1这组数据的中位数和众数分别是( )A .1.1,1.1;B .1.4,1.1;C .1.3,1.4;D .1.3,1.1.4.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .5.如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )A .B .C.D.6.下列交通标志是中心对称图形的为()A.B.C.D.7.如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是3 的倍数的概率为()A.14B.13C.12D.348.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差9.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°10.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是()A.甲B.乙C.甲乙同样稳定D.无法确定11.在0,π,﹣3,0.62这5个实数中,无理数的个数为()A.1个B.2个C.3个D.4个12.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2B.24πcm2C.39πcm2D.48πcm213.关于x 的一元二次方程230x x c -+=有两个不相等的实数根,请你写出一个满足条件的c 值__________.14.等腰△ABC 的底边BC=8cm ,腰长AB=5cm ,一动点P 在底边上从点B 开始向点C 以0.25cm/秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为_____秒.15.因式分解:223x 6xy 3y -+- =16.如图,已知O 为△ABC 内一点,点D 、E 分别在边AB 和AC 上,且25AD AB =,DE ∥BC ,设OB b =u u u v v 、OC C u u u v v =,那么DE u u u v ______(用b v 、c v 表示).17.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm .18.函数2x y x=-中自变量x 的取值范围是_____;函数26y x =-中自变量x 的取值范围是______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,在△OAB 中,OA=OB ,⊙O 经过AB 的中点C ,与OB 交于点D ,且与BO 的延长线交于点E ,连接EC ,CD .(1)试判断AB 与⊙O 的位置关系,并加以证明;(2)若tanE=12,⊙O 的半径为3,求OA 的长.20.(6分)如图,在平面直角坐标系xOy 中,已知正比例函数34y x =与一次函数7y x =-+的图像交于点A ,(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交34y x=和7y x=-+的图像于点B、C,连接OC,若BC=75OA,求△OBC的面积.21.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).22.(8分)如图1,反比例函数kyx=(x>0)的图象经过点A(23,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.23.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.24.(10分)如图,有长为14m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1.求S与x的函数关系式及x值的取值范围;要围成面积为45m1的花圃,AB的长是多少米?当AB的长是多少米时,围成的花圃的面积最大?25.(10分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)26.(12分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠F=30°,BF=3,求弧AD的长.27.(12分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.(2)在点E 、F 、G 、H 运动过程中,判断直线EG 是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】把x=1代入x 2+mx+n=0,可得m+n=-1,然后根据完全平方公式把m 2+2mn+n 2变形后代入计算即可.【详解】把x=1代入x 2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m 2+2mn+n 2=(m+n)2=1.故选C.【点睛】本题考查了方程的根和整体代入法求代数式的值,能使方程两边相等的未知数的值叫做方程的根. 2.A【解析】【分析】方程变形后,配方得到结果,即可做出判断.【详解】方程2410x x +=﹣,变形得:2,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .【点睛】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.3.D【解析】分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 详解:这组数据的中位数是1.2 1.4 1.32+=; 这组数据的众数是1.1.故选D .点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a>0, ∵对称轴为直线02b x a =->, ∴b<0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x=1时y=a+b+c<0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y ++=图象在第二、四象限,只有D选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键. 5.D【解析】【分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选A.【点睛】本题考查了三视图的知识,关键是掌握三视图所看的位置.掌握定义是关键.此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.6.C【解析】【分析】根据中心对称图形的定义即可解答.【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选C.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.7.C【解析】【分析】根据题意确定所有情况的数目,再确定符合条件的数目,根据概率的计算公式即可.解:由题意可知,共有4种情况,其中是 3 的倍数的有6和9,∴是 3 的倍数的概率21 42 ,故答案为:C.【点睛】本题考查了概率的计算,解题的关键是熟知概率的计算公式.8.D【解析】【分析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9.B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,10.A【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙两名同学成绩更稳定的是甲;故选A.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解析】【分析】分别根据无理数、有理数的定义逐一判断即可得.【详解】解:在0,π,-3,0.6这5个实数中,无理数有π这2个,故选B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.12.B【解析】试题分析:底面积是:9πcm1,底面周长是6πcm,则侧面积是:12×6π×5=15πcm1.则这个圆锥的全面积为:9π+15π=14πcm1.故选B.考点:圆锥的计算.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】先根据根的判别式求出c的取值范围,然后在范围内随便取一个值即可.【详解】224(3)41940b ac c c-=--⨯⨯=->解得94 c<所以可以取0c=故答案为:1.【点睛】本题主要考查根的判别式,掌握根的判别式与根个数的关系是解题的关键.14.7秒或25秒.【解析】专题:动点型;分类讨论.分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:①PA⊥AC②PA⊥AB,从而可得到运动的时间.解答:解:如图,作AD⊥BC,交BC于点D,∵BC=8cm,∴BD=CD=BC=4cm,∴AD==3,分两种情况:当点P运动t秒后有PA⊥AC时,∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,∴PD2+32=(PD+4)2-52∴PD=2.25,∴BP=4-2.25=1.75=0.25t,∴t=7秒,当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25秒,∴点P运动的时间为7秒或25秒.点评:本题利用了等腰三角形的性质和勾股定理求解.15.﹣3(x﹣y)1【解析】解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案为:﹣3(x﹣y)1.点睛:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.16.22 55b c -+v v【解析】【分析】根据25ADAB=,DE∥BC,结合平行线分线段成比例来求DEu u u v.【详解】∵25ADAB=,DE∥BC,∴AE 2=AC 5, ∴AE AC =DE BC =25.∵OB b =u u u v v ,OC C =u u u v v∴BC=OC-OB=-C b u u u v u u u v u u u v vv∴2DE=-5C b u u u v v v ().故答案为:2DE=-5C b u u u v vv (). 【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量. 17.4 【解析】 【分析】已知弧长即已知围成的圆锥的底面半径的长是6πcm ,这样就求出底面圆的半径.扇形的半径为5cm 就是圆锥的母线长是5cm .就可以根据勾股定理求出圆锥的高. 【详解】设底面圆的半径是r ,则2πr=6π, ∴r=3cm ,∴圆锥的高. 故答案为4.18.x≠2 x≥3 【解析】 【分析】根据分式的意义和二次根式的意义,分别求解. 【详解】解:根据分式的意义得2-x≠0,解得x≠2; 根据二次根式的意义得2x-6≥0,解得x≥3. 故答案为: x≠2, x≥3. 【点睛】数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数为非负数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)AB与⊙O的位置关系是相切,证明见解析;(2)OA=1.【解析】【分析】(1)先判断AB与⊙O的位置关系,然后根据等腰三角形的性质即可解答本题;(2)根据题三角形的相似可以求得BD的长,从而可以得到OA的长.【详解】解:(1)AB与⊙O的位置关系是相切,证明:如图,连接OC.∵OA=OB,C为AB的中点,∴OC⊥AB.∴AB是⊙O的切线;(2)∵ED是直径,∴∠ECD=90°.∴∠E+∠ODC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.∴BC BD CD BE BC EC==.∴BC2=BD•BE.∵1 tan2E∠=,∴12 CDEC=.∴12 BD CDBC EC==.设BD=x,则BC=2x.又BC2=BD•BE,∴(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2.∴OA=OB=BD+OD=2+3=1.【点睛】本题考查直线和圆的位置关系、等腰三角形的性质、三角形的相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(1)A(4,3);(2)28.【解析】【分析】(1)点A是正比例函数34 y x=与一次函数y=-x+7图像的交点坐标,把34y x=与y=-x+7联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA 的长,再由BC=75OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据12OBCS BC OP∆=⋅即可求得△OBC的面积.【详解】解:(1)由题意得:347y xy x⎧=⎪⎨⎪=-+⎩,解得43xy=⎧⎨=⎩,∴点A的坐标为(4,3).(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,2222435OA OD AD+=+=∴775755BC OA==⨯=.∵P(a,0),∴B(a,34a),C(a,-a+7),∴BC=37(7)744a a a--+=-,∴7774a-=,解得a=8.∴11782822OBCS BC OP∆=⋅=⨯⨯=.21.(1)23;(2)这两个数字之和是3的倍数的概率为13. 【解析】 【分析】(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率. 【详解】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个, ∴指针所指扇形中的数字是奇数的概率为23, 故答案为23; (2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种, 所以这两个数字之和是3的倍数的概率为39=13. 【点睛】本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式.22.(1)(21y x =-;(3)14【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得(2)作BH ⊥AD 于H ,如图1,根据反比例函数图象上点的坐标特征确定B 点坐标为(1,),则1,﹣1,可判断△ABH 为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan ∠DAC=3;由于AD ⊥y 轴,则OD=1,后在Rt △OAD 中利用正切的定义可计算出CD=2,易得C 点坐标为(0,﹣1),于是可根据待定系数法求出直线AC 的解析式为y=﹣1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,t )(0<t<),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(tt﹣1),则﹣,根据三角形面积公式得到S△CMN=12•t•),再进行配方得到S=t﹣2)2(0<t<),最后根据二次函数的最值问题求解.试题解析:(1)把A(1)代入y=kx,得(2)作BH⊥AD于H,如图1,把B(1,a)代入反比例函数解析式y=x,得,∴B点坐标为(1,,∴﹣1,1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=3;∵AD⊥y轴,∴OD=1,tan∠DAC=CDDA=3,∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(1)、C(0,﹣1)代入得11bb⎧+=⎪⎨=-⎪⎩,解得31kb⎧=⎪⎨⎪=-⎩,∴直线AC的解析式为y=3x﹣1;(3)设M点坐标为(t)(0<t<,∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(tt﹣1),∴MN=23t ﹣(33t ﹣1)=23t ﹣33t+1, ∴S △CMN =12•t•(23﹣3t+1)=﹣3t 2+12t+3=﹣3(t ﹣3)2+93(0<t <23), ∵a=﹣3<0,∴当t=3时,S 有最大值,最大值为93.23.共有7人,这个物品的价格是53元. 【解析】 【分析】根据题意,找出等量关系,列出一元一次方程. 【详解】解:设共有x 人,这个物品的价格是y 元,83,74,x y x y -=⎧⎨+=⎩解得7,53,x y =⎧⎨=⎩ 答:共有7人,这个物品的价格是53元. 【点睛】本题考查了二元一次方程的应用. 24.(1)S=﹣3x 1+14x ,143≤x< 8;(1) 5m ;(3)46.67m 1 【解析】 【分析】(1)设花圃宽AB 为xm ,则长为(14-3x ),利用长方形的面积公式,可求出S 与x 关系式,根据墙的最大长度求出x 的取值范围;(1)根据(1)所求的关系式把S=2代入即可求出x ,即AB ; (3)根据二次函数的性质及x 的取值范围求出即可. 【详解】解:(1)根据题意,得S =x (14﹣3x ), 即所求的函数解析式为:S =﹣3x 1+14x , 又∵0<14﹣3x≤10,∴1483x≤<;(1)根据题意,设花圃宽AB为xm,则长为(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,当x=3时,长=14﹣9=15>10不成立,当x=5时,长=14﹣15=9<10成立,∴AB长为5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墙的最大可用长度为10m,0≤14﹣3x≤10,∴1483x≤<,∵对称轴x=4,开口向下,∴当x=143m,有最大面积的花圃.【点睛】二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.25.此时轮船所在的B处与灯塔P的距离是98海里.【解析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.【详解】作PC⊥AB于C点,∴∠APC=30°,∠BPC=45°,AP=80(海里),在Rt△APC中,cos∠APC=PC PA,∴PC=PA•cos∠3,在Rt△PCB中,cos∠BPC=PC PB,∴PB=403cos cos45PCBPC=∠︒=406≈98(海里),答:此时轮船所在的B处与灯塔P的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键. 26.(1)见解析;(2)2π.【解析】【详解】证明:(1)连接OD,∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD过O,∴EF是⊙O的切线.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴»AD的长度=12032180ππ⨯⨯=.【点睛】本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了弧长公式.27.(1)见解析;(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由见解析.【解析】分析:(1)由正方形的性质得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH证出AH=CF,由SAS证明△AEH≌△CGF即可求解;(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心.详解:(1)证明:∵四边形ABCD是正方形,∴∠A=∠C=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=CF,在△AEH与△CGF中,AH=CF,∠A=∠C,AE=CG,∴△AEH≌△CGF(SAS);(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:连接AC、EG,交点为O;如图所示:∵四边形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,∠OAE=∠OCG,∠AOE=∠COG,AE=CG,∴△AOE≌△COG(AAS),∴OA=OC,OE=OG,即O为AC的中点,∵正方形的对角线互相平分,∴O为对角线AC、BD的交点,即O为正方形的中心.点睛:考查了正方形的性质与判定、全等三角形的判定与性质等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线证明三角形全等才能得出结果.。

【数学6份合集】绍兴市2019-2020学年中考第六次模拟数学试题

【数学6份合集】绍兴市2019-2020学年中考第六次模拟数学试题

2020年数学中考模拟试卷一、选择题1.下列图形既是轴对称图形,又是中心对称图形的是( ) A .三角形 B .菱形 C .角 D .平行四边形2.已知实数a 、b 在数轴上的位置如图所示,化简 )A.2a -B.2aC.2bD.2b -3.如图,在△ABC 所在平面上任意取一点O (与A 、B 、C 不重合),连接OA 、OB 、OC ,分别取OA 、OB 、OC 的中点A 1、B 1、C 1,再连接A 1B 1、A 1C 1、B 1C 1得到△A 1B 1C 1,则下列说法不正确的是( )A .△ABC 与△A 1B 1C 1是位似图形 B .△ABC 与是△A 1B 1C 1相似图形 C .△ABC 与△A 1B 1C 1的周长比为2:1D .△ABC 与△A 1B 1C 1的面积比为2:14.反比例函数必经过的点是( )A.B.C. D.5.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示点A 的坐标为,表示点B 的坐标为,则表示其他位置的点的坐标正确的是( )A. B. C. D.6.合肥市教育教学研究室为了了解该市所有毕业班学生参加2019年安徽省中考一模考试的数学成绩情况(满分:150分,等次:A 等,130分:150分;B 等,110分:129分;C 等,90分:109分;D 等,89分及以下),从该市所有参考学生中随机抽取部分学生进行调查,并根据调查结果制作了如下的统计图表(部分信息未给出):2019年合肥市一模数学成绩频数分布表根据图表中的信息,下列说法不正确的是( ) A .这次抽查了20名学生参加一模考试的数学成绩 B .这次一模考试中,考试数学成绩为B 等次的频率为0.4C .根据频数分布直方图制作的扇形统计图中等次C 所占的圆心角为105︒D .若全市有20000名学生参加中考一模考试,则估计数学成绩达到B 等次及以上的人数有12000人 7.已知3a →=,2b =,而且b 和a 的方向相反,那么下列结论中正确的是( ) A .32a b →→= B .23a b →→= C .32a b →→=- D .23a b →→=- 8.关于x 的一元二次方程(m-5)x 2+2x+2=0有实根,则m 的最大整数解是( ) A .2B .3C .4D .59.下列说法中错误的是( ) . A .一个三角形中至少有一个角不少于60° B .三角形的中线不可能在三角形的外部 C .直角三角形只有一条高D .三角形的中线把三角形的面积平均分成相等的两部分10.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有( )A.6B.5C.4D.7 二、填空题11.口袋内装有除颜色外完全相同的红球、白球和黑球共10个,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么黑球的个数是_____个. 12.在梯形ABCD 中,AB ∥DC ,∠B =90°,BC =6,CD =2,tanA =34.点E 为BC 上一点,过点E 作EF ∥AD 交边AB 于点F .将△BEF 沿直线EF 翻折得到△GEF ,当EG 过点D 时,BE 的长为_____.13.因式分解______________________.14.在数轴上,实数2﹣对应的点在原点的_____侧.(填“左”、“右”)15.计算:2311xx x+-++=_____.16.如图,点A是反比例函数kyx=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是_____.17.某校随机调查了八年级20名男生引体向上的个数,统计数据如表所示,则这些男生引体向上个数的中位数与众数之和为_____.18.如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是_____.19.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是________三、解答题20.如图,在正方形ABCD中,AC、BD相交于点O,把△ABC折叠,使AB落在AC上,点B与AC上的点E 重合,展开后,折痕AG交BD于点F,连结EG、EF.下列结论:①tan∠AGB=2;②图中有9对全等三角形;③若将△GEF沿EF折叠,则点G不一定落在AC上;④BG=BF;⑤S四边形GFOE=S△AOF.上述结论中正确的个数是()A.1B.2C.3D.421.在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A的仰角为45°.(1)求城门大楼的高度;(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)22.关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.23.先化简,再求值:,其中x=2+.24.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?25.如图,在直角坐标系中,点P的坐标为(2,0),⊙P与x轴相交于原点O和点A,又B、C两点的坐标分别为(0,b),(﹣1,0).(1)当b=2时,求经过B、C两点的直线解析式;(2)当B点在y轴上运动时,直线BC与⊙P位置关系如何?并求出相应位置b的值26.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年7月的水费则是30元.已知小丽家今年7月的用水量比去年12月的用水量多5m3,求小丽家今年7月的用水量.【参考答案】***一、选择题1.B2.A 3.D4.B5.B 6.C 7.D 8.C 9.C 10.A 二、填空题11.312.65 12.13.14.左15.-1 16.-8 17.18 18.319.1 4三、解答题20.B【解析】【分析】根据折叠的知识,锐角正切值的定义,全等三角形的判定,面积的计算判断所给选项是否正确即可.【详解】由折叠可得BG=EG,而GC>GE,∴GC>BG,∴tan∠AGB≠2,故①错误;②图中的全等三角形有△ABF≌△AEF,△ABG≌△AEG,△FBG≌△FEG,(由折叠可知),Rt△AOB≌Rt△COB,Rt△AOB≌Rt△AOD,Rt△AOB≌Rt△COD,Rt△AOD≌Rt△COB,Rt△AOD≌Rt△COD,Rt△COD≌Rt△COB,Rt△ABD≌Rt△CBD,Rt△ABC≌Rt△ADC,故②错误;③∵AB=CB,BO⊥AC,把△ABC折叠,∴∠ABO=∠CBO=45°,∠FBG=∠DEF,∴∠AEF=∠GEF=45°,∴将△GEF沿EF折叠,可得点G一定在AC上,故③错误;④∵OB⊥AC,且AB=CB,∴BO为∠ABC的平分线,即∠ABO=∠OBC=45°,由折叠可知,AG是∠BAC的平分线,即∠BAF=22.5°,又∵∠BFG为三角形ABF的外角,∴∠BFG=∠ABO+∠BAF=67.5°,易得∠BGF=180°-45°-67.5°=67.5°, ∴∠BFG=∠BGF , ∴BG=BF ,故④正确; ⑤连接CF ,∵△AOF 和△COF 等底同高, ∴S △AOF =S △COF , ∵∠AEF=∠ACG=45°, ∴EF ∥CG , ∴S △EFG =S △EFC , ∴S 四边形GFOE =S △COF , ∴S 四边形GFOE =S △AOF , 故⑤正确; 故正确的有2个. 故选B . 【点睛】此题考查了由折叠得到的相关问题;注意由对称也可得到一对三角形全等;用到的知识点为:三角形的中线把三角形分成面积相等的2部分;两条平行线间的距离相等. 21.(1)12;(2)32米. 【解析】 【分析】(1)作AF ⊥BC 交BC 于点F ,交DH 于点E ,由∠ADE=45°可得AE=DE ,设AF=a,则AE =(a ﹣3),BF=21+(a-3),根据∠ABF 的正切值可求出a 的值,即可得答案;(2)根据∠ABF 的正弦值求出AB 的长即可. 【详解】解:(1)如图,作AF ⊥BC 交BC 于点F ,交DH 于点E ,由题意可得,CD =EF =3米,∠B =22°,∠ADE =45°,BC =21米,DE =CF , ∵∠AED =∠AFB =90°, ∴∠DAE =45°, ∴∠DAE =∠ADE , ∴AE =DE ,设AF =a 米,则AE =(a ﹣3)米, ∵tan ∠B =AFBF, ∴tan22°=21(3)aa +-,即2521(3)a a =+-, 解得,a =12,答:城门大楼的高度是12米;(2)∵∠B =22°,AF =12米,sin ∠B =AFAB, ∴sin22°=12AB, ∴AB≈12÷38=32,即A ,B 之间所挂彩旗的长度是32米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解.22.(1)m >-54;(2)x 1=0,x 2=-3. 【解析】试题分析:(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论. 试题解析:(1)∵关于x 的一元二次方程2x +(2m+1)x+2m ﹣1=0有两个不相等的实数根, ∴△=()()2221411m m +-⨯⨯-=4m+5>0,解得:m >54-; (2)m=1,此时原方程为2x +3x=0, 即x (x+3)=0, 解得:1x =0,2x =﹣3.考点:根的判别式;解一元二次方程——因式分解法;解一元一次不等式. 23.【解析】 【分析】根据分式的运算法则即可求出答案. 【详解】 原式===x ﹣2将x =2+代入,得x ﹣2=2+﹣2=【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.24.(1)见解析;(2)玩具销售单价为50元或80元时,可获得10000元销售利润;(3)商场销售该品牌玩具获得的最大利润为8640元.【解析】【分析】(1)由销售单价每涨1元,就会少售出10件玩具得y=600﹣(x﹣40)×10=1000﹣10x,利润=(x﹣30)×(1000﹣10x )=﹣10x2+1300x﹣30000;(2)令﹣10x2+1300x﹣30000=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣30000转化成y=﹣10(x﹣65)2+12250,结合x 的取值范围,求出最大利润.【详解】解::(1)根据题意可得:y=600﹣(x﹣40)×10=1000﹣10x,利润=(x﹣30)×(1000﹣10x )=﹣10x2+1300x﹣30000;(2)﹣10x2+1300x﹣30000=10000解之得:x1=50,x2=80.答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)根据题意得:1001054044xx-≥⎧⎨≥⎩解之得:44≤x≤46,w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∵a=﹣10<0,对称轴是直线x=65,∴当44≤x≤46时,w随x增大而增大,∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.【点睛】本题考查了二次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.25.(1)y=2x+2;(2)当b时,直线BC与⊙P相切;当b或b时,直线BC与⊙P<b时,直线BC与⊙P相交.【解析】【分析】(1)由待定系数法求一次函数解析式;(2)分直线BC与⊙O相切,相交,相离三种情况讨论,可求b的取值范围.【详解】解:(1)设BC直线的解析式:y=kx+b由题意可得:b=2 0=-k+b ⎧⎨⎩∴解得:k=2,b=2∴BC的解析式为:y=2x+2(2)设直线BC在x轴上方与⊙P相切于点M,交y轴于点D,连接PM,则PM⊥CM.在Rt△CMP和Rt△COD中,CP=3,MP=2,OC=1,CM=∵∠MCP=∠OCD∴tan∠MCP=tan∠OCP∴ODOC =MCMP ,b =OD由轴对称性可知:b∴当b 时,直线BC 与⊙P 相切;当b 或b 时,直线BC 与⊙P 相离;<b 时,直线BC 与⊙P 相交.【点睛】本题考查了直线与圆的位置关系,待定系数法求解析式,设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,①直线l 和⊙O 相交⇔d <r ,②直线l 和⊙O 相切⇔d =r ,③直线l 和⊙O 相离⇔d >r .关闭 26.15m 3【解析】 【分析】可设去年每立方米水费为x 元,则今年每立方米水费为(1+13)x 元,小丽家去年12月的用水量为315m x ,今年7月的用水量为3155m x ⎛⎫+ ⎪⎝⎭,根据等量关系:今年7月的水费是30元,列出方程即可求解. 【详解】解:设去年每立方米水费为x 元,则今年每立方米水费为(1+13)x 元,小丽家去年12月的用水量为315m x ,今年7月的用水量为3155m x ⎛⎫+ ⎪⎝⎭,依题意有 15151303x x ⎛⎫⎛⎫++= ⎪⎪⎝⎭⎝⎭, 解得x =1.5,155x+=10+5=15. 答:小丽家今年7月的用水量是15m 3. 【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2020年数学中考模拟试卷一、选择题1.不等式组的解集在数轴上表示正确的是()A.B.C.D.2.已知点M(1﹣2m,m﹣1)在第一象限,则m的取值范围在数轴上表示正确的是( )A.B.C.D.3.如图,一架无人机航拍过程中在C处测得地面上A,B两个目标点的俯角分别为30°和60°.若A,B两个目标点之间的距离是120米,则此时无人机与目标点A之间的距离(即AC的长)为()A.120米B.C.60米D.4.如图,平行四边形OABC的顶点O,B在y轴上,顶点A在反比例函数y=﹣5x上,顶点C在反比例函数y=7x上,则平行四边形OABC的面积是( )A.8 B.10 C.12 D.31 25.如图,在△ABC中,以边BC为直径做半圆,交AB于点D,交AC于点E,连接DE,若=2=2,则下外说法正确的是()A.AB =AEB.AB =2AEC.3∠A =2∠CD.5∠A =3∠C6.若点A (a ,b ),B (1a,c )都在反比例函数y =1x 的图象上,且﹣1<c <0,则一次函数y =(b ﹣c )x+ac 的大致图象是( )A .B .C .D .7.如图,在边长为1的小正方形网格中,ABC ∆的三个顶点均在格点上,若向正方形网格中投针,落在ABC ∆内部的概率是()A .14B .38C .516D .128.如图,在ABC ∆中,AB AC =,点D 在AC 上,//DE AB ,若160CDE ∠=︒,则B Ð的度数为( )A .80︒B .75︒C .65︒D .60︒9.在去年的体育中考中,某校6名学生的体育成绩统计如下表: 成绩 17 18 20 人数231则下列关于这组数据的说法错误的是( )A.众数是18 B.中位数是18 C.平均数是18 D.方差是210.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.6B.5C.4D.7二、填空题11.在△ABC中,∠C=90°,sinA=25,BC=4,则AB值是_____.12.如图是一组有规律的图案,第个图案由个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中由____个基础图形组成.13.如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长_____.14.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD 水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为____cm.15.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A 是PC的中点时,点B一定是PD的中点.其中一定正确的是__ .16.若a﹣2b=﹣3,则代数式1﹣a+2b的值为为_____.17.﹣1的相反数是_____.18.小华用家里的旧纸盒做了一个底面半径为3cm ,高为4cm 的圆锥模型,则此圆锥的侧面积是___cm 2.194的解是_____. 三、解答题20.(1)计算:()-2-2cos30°++(2-π)0;(2)先化简(1-)÷,再从不等式2x-1<5的解集中选一个适当的数代入求值.210|3|(1)π---22.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为(1)1232n n n ++++⋯+=. 如果图3、图4中的圆圈均有13层.(1)我们自上往下,在每个圆圈中都图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是________;(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数-23,-22,-21,-20,…,求最底层最右边圆圈内的数是________;(3)求图4中所有圆圈中各数值的绝对值之和.(写出计算过程)23.如图,在方格纸中每个小正方形的边长均为l ,线段AB 的端点在小正方形的顶点上,(所画图形顶点必须在小正方形的顶点上).(1)在如图中画一个以AB 为边的四边形ABCD 是中心对称图形,且四边形面积是12;(2)在如图中画一个以AB 为边的四边形ABMN 是轴对称图形,且只有一个角是直角,面积为15.24.矩形ABCD 在坐标系中如图所示放置.已知点B,C 在x 轴上,点A 在第二象限,D(2,4),BC=6,反比例函数y=kx(x<0)的图象经过点A.(1)求k 值;(2)把矩形ABCD 向左平移,使点C 刚好与原点重合,此时线段AB 与反比例函数y=kx(x<0)的图象的交点坐标是什么?25.先化简,再求值:(a+12a -)÷221a a a-+,其中a =﹣2.26.对于平面内的∠MAN 及其内部的一点P ,设点P 到直线AM ,AN 的距离分别为d 1,d 2,称12d d 和21d d 这两个数中较大的一个为点P 关于MAN ∠的“偏率” . 在平面直角坐标系xOy 中, (1)点M ,N 分别为x 轴正半轴,y 轴正半轴上的两个点.①若点P 的坐标为(1,5),则点P 关于MON ∠的“偏率”为____________;②若第一象限内点Q (a ,b )关于MON ∠的“偏率”为1,则a ,b 满足的关系为____________; (2)已知点A (4,0),B (2,OB ,AB ,点C 是线段AB 上一动点(点C 不与点A ,B 重合). 若点C 关于AOB ∠的“偏率”为2,求点C 的坐标;(3)点E ,F 分别为x 轴正半轴,y 轴正半轴上的两个点,动点T 的坐标为(t ,4),T 是以点T 为圆心,半径为1的圆. 若T 上的所有点都在第一象限,且关于EOF ∠,直接写出t 的取值范围.【参考答案】*** 一、选择题 1.D 2.D 3.B 4.C 5.C 6.D 7.C 8.A 9.D 10.A 二、填空题 11.6 12.3n+1 13.3 14.15.①②④.16.417.118.15π.x19.15三、解答题20.(1)5+2;(2),值见解析【解析】【分析】(1) 先分别计算负指数幂、零指数幂、绝对值,三角函数值,然后算加减法;(2) 先把括号里的式子进行通分,再把后面的式子根据完全平方公式、平方差公式进行因式分解,然后约分,再求出不等式的解集,最后代入一个合适的数据代入即可.【详解】(1)原式=4-2×+3+1=4-+3+1=5+2.(2)1-÷=×=,∵2x-1<5,∴2x<6,∴x<3,把x=0代入上式得:原式==-.(选取的x值不唯一)【点睛】考查了分式的化简求值以及一元一次不等式的解法,用到的知识点是通分、完全平方公式、平方差公式以及一元一次不等式的解法,熟练掌握公式与解法是解题的关键.21.-2【解析】【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】|﹣3|﹣(π﹣1)0=2﹣3﹣1=﹣2【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.22.(1)79;(2)6;(3)2554.【解析】【分析】(1)13层时最底层最左边这个圆圈中的数是前12层圆圈的个数和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数即可得;(3)将图④中的所有数字加起来利用所给的公式进行计算即可得.【详解】(1)当有13层时,前12层共有:1+2+3+…+12=78个圆圈,78+1=79,故答案为:79;(2)图④中所有圆圈中共有1+2+3+ (13)()131312⨯+=91个数,其中23个负数,1个0,67个正数,故答案为:67;(3)图④中共有91个数,分别为-23,-22,-21,…,66,67,图④中所有圆圈中各数的和为:-23+(-22)+...+(-1)+0+1+2+ (67)() 9123672⨯-+=2002.【点睛】本题是一道找规律的题目,通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.注意连续整数相加的时候的这种简便计算方法:1+2+3+…+n=()12n n+.23.(1)见解析;(2)见解析;【解析】【分析】(1)根据平行四边形的底边为4,高为3,进行画图;(2)以AB为直角边、点A为直角顶点构建等腰直角三角形,再依据轴对称图形且面积为15可得.【详解】解:(1)如图所示,平行四边形ABCD即为所求;(2)如图2,四边形ABMN即为所求四边形;【点睛】本题主要考查了利用图形的轴对称变换和中心变换进行作图,作图时需要运用平行四边形的性质及勾股定理进行计算.注意:平行四边形是中心对称图形.24.(1)k=-16;(2)86,3⎛⎫-⎪⎝⎭.【解析】【分析】(1)根据矩形的性质求出点A的坐标,利用待定系数法求出k值;(2)根据平移规律求出点B的坐标,计算即可.【详解】解:(1)∵点D的坐标为(2,4),BC=6,∴OB=4,AB=4,∴点A的坐标为(-4,4),∵反比例函数y=kx(x<0)的图象经过点A,∴4=-4k , 解得k=-16.(2)把矩形ABCD 向左平移,使点C 刚好与原点重合, 则点B 的坐标为(-6,0), 当x=-6时,y=-16-6=83,∴此时线段AB 与反比例函数y=k x(x<0)图象的交点坐标是-6,83.【点睛】本题考查的是反比例函数图象上点的坐标特征、矩形的性质、坐标与图形的变化,掌握矩形的性质、待定系数法求函数解析式的步骤是解题的关键. 25.-32【解析】 【分析】根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 【详解】解:22112a a a a a -⎛⎫+÷ ⎪-+⎝⎭ (2)1(1)2(1)(1)a a a a a a a -++=⋅-+-22121a a aa a -+=⋅-- 2(1)21a aa a -=⋅-- (1)2a a a -=-当a =﹣2时,原式=2(21)3-222-⨯--=-- 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.26.(1)①5;②a h =;(2)点C 的坐标为83⎛ ⎝⎭或103⎛ ⎝⎭;(3)13t <<或2t >+.【解析】 【分析】(1)①根据“偏率”的定义,结合点P 的坐标,即可得出答案;②根据“偏率”的定义,结合题干第一象限内点Q (a ,b ),即可得出答案;(2)由点(4,0),(2,A B ,得OB 、AB 长度,从而得到OAB △是等边三角形. 由等边三角形性质,根据相似的判断可得ACD BCH △△∽.则CD CACH CB=. 由于点C 关于AOB ∠的“偏第”为2,所以2CD CH =或2CHCD=. 再根据三角函数即可得出答案;∴点C 的坐标为8,33⎛⎫ ⎪ ⎪⎝⎭或10,33⎛⎫⎪ ⎪⎝⎭.(3)根据第(3)题意和“偏率”的定义即可得出答案. 【详解】 解:(1)①5; ②a h =;(2)∵点(4,0),(2,A B ,∴4,44,OB AB OA =====.∴OA OB AB ==. ∴OAB △是等边三角形. ∴60OAB OBA ∠=∠=︒.过点C 作CD OA ⊥于点D ,CH OB ⊥于点H ,如图, 则90CDA CHB ∠=∠=︒. ∴ACD BCH △△∽.∴CD CACH CB=. ∵点C 关于AOB ∠的“偏第”为2,∴2CD CH =或2CHCD=.当2CD CH =时,则2CACB=. ∴2833CA AB ==.∴4cos 60,sin 603DA CA CD CA =⋅︒==⋅︒=. ∴83OD OA DA =-=.∴点C 的坐标为8,33⎛⎫⎪ ⎪⎝⎭.同理可求,当2CHCD =时,点C 的坐标为103⎛ ⎝⎭.∴点C 的坐标为83⎛ ⎝⎭或103⎛ ⎝⎭.(3)13t <<或2t >+. 【点睛】本题考查等边三角形的性质和判定、相似三角形的判定和三角函数,解题的关键是读懂“偏率”,掌握等边三角形的性质和判定、相似三角形的判定和三角函数.2020年数学中考模拟试卷一、选择题1.如图,平面直角坐标系中,矩形ABCD 与双曲线(0)ky x x=>交于D 、E 两点,将△OCD 沿OD 翻折,点C 的对称C'恰好落在边AB 上,已知OA=3,OC=5,则AE 长为( )A .4B .259C .269D .32.如图,一个平行四边形被分成面积为S 1、S 2、S 3、S 4四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时,S 1S 4与S 2S 3的大小关系为( )A.S 1S 4>S 2S 3B.S 1S 4<S 2S 3C.S 1S 4=S 2S 3D.无法确定3.O 为等边△ABC 所在平面内一点,若△OAB 、△OBC 、△OAC 都为等腰三角形,则这样的点O 一共有( ) A .4B .5C .6D .104.文艺复兴时期,意大利艺术大师达芬奇曾研究过圆弧所围成的许多图形的面积问题. 如图所示称为达芬奇的“猫眼”,可看成圆与正方形的各边均相切,切点分别为,,,A B C D ,BD 所在圆的圆心为点A (或C ). 若正方形的边长为2,则图中阴影部分的面积为( )AB .2C .1π-D .42π-5.下列运算正确的是( ) A .3a 2•a 3=3a 6B .5x 4﹣x 2=4x 2C .(2a 2)3•(﹣ab )=﹣8a 7bD .2x 2÷2x 2=06.已知一次函数y =kx ﹣1和反比例函数y =kx,则这两个函数在同一平面直角坐标系中的图象可能是( )A.B .C.D .7.下列运算正确的是:()A.(a﹣b)2=a2﹣b2B.a10÷a2=a5C.(2a2b3)3=8a6b9D.2a2•3a3=6a68.用直尺和圆规作一个直角三角形斜边上的高,作图错误的是()A.B .C.D .9.如图,在△ABC中,∠ABC=90°,直线l1,l2,l3分别经过△ABC的顶点A,B,C,且l1∥l2∥l3,若∠1=40°,则∠2的度数为()A.30°B.40°C.50°D.60°10.在整数范围内,有被除数=除数×商+余数,即a=bq+r(a≥b,且b≠0,0≤r<b),若被除数a和除数b确定,则商q和余数r也唯一确定,如:a=11,b=2,则11=2×5+1此时q=5,r=1.在实数范围中,也有a=bq+r(a≥b且b≠0,商q为整数,余数r满足:0≤r<b),若被除数是,除数是2,则q与r的和( )A.﹣4 B.﹣6 C.-4 D.-2二、填空题11.已知反比例函数k1yx-=的图象在第二、四象限内,那么k的取值范围是________.12.因式分解:a3-ab2=______________.13.不等式组112(3)33xx x+⎧⎨+->⎩…的解集是_____.14.在Rt△ABC中,∠BAC=30°,斜边P在AB边上,动点Q在AC边上,且∠CPQ=90°,则线段CQ长的最小值=__________ .15.某校组织了主题为“经典诵读”的小视频征集活动,现从中随机抽取部分作品。

2019-2020学年浙江省绍兴市中考数学经典试题

2019-2020学年浙江省绍兴市中考数学经典试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围是( ) A .94m <B .94mC .94m >D .94m2.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =--3.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为( )A .54°B .64°C .74°D .26°4.当ab >0时,y =ax 2与y =ax+b 的图象大致是( )A .B .C .D .5.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S 6,则S 6的值为( ) A .3 B .23 C .332D .2336.如图,小明为了测量河宽AB ,先在BA 延长线上取一点D ,再在同岸取一点C ,测得∠CAD=60°,∠BCA=30°,AC=15 m ,那么河AB 宽为( )A .15 mB .53 mC .103 mD .123 m7.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( ) A .12y y <B .12y y >C .12 y y =D .1y 、2y 的大小不确定8.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是( )A .(3,-2 )B .(-2,-3 )C .(2,3 )D .(3,2)9.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D .10.2-的相反数是 A .2-B .2C .12D .12-二、填空题(本题包括8个小题)11.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动一个单位,依次得到点P 1(0,1);P 2(1,1);P 3(1,0);P 4(1,﹣1);P 5(2,﹣1);P 6(2,0)……,则点P 2019的坐标是_____.12.如图,△ABC 与△DEF 位似,点O 为位似中心,若AC =3DF ,则OE :EB =_____.13.已知α ,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足11αβ+=﹣1,则m 的值是____. 14.化简()()201720182121-+的结果为_____.15.如图,四边形OABC 中,AB ∥OC ,边OA 在x 轴的正半轴上,OC 在y 轴的正半轴上,点B 在第一象限内,点D 为AB 的中点,CD 与OB 相交于点E ,若△BDE 、△OCE 的面积分别为1和9,反比例函数y=kx的图象经过点B ,则k=_______.16.因式分解:34a 16a -=______.17.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.18.当x为_____时,分式3621xx-+的值为1.三、解答题(本题包括8个小题)19.(6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 24 1每人月工资(元)21000 8400 2025 2200 1800 1600 950请你根据上述内容,解答下列问题:该公司“高级技工”有名;所有员工月工资的平均数x为2500元,中位数为元,众数为元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.20.(6分)如图,直线y=﹣x+2与反比例函数kyx=(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.求a,b的值及反比例函数的解析式;若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.21.(6分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)22.(8分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/m 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.23.(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30︒,∠CBD=60︒.求AB的长(精确到0.1米,参考数据:3 1.732 1.41,);已知本路段对校车限速为40千米/小时,若≈≈测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.24.(10分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)25.(10分)车辆经过润扬大桥收费站时,4个收费通道A.B、C、D中,可随机选择其中的一个通过.一辆车经过此收费站时,选择A通道通过的概率是;求两辆车经过此收费站时,选择不同通道通过26.(12分)如图,在△ABC 中,点D 是AB 边的中点,点E 是CD 边的中点,过点C 作CF ∥AB 交AE 的延长线于点F,连接BF.求证:DB=CF ;(2)如果AC=BC,试判断四边形BDCF 的形状,并证明你的结论.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.A 【解析】 【分析】根据一元二次方程的根的判别式,建立关于m 的不等式,求出m 的取值范围即可. 【详解】∵关于x 的一元二次方程x 2﹣3x+m=0有两个不相等的实数根, ∴△=b 2﹣4ac=(﹣3)2﹣4×1×m >0, ∴m <94, 故选A . 【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根. 2.A 【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 3.B根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数. 【详解】∵四边形ABCD 为菱形, ∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO , 在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA), ∴AO =CO , ∵AB =BC , ∴BO ⊥AC , ∴∠BOC =90°, ∵∠DAC =26°, ∴∠BCA =∠DAC =26°, ∴∠OBC =90°﹣26°=64°. 故选B . 【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质. 4.D 【解析】 【详解】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求. 故选B . 5.C 【解析】 【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6×12×1×1×sin60°=33.故选C.【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.6.A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×3=153,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=1532×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.7.A【解析】【分析】根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系.【详解】解:∵y=-1x1-8x+m,∴此函数的对称轴为:x=-b2a =-()-82-2⨯=-1,∵x1<x1<-1,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y1.故选A.【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.8.A【解析】因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A 9.B【解析】【分析】根据二次根式有意义的条件即可求出x的范围.【详解】由题意可知:3010xx-≥⎧⎨+>⎩,解得:3x,故选:B.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件. 10.B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B . 【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 . 二、填空题(本题包括8个小题) 11.(673,0) 【解析】 【分析】由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n,纵坐标为0,据此可解. 【详解】解:由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n,纵坐标为0, ∵2019÷3=673, ∴P 2019 (673,0)则点P 2019的坐标是 (673,0). 故答案为 (673,0). 【点睛】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上. 12.1:2 【解析】 【分析】△ABC 与△DEF 是位似三角形,则DF ∥AC ,EF ∥BC ,先证明△OAC ∽△ODF ,利用相似比求得AC =3DF ,所以可求OE :OB =DF :AC =1:3,据此可得答案. 【详解】解:∵△ABC 与△DEF 是位似三角形, ∴DF ∥AC ,EF ∥BC∴△OAC ∽△ODF ,OE :OB =OF :OC ∴OF :OC =DF :AC ∵AC =3DF∴OE :OB =DF :AC =1:3, 则OE :EB =1:2 故答案为:1:2 【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线. 13.3. 【解析】 【分析】可以先由韦达定理得出两个关于α、β的式子,题目中的式子变形即可得出相应的与韦达定理相关的式子,即可求解. 【详解】得α+β=-2m-3,αβ=m 2,又因为211+-2m-3+===-1mαβαβαβ,所以m 2-2m-3=0,得m=3或m=-1,因为一元二次方程()22230x m x m +++=的两个不相等的实数根,所以△>0,得(2m+3)2-4×m 2=12m+9>0,所以m >4-3,所以m=-1舍去,综上m=3. 【点睛】本题考查了根与系数的关系,将根与系数的关系与代数式相结合解题是解决本题的关键.14【解析】 【分析】利用积的乘方得到原式=[﹣1)+1)]2017•+1),然后利用平方差公式计算. 【详解】原式=[﹣1)+1)]2017•)=(2﹣1)2017•+1+1.+1. 【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 15.16 【解析】 【分析】根据题意得S △BDE :S △OCE =1:9,故BD :OC=1:3,设D (a,b )则A(a,0),B(a,2b),得C(0,3b),由S △OCE =9得ab=8,故可得解. 【详解】解:设D (a,b )则A(a,0),B(a,2b)∵S △BDE :S △OCE =1:9∴BD :OC=1:3∴C(0,3b)∴△COE 高是OA 的34, ∴S △OCE =3ba×3412⨯ =9 解得ab=8k=a×2b=2ab=2×8=16故答案为16.【点睛】此题利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.16.()()4a a 2a 2+-【解析】解:原式=4a (a 2﹣4)=4a (a+2)(a ﹣2).故答案为4a (a+2)(a ﹣2).17.1【解析】根据题意得x 1+x 2=2,x 1x 2=﹣1,所以x 1+x 2﹣x 1x 2=2﹣(﹣1)=1.故答案为1.18.2【解析】【分析】分式的值是1的条件是,分子为1,分母不为1.【详解】∵3x-6=1,∴x=2,当x=2时,2x+1≠1.∴当x=2时,分式的值是1.故答案为2.【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.三、解答题(本题包括8个小题)19.(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)y能反映该公司员工的月工资实际水平.【解析】【分析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(4)2500502100084003171346y⨯--⨯=≈(元).y能反映该公司员工的月工资实际水平.20.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).【解析】【分析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出S△ACP=12×3×|n+1|,S△BDP=12×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.【详解】(1)∵直线y=-x+2与反比例函数y=kx(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵点A(-1,3)在反比例函数y=kx上,∴k=-1×3=-3,∴反比例函数解析式为y=3x;(2)设点P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=12AC×|x P−x A|=12×3×|n+1|,S△BDP=12BD×|x B−x P|=12×1×|3−n|,∵S△ACP=S△BDP,∴12×3×|n+1|=12×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1m=,∴M(−10)③当MB=AB时,(m−3)2+1=32,∴m=3m=,∴M (30)即:满足条件的M (−10)或(3+0).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.21.这棵树CD 的高度为8.7米【解析】试题分析:首先利用三角形的外角的性质求得∠ACB 的度数,得到BC 的长度,然后在直角△BDC 中,利用三角函数即可求解.试题解析:∵∠CBD=∠A+∠ACB ,∴∠ACB=∠CBD ﹣∠A=60°﹣30°=30°,∴∠A=∠ACB ,∴BC=AB=10(米).在直角△BCD 中,CD=BCsin ∠CBD=10×2≈5×1.732=8.7(米). 答:这棵树CD 的高度为8.7米.考点:解直角三角形的应用 22.(1)20s ;(2)2511222y x ⎛⎫=+- ⎪⎝⎭ 【解析】【分析】(1)利用待定系数法求出函数解析式,再求出y =840时x 的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可.【详解】解:(1)∵该抛物线过点(0,0),∴设抛物线解析式为y =ax 2+bx ,将(1,4)、(2,12)代入,得: 44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩, 所以抛物线的解析式为y =2x 2+2x ,当y =840时,2x 2+2x =840,解得:x =20(负值舍去),即他需要20s 才能到达终点;(2)∵y =2x 2+2x =2(x+12)2﹣12, ∴向左平移2个单位,再向下平移5个单位后函数解析式为y =2(x+2+12)2﹣12﹣5=2(x+52)2﹣112. 【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律. 23.(1)24.2米(2) 超速,理由见解析【解析】【分析】(1)分别在Rt △ADC 与Rt △BDC 中,利用正切函数,即可求得AD 与BD 的长,从而求得AB 的长. (2)由从A 到B 用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt △ADC 中,CD AD tan30︒==, 在Rt △BDC中,CD BD tan60===︒, ∴AB=AD -BD=14 1.73=24.2224.2-≈⨯≈(米). (2)∵汽车从A 到B 用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB 路段超速.24.热气球离地面的高度约为1米.【解析】【分析】作AD ⊥BC 交CB 的延长线于D ,设AD 为x ,表示出DB 和DC ,根据正切的概念求出x 的值即可.【详解】解:作AD ⊥BC 交CB 的延长线于D ,设AD 为x ,由题意得,∠ABD=45°,∠ACD=35°,在Rt △ADB 中,∠ABD=45°,∴DB=x ,在Rt △ADC 中,∠ACD=35°,∴tan ∠ACD=AD CD, ∴ 100x x = 710 , 解得,x≈1.答:热气球离地面的高度约为1米.【点睛】考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.25.(1)14;(2)34. 【解析】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.试题解析:(1)选择 A 通道通过的概率=14, 故答案为14; (2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=1216=34.26. (1)证明见解析;(2)四边形BDCF 是矩形,理由见解析.【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的( )A .中位数B .众数C .平均数D .方差2.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是( )A .2017年第二季度环比有所提高B .2017年第三季度环比有所提高C .2018年第一季度同比有所提高D .2018年第四季度同比有所提高3.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a+2bB .3a+4bC .6a+2bD .6a+4b412233499100+++++的整数部分是( ) A .3 B .5 C .9 D .65.如图,已知△ABC ,按以下步骤作图:①分别以 B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点 M ,N ;②作直线 MN 交 AB 于点 D ,连接 CD .若 CD=AC ,∠A=50°,则∠ACB 的度数为( )A .90°B .95°C .105°D .110°6.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( ) A .方差 B .中位数 C .众数 D .平均数7.如右图,⊿ABC 内接于⊙O ,若∠OAB=28°则∠C 的大小为( )A .62°B .56°C .60°D .28°8.下列各式中,互为相反数的是( )A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32- 9.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .23D .4310.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C .D .二、填空题(本题包括8个小题)11.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…,观察下面的一列数:-1,2,,-3, 4,-5,6…,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 .12.如图,ΔABC 中,∠ACB=90°,∠ABC=25°,以点C 为旋转中心顺时针旋转后得到ΔA′B′C′,且点A 在A′B′上,则旋转角为________________°.13.对于实数p q ,,我们用符号min{}p q ,表示p q ,两数中较小的数,如min{1,2}1=.因此,{}min 2,3--= ________;若{}22min (1)1x x -=,,则x =________.14.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____.15.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.16.如图,在△ABC 中,∠A=70°,∠B=50°,点D ,E 分别为AB ,AC 上的点,沿DE 折叠,使点A 落在BC 边上点F 处,若△EFC 为直角三角形,则∠BDF 的度数为______.17.规定用符号[]m 表示一个实数m 的整数部分,例如:203⎡⎤=⎢⎥⎣⎦,[]3.143=.按此规定,101⎡⎤+⎣⎦的值为________.18.如图,已知△ABC 中,AB =AC =5,BC =8,将△ABC 沿射线BC 方向平移m 个单位得到△DEF ,顶点A ,B ,C 分别与D ,E ,F 对应,若以A ,D ,E 为顶点的三角形是等腰三角形,且AE 为腰,则m 的值是______.三、解答题(本题包括8个小题)19.(6分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)20.(6分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元 求甲、乙型号手机每部进价为多少元? 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m 元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m 的值21.(6分)如图,在平面直角坐标系中,一次函数y =﹣x+3的图象与反比例函数y =(x >0,k 是常数)的图象交于A (a ,2),B (4,b )两点.求反比例函数的表达式;点C 是第一象限内一点,连接AC ,BC ,使AC ∥x 轴,BC ∥y 轴,连接OA ,OB .若点P 在y 轴上,且△OPA 的面积与四边形OACB 的面积相等,求点P 的坐标.22.(8分)列方程解应用题 八年级学生去距学校10 km 的博物馆参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.23.(8分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为 ;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.24.(10分)如图所示,直线y=12x+2与双曲线y=k x相交于点A(2,n),与x 轴交于点C .求双曲线解析式;点P 在x 轴上,如果△ACP 的面积为5,求点P 的坐标.25.(10分)一辆汽车,新车购买价30万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为17.34万元,求这辆车第二、三年的年折旧率.26.(12分)计算:101()2sin601tan60(2019)2π--+-+-; 解方程:24(3)9x x x +=-参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A .【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.2.C【解析】【分析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A 正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D 正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.3.A【解析】【分析】根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键. 4.C【解析】1=,∴原式﹣﹣解:∵+…﹣﹣1+10=1.故选C.5.C【解析】【分析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.6.A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差7.A【解析】【详解】连接OB.在△OAB中,OA=OB(⊙O的半径),∴∠OAB=∠OBA(等边对等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=12∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠C=62°;故选A8.A【解析】【分析】根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A. 2(3)-=9,23-=-9,故2(3)-和23-互为相反数,故正确;B. 2(3)-=9,23=9,故2(3)-和23不是互为相反数,故错误;C. 3(2)-=-8,32-=-8,故3(2)-和32-不是互为相反数,故错误;D. 3|2|-=8,32-=8故3|2|-和32-不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.9.A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A .考点:正多边形和圆.10.D【解析】试题分析:D 选项中作的是AB 的中垂线,∴PA=PB ,∵PB+PC=BC ,∴PA+PC=BC .故选D .考点:作图—复杂作图.二、填空题(本题包括8个小题)11.2【解析】【分析】先求出19行有多少个数,再加3就等于第20行第三个数是多少.然后根据奇偶性来决定负正.【详解】∵1行1个数,2行3个数,3行5个数,4行7个数,…19行应有2×19-1=37个数∴到第19行一共有1+3+5+7+9+…+37=19×19=1.第20行第3个数的绝对值是1+3=2.又2是偶数,故第20行第3个数是2.12.50度【解析】【分析】由将△ACB 绕点C 顺时针旋转得到△A′B′C′,即可得△ACB ≌△A′B′C′,则可得∠A'=∠BAC ,△AA'C 是等腰三角形,又由△ACB 中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB 的度数,即可求得∠ACB'的度数,继而求得∠B'CB 的度数.【详解】∵将△ACB 绕点C 顺时针旋转得到A B C '''∆,∴△ACB ≌A B C '''∆,∴∠A′=∠BAC ,AC=CA′,∴∠BAC=∠CAA′,∵△ACB 中,∠ACB=90°,∠ABC=25°,∴∠BAC=90∘−∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°−65°−65°=50°,∴∠ACB′=180°−25°−50°−65°=40°,∴∠B′CB=90°−40°=50°.故答案为50.【点睛】此题考查了旋转的性质、直角三角形的性质以及等腰三角形的性质.此题难度不大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.13. 2或-1.【解析】①∵>。

2020年浙江省绍兴市九年级数学六模考试卷

2020年浙江省绍兴市九年级数学六模考试卷

2020年浙江省绍兴市九年级数学六模考试卷一、选择题1.已知a、b是有理数,且a>b,则下列式子正确的是()A.a﹣1>b﹣1 B.1﹣a>1﹣b C.a≈1<b﹣1 D.﹣a>﹣ b2.500克盐水中含有50克盐,那么盐和水的重量比是()A.1:9B.1:10C.1:11D.1:123.已知a×53=b÷62.5%=c×34=1(a、b、c均不为0),a、b、c这三个数中最小的是()。

A.a B.b C.c D.无法判断4.晓晓坐在教室的第3列第5行,用(3,5)表示;点点坐在晓晓正后方且与晓晓相邻的位置,则点点的位置可表示为( )。

A.(3,4) B.(2,5) C.(4,5) D.(3,6)5.①用同样方砖铺一间教室,方砖的边长和块数是(_________)②如果2y=x,那么x和y是(_________)③如果ab-5=8那么a与b是(_________)。

A、成正比例B、成反比例C、不成比例6.按下图方式摆放桌子和椅子,当摆放8张桌子时,可以坐()人。

A.30 B.32 C.34 D.367.一项工程,甲队单独做15天完成,乙队单独做12天完成.甲乙两队合做4天还余下这项工程的几分之几?正确的解答是()A.B.C.D.8.如图所示,表示阴影部分面积的是()。

A.ad+bc B.c(b-d ) +d (a-c )C.ad+c (b-d ) D.ab-cd9.将4个同样大小的正方体拼成一个长方体,则()A.表面积不变,体积减少150dm3B.表面积减少1.5m2,体积不变C.表面积和体积都不变D.表面积减少75cm2,体积不变10.把一个圆锥完全浸没在一个底面半径为r厘米的圆柱形容器内,水面上升h厘米,这个圆锥的体积是()立方厘米。

A. B. C. D.二、填空题11.农业收成,有时用“成数”来表示,“一成”是十分之一,改写成百分数是________.12.只列式,不计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年数学中考模拟试卷一、选择题1.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t =32或t =72,其中正确的结论有( )A .1个B .2个C .3个D .4个2.已知⊙O ,AB 是直径,AB =4,弦CD ⊥AB 且过OB 的中点,P 是劣弧BC 上一动点,DF 垂直AP 于F ,则P 从C 运动到B 的过程中,F 运动的路径长度( )A .33πB .3C .23πD .23.在平面直角坐标系中,点A 1(﹣1,1)在直线y =x+b 上,过点A 1作A 1B 1⊥x 轴于点B 1,作等腰直角三角形A 1B 1B 2(B 2与原点O 重合),再以A 1B 2为腰作等腰直角三角形A 2A 1B 2;以A 2B 2为腰作等腰直角三角形A 2B 2B 3;按照这样的规律进行下去,那么A 2019的坐标为( )A.(22018﹣1,22018)B.(22018﹣2,22018)C.(22019﹣1,22019)D.(22019﹣2,22019)) 4.如图,直线y =﹣x+b 与双曲线(0)k y x x=> 交于A 、B 两点,连接OA 、OB ,AM ⊥y 轴于点M ,BN ⊥x 轴于点N ,有以下结论:①S △AOM =S △BON ;②OA =OB ;③五边形MABNO 的面积22MABNO b S p 五边形;④若∠AOB =45°,则S △AOB =2k ,⑤当AB =2 时,ON ﹣BN =1;其中结论正确的个数有( )A .5个B .4个C .3个D .2个5.下列计算正确的是( )A.224x x x -•=B.()236x x -=C.236x x x •=D.()222m n m n -=- 6.由4个小立方体搭成如图所示的几何体,从正面看到的平面图形是( )A .B .C .D .7.下列运算正确的是( )A .325()a a =B .325a a a +=C .32()a a a a -÷= D .331a a ÷= 8.下列运算正确的是( )A .321-=B .1243=C .235+=D .12=22÷ 9.关于x 的不等式组2150x x m ->⎧⎨-<⎩有三个整数解,则m 的取值范围是( ) A .67m <≤ B .67m << C .7m ≤ D .7m <10.tan60︒的值为( )A .33B .23C .3D .211.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为45°,侧得底部C 的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 为( )A .90+303B .90+603C .90+903D .90+180312.如图,在边长为3的正方形ABCD 中,点E 是边AD 上的一点,连结BE ,将△ABE 绕着点B 顺时针旋转一定的角度,使得点A 落在线段BE 上,记为点F ,此时点E 恰好落在边CD 上记为点G ,则AE 的长为( )A .335B .32C 2D .1二、填空题13.已知x 1,x 2是一元二次方程x 2+6x+1=0的两实数根,则2x 1﹣x 1x 2+2x 2的值为_____.14.若3b -,则a 2-2b=______.15.若分式242x x -- 的值为0,则x 的值为_____. 16.因式分解:224a a -=___.17.如图,在Rt △ABC 中,∠BAC =90°,AB =1,AC =4,点A 在y 轴上,点C 在x 轴上,则点A 在移动过程中,BO 的最大值是_____.18.比﹣3大5的数是_____.三、解答题19.如图,某中学依山而建,校门A 处有一斜坡AB ,长度为13米。

在坡顶B 处看教学楼CF 的楼顶C 的仰角∠CBF=53°,离B 点4米远的E 处有一花台,在E 处仰望C 的仰角∠CEF=63.4°.CF 的延长线交校门处的水平面于D 点,FD=5米。

(1)求斜坡AB 的坡度;(2)求DC 的长(参考数据:tan53°≈ 43,tan63.4°≈2). 20.某批发商以70元/千克的成本价购入了某畅销产品1000千克,该产品每天的保存费用为300元,而且平均每天将损耗30千克,据市场预测,该产品的销售价y (元/千克)与时间x (天)之间函数关系的图象如图中的折线段ABC 所示.(1)求y 与x 之间的函数关系式;(2)为获得最大利润,该批发商应该在进货后第几天将这批产品一次性卖出?最大利润是多少?21.计算:()02(32)48sin 45︒22.先化简,再求值:(x ﹣1+ 331x x -+)÷21x x x -+,其中x 的值是从-2<x <3的整数值中选取. 23.解不等式组{2x 1x4x 2x 4>-+<+24.如图,Rt △ADB 中,∠ADB =90°,∠DAB =30°,⊙O 为△ADB 的外接圆,DH ⊥AB 于点H ,现将△AHD沿AD翻折得到△AED,AE交⊙O于点C,连接OC交AD于点G.(1)求证:DE是⊙O的切线;(2)若AB=10,求线段OG的长.25.问题发现:如图1,△ABC是等边三角形,点D是边AD上的一点,过点D作DE∥BC交AC于E,则线段BD与CE有何数量关系?拓展探究:如图2,将△ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明.问题解决:如果△ABC的边长等于23,AD=2,直接写出当△ADE旋转到DE与AC所在的直线垂直时BD的长.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A A B B B C D D A C C D13.﹣13.14.-215.﹣216.2a(a-2)17.518.2三、解答题19.(1) 1:2.4;(2)21米.【解析】【分析】(1)过点B作BG⊥AD于点G,则四边形BGDF是矩形,利用矩形的对边相等得BG=DF=5米,根据勾股定理求出AG的长,从而可求出斜坡AB的坡度 .(2)设CF=x,利用锐角三角函数的定义分别求出BF、EF的长,BE=BF-EF=4,建立方程,解出x的值,即求出CF的长,由DC=CF+DF求出DC的长.【详解】(1)解:过点B作BG⊥AD于点G,可得四边形BGDF是矩形,∴BG=DF=5米,在Rt△ABG中,AB=13米,∴AG=22AB BG- =12米,∴斜坡AB的坡度为BGAG=512=1:2.4 .(2)解:设CF=x,在Rt△BCF中,∠CBF=53° ,∴tan∠CBF=tan53°==43,∴BF=34x在Rt△BCF中, ∠CEF=63.4° ,tan∠CEF=tan63.4°=CFEF=2,∴EF=12x,∵BE=BF-EF=34x -12x =4,∴x=16,即CF=16米,∴DC=CF+DF=16+5=21米.【点睛】本题考查解直角三角形的应用-仰角和俯角问题,解直角三角形的应用-坡度和坡比问题,正确理解题意是解题的关键.20.(1)3100(020)160(2040)x xx+≤≤⎧⎨≤⎩<(2)函数有最大值,当x=10时,利润最大为39000元【解析】【分析】(1)由函数的图象可知当0≤x≤20时y和x是一次函数的关系;当20≤x≤40时y是x的常数函数,由此可得出y与之间的函数关系式;(2)设到第x天出售,批发商所获利润为w,根据等量关系“利润=销售总金额-收购成本-各种费用=该产品的销售价y(元/千克)×(原购入量-xx存放天数)-收购成本-各种费用列出函数关系式,再求出函数的最值即可【详解】(1)当0≤x≤20,把(0,100)和(20,160)代入y=kx+b得10016020b k b==+⎧⎨⎩, 解得:3100k b ==⎧⎨⎩, ∴y =3x+100,当20≤x≤40时,y =160,故y 与x 之间的函数关系式是y =3100(020)160(2040)x x x +≤≤⎧⎨≤⎩<; (2)设到第x 天出售,批发商所获利润为w ,由题意得:①当0≤x≤20;w =(y ﹣70)(1000﹣30x )﹣300x ,由(1)得y =3x+100,∴w =(3x+100﹣70)(1000﹣30x )﹣300x ,=﹣90(x ﹣10)2+39000,∵a =﹣90<0,∴函数有最大值,当x =10时,利润最大为39000元,②当20<x≤40时,w =(y ﹣70)(1000﹣30x )﹣300x ,由(1)得y =160,∴w =(160﹣70)(1000﹣30x )﹣300x=﹣3000x+90000.∵﹣3000<0,∴函数有最大值,当x =20时,利润最大为30000元,∵39000>30000,∴当第10天一次性卖出时,可以获得最大利润是39000元.【点睛】此题考查二次函数的应用,解题关键在于列出方程21.8【解析】【分析】根据二次根式的运算法则和特殊锐角三角函数值进行计算.【详解】原式341=+-=8【点睛】考核知识点:含有特殊锐角三角函数值的运算.22.x 2x-, x=2时,原式=0. 【解析】【分析】先算括号里的,然后算除法化简分式,最后将中不等式-1≤x<2.5的整数解代入求值.【详解】(x ﹣1+ 331x x -+)÷21x x x -+=23211(1) x x xx x x-++⨯+-=(1)(2)11(1) x x xx x x--+⨯+-=2 xx --1≤x<2.5的整数解为-1,0,1,2,∵分母x≠0,x+1≠0,x-1≠0,∴x≠0且x≠1,且x≠-1,∴x=2当x=2时,原式=220 2-=.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.23.13<x<23【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式2x>1-x,得:x>13,解不等式4x+2<x+4,得:x<23,则不等式组的解集为13<x<23.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.(1)见解析;(2)5 2【解析】【分析】(1)连接半径,由同圆的半径相等得:OA=OD,利用等边对等角可知:∠OAD=∠ODA,利用翻折的性质可知:∠OAD=∠EAD,∠E=∠AHD=90°,证OD∥AE,得∠ODE=90°,所以DE与⊙O相切;(2)先证明△OAC是等边三角形,再证明OG∥BD,根据中位线定理可知:BD=2OG=5,于是得到结论.【详解】解:(1)连接OD,∵OA=OD,∴∠OAD=∠ODA,由翻折得:∠OAD=∠EAD,∠E=∠AHD=90°,∴∠ODA=∠EAD,∴OD∥AE,∴∠E+∠ODE=180°,∴∠ODE=90°,∴DE与⊙O相切;(2)∵将△AHD沿AD翻折得到△AED,∴∠OAD=∠EAD=30°,∴∠OAC=60°,∵OA=OD,∴△OAC是等边三角形,∴∠AOG=60°,∵∠OAD=30°,∴∠AGO=90°,∴OG=12AO=52.【点睛】本题考查了切线的判定、平行线的性质和判定、翻折的性质、等边三角形的性质和判定,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,并熟练掌握等边三角形的性质和判定,明确翻折前后的两条边和角相等.25.问题发现:BD=CE;拓展探究:结论仍然成立,见解析;问题解决:BD的长为2和7【解析】【分析】问题发现:如图1,由平行线分线段成比例定理可得BD=CE;拓展探究:如图2,证明△BAD≌△CAE,可得BD=CE;问题解决:分两种情况:①如图3,在直角三角形中,根据30°角所对的直角边等于斜边的一半求出DG =1,由勾股定理求出AG3BG,从而计算出BD的长.②如图4,求EF的长和CF的长,根据勾股定理在Rt△EFC中求EC的长,所以BD=EC=7【详解】解: 问题发现:如图1,BD=CE,理由是∵△ABC是等边三角形,∴AB=AC,∵DE∥BC,∴BD=CE,拓展探究:结论仍然成立,如图2,由图1得,△ADE是等边三角形,∴AD=AE,由旋转得∠BAD=∠CAE,△BAD≌△CAE,(旋转的性质)∴BD=CE,问题解决:当△ADE旋转到DE与AC所在的直线垂直时,设垂足为点F,此时有两种情况:①如图3,∵△ADE是等边三角形,AF⊥DE, ∴∠DAF=∠EAF=30°,∴∠BAD=30°,过D作DG⊥AB,垂足为G,∵AD=2,∴DG=1,AG=3,∵AB=23,∴BG=AB-AG=3,∴BD=2(勾股定理),②如图4,同理得△BAD≌△CAE,∴BD=CE,∵△ADE是等边三角形,∴∠ADE=60°,∵AD=AE,DE⊥AC,∴∠DAF=∠EAF=30°,∴EF=FD=12AD=1,∴3∴333,在Rt△EFC中22221(33)2827EF FC+=+==∴7综上所述,BD的长为2和7【点睛】本题是几何变换的综合题,考查了等边三角形、全等三角形的性质与判定;在几何证明中,如果出现等边三角形,它所得出的结论比较多,要准确把握需要利用哪些结论进行证明;此类题的解题思路为:证明两个三角形全等或利用勾股定理求边长;如果有平行的关系,可以考虑利用平行相似来证明.2019-2020学年数学中考模拟试卷 一、选择题 1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.如图,在平面直角坐标系中,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,△A 7A 8A 9,…,都是等腰直角三角形,且点A 1,A 3,A 5,A 7,A 9的坐标分别为A 1 (3,0),A 3 (1,0),A 5 (4,0),A 7 (0,0),A 9 (5,0),依据图形所反映的规律,则A 102的坐标为( )A .(2,25)B .(2,26)C .(52,﹣532)D .(52,﹣552) 3.已知P (x ,y )是直线y =1322x -上的点,则4y ﹣2x+3的值为( ) A .3 B .﹣3C .1D .0 4.如图,直线y =kx+b 交坐标轴于A 、B 两点,则不等式kx+4<0的解集是( )A.x <﹣3B.x >﹣3C.x <﹣6D.x >﹣65.如图,菱形ABCD 的边长是4cm ,060B ∠=,动点P 以1/cm s 的速度从点A 出发沿AB 方向运动至点B 停止,动点Q 以2/cm s 的速度从点B 出发沿折线BCD 运动至点D 停止.若点,P Q 同时出发,运动了t s ,记BPQ V 得面积为S 2cm ,则下面图像中能表示S 与t 之间的函数关系的是( )A. B. C.D.6.一元二次方程(x ﹣1)(x+5)=3x+2的根的情况是( )A.方程没有实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.方程的根是1、﹣5和7.如图,将ABC △绕点C 顺时针旋转,点B 的对应点为点E ,点A 的对应点为点D ,当点E 恰好落在边AC 上时,连接AD ,36ACB ∠=︒,AB BC =,2AC =,则AB 的长度是( )A .51-B .1C .51-D .328.如图,OAC ∆和BAD ∆都是等腰直角三角形,90ACO ADB ∠=∠=︒,反比例函数k y x=在第一象限的图象经过点B ,则OAC ∆和BAD ∆的面积之差OAC BAD S S ∆∆-为( )A .2kB .6kC .k 21D .k9.顺次连接矩形ABCD 各边的中点,所得四边形必定是( )A .菱形B .矩形C .正方形D .邻边不等的平行四边形10.如图,A 是半径为1的⊙O 上两点,且OA ⊥OB .点P 从A 点出发,在⊙O 上以每秒一个的速度匀速单位运动:回A 点运动结束.设运动时间为x ,弦BP 长为y ,那么图象中可能表示数关y 与x 的函数关系的是( )A.①B.②C.①或④D.③或④11.不等式组21320xx+⎧⎨-->⎩…的解集是()A.x<﹣2 B.﹣2<x≤1C.x≤﹣2 D.x≥﹣2 12.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A.25B.13C.415D.15二、填空题13.如图,a∥b,∠1=110°,∠3=50°,则∠2的度数是_____.14.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为__.15.如图,在直角△BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tanB=53,则tan∠CAD的值________.16.用反证法证明命题“三角形中至少有两个锐角”,第一步应假设_____.17.如图,正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN,当BM= ,四边形ABCN的面积最大。

相关文档
最新文档