高三数学数列多选题专项训练知识归纳总结及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列多选题
1.已知数列{}n a 满足0n a >,121
n n n a n
a a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( ) A .11a =
B .121a a =
C .201920202019S a =
D .201920202019S a >
答案:BC 【分析】
根据递推公式,得到,令,得到,可判断A 错,B 正确;根据求和公式,得到,求出,可得C 正确,D 错. 【详解】 由可知,即,
当时,则,即得到,故选项B 正确;无法计算,故A 错; ,所以,则
解析:BC 【分析】
根据递推公式,得到11n n n
n n a a a +-=-,令1n =,得到121
a a =,可判断A 错,B 正确;
根据求和公式,得到1
n n n
S a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】
由121n n n a n a a n +=+-可知2111
n n n n n
a n n n a a a a ++--==+,即11n n n n n a a a +-=-, 当1n =时,则12
1
a a =
,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321
111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=++
+=-+-+
+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:
由递推公式求通项公式的常用方法:
(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解;
(2)累乘法,形如
()1
n n
a f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通
项时,常需要构造成等比数列求解;
(4)已知n a 与n S 的关系求通项时,一般可根据11
,2
,1n n n S S n a a n --≥⎧=⎨=⎩求解.
2.已知数列{}n a 满足()
*11
1n n
a n N a +=-∈,且12a =,则( ) A .31a =- B .201912
a =
C .332
S =
D . 2 0192019
2
S =
答案:ACD 【分析】
先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】
由题意,,A 正确,,C 正确; ,∴数列是周期数列,周期为3. ,B 错; ,D 正确. 故选:ACD . 【点睛】 本
解析:ACD 【分析】
先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】
由题意211122a =-=,31
111
2
a =-=-,A 正确,313
2122
S =+-=,C 正确; 41
121
a =-
=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;
20193201967322
S =⨯
=,D 正确. 故选:ACD .
本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.
3.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨
⎩为奇数
为偶数
B .1(1)1n n a -=-+
C .2sin
2
n n a π= D .cos(1)1n a n π=-+
答案:BD 【分析】
根据选项求出数列的前项,逐一判断即可. 【详解】
解:因为数列的前4项为2,0,2,0, 选项A :不符合题设; 选项B : ,符合题设; 选项C :, 不符合题设; 选项D : ,符合题设
解析:BD 【分析】
根据选项求出数列的前4项,逐一判断即可. 【详解】
解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;
选项B :0
1(1)12,a =-+=1
2(1)10,a =-+=
23(1)12,a =-+=34(1)10a =-+=,符合题设;
选项C :,12sin
2,2
a π
==22sin 0,a π==
332sin
22
a π
==-不符合题设; 选项D :1cos012,a =+=2cos 10,a π=+=
3cos212,a π=+=4cos310a π=+=,符合题设.
故选:BD.
本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.
4.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小
B .130S =
C .49S S =
D .70a =
答案:BCD 【分析】
由是等差数列及,求出与的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】
设等差数列数列的公差为. 由有,即
所以,则选项D 正确.
选项A. ,无法判断其是否有最小
解析:BCD 【分析】
由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】
设等差数列数列{}n a 的公差为d .
由13522,a a S +=有()111254
2252
a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176
773212
S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113
137131302
a S a a +=
⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】
关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件
13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,
属于中档题.
5.已知等差数列{}n a 的前n 项和为,n S 且15
11
0,20,a a a 则( )
A .80a <
B .当且仅当n = 7时,n S 取得最大值
C .49S S =
D .满足0n S >的n 的最大值为12
答案:ACD 【分析】
由题可得,,,求出可判断A ;利用二次函数的性质可判断B ;求出可判断C ;令,解出即可判断D. 【详解】
设等差数列的公差为,则,解得, ,,且,
对于A ,,故A 正确; 对于B ,的对称
解析:ACD 【分析】
由题可得16a d =-,0d <,21322
n d d S n n =
-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022
n d d
S n n =->,解出即可判断D. 【详解】
设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,
10a >,0d ∴<,且()21113+
222
n n n d d S na d n n -==-, 对于A ,
81+7670a a d d d d ==-+=<,故A 正确;
对于B ,21322n d d S n n =
-的对称轴为13
2n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误; 对于C ,4131648261822d d S d d d =
⨯-⨯=-=-,9138191822
d d S d =⨯-⨯=-,故49S S =,故C 正确;
对于D ,令213022
n d d
S n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】
方法点睛:由于等差数列()2111+
222n n n d d S na d n a n -⎛
⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.
6.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( )
A .25n a n =-
B .310n
a n
C .2
28n S n n =-
D .2
4n S n n =-
答案:AD 【分析】
设等差数列的公差为,根据已知得,进而得,故,. 【详解】
解:设等差数列的公差为,因为
所以根据等差数列前项和公式和通项公式得:, 解方程组得:, 所以,. 故选:AD.
解析:AD 【分析】
设等差数列{}n a 的公差为d ,根据已知得1145
460
a d a d +=⎧⎨
+=⎩,进而得13,2a d =-=,故
25n a n =-,24n S n n =-.
【详解】
解:设等差数列{}n a 的公差为d ,因为450,5S a ==
所以根据等差数列前n 项和公式和通项公式得:11
45
460a d a d +=⎧⎨+=⎩,
解方程组得:13,2a d =-=,
所以()31225n a n n =-+-⨯=-,2
4n S n n =-.
故选:AD.
7.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤
D .当且仅当0n
S <时,26n ≥
答案:AB 【分析】
根据等差数列的性质及可分析出结果. 【详解】 因为等差数列中, 所以, 又, 所以,
所以,,故AB 正确,C 错误; 因为,故D 错误, 故选:AB 【点睛】
关键点睛:本题突破口在于由
解析:AB 【分析】
根据等差数列的性质及717S S =可分析出结果. 【详解】
因为等差数列中717S S =, 所以89161712135()0a a a a a a ++++=+=,
又10a >,
所以12130,0a a ><,
所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()
2502
a a S a +==<,故D 错误, 故选:AB 【点睛】
关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到
12130,0a a ><,考查学生逻辑推理能力.
8.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =
C .95S S >
D .67n S S S 与均为的最大值
答案:ABD 【分析】
由,判断,再依次判断选项. 【详解】 因为,,
,所以数列是递减数列,故,AB 正确; ,所以,故C 不正确;
由以上可知数列是单调递减数列,因为可知,的最大值,故D 正确. 故选:AB
解析:ABD
【分析】
由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】
因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,
788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;
()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;
由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】
本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型. 9.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310
S S =
D .当8n ≥时,0n a <
答案:AD 【分析】
由已知得到,进而得到,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为,可知不一定成立,从而判定C 错误. 【详解】 由已知得:,
结合等差数列的性质可知,,该等差
解析:AD 【分析】
由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】
由已知得:780,0a a ><,
结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,
310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,
这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】
本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.
10.无穷数列{}n a 的前n 项和2
n S an bn c =++,其中a ,b ,c 为实数,则( )
A .{}n a 可能为等差数列
B .{}n a 可能为等比数列
C .{}n a 中一定存在连续三项构成等差数列
D .{}n a 中一定存在连续三项构成等比数列
答案:ABC 【分析】
由可求得的表达式,利用定义判定得出答案. 【详解】 当时,. 当时,. 当时,上式=. 所以若是等差数列,则
所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列.
解析:ABC 【分析】
由2
n S an bn c =++可求得n a 的表达式,利用定义判定得出答案. 【详解】
当1n =时,11a S a b c ==++.
当2n ≥时,()()2
2
1112n n n a S S an bn c a n b n c an a b -=-=++-----=-+.
当1n =时,上式=+a b .
所以若{}n a 是等差数列,则0.a b a b c c +=++∴=
所以当0c 时,{}n a 是等差数列, 0
a c
b ==⎧⎨≠⎩时是等比数列;当0
c ≠时,{}n a 从第二
项开始是等差数列. 故选:A B C 【点睛】
本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.。