人教备战中考数学备考之一元二次方程压轴突破训练∶培优 易错 难题篇及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一元二次方程 真题与模拟题分类汇编(难题易错题)
1.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程
2
(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值. 【答案】0.
【解析】
【分析】 由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解.
【详解】
解:设方程①的两个实数根分别为x 1、x 2
则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩
=== , 由条件,知
12121211x x x x x x ++==3, 即33a -=,且94
a ≤, 故a =-1,
则方程②为(k -1)x 2+3x +2=0,
Ⅰ.当k -1=0时,k =1,x =23-,则22106
k k k -=+-. Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178
k ≤, 又k 是正整数,且k≠1,则k =2,但使2216
k k k -+-无意义. 综上,代数式2216
k k k -+-的值为0 【点睛】
本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,
2. y 与x 的函数关系式为:y=1.7x (x≤m );
或( x≥m) ;
3.已知关于x 的一元二次方程x 2-(2k +1)x +k 2+2k =0有两个实数根x 1,x 2. (1)求实数k 的取值范围;
(2)是否存在实数k ,使得x 1·
x 2-x 12-x 22≥0成立?若存在,请求出k 的值;若不存在,请说明理由.
【答案】(1)当k≤
14时,原方程有两个实数根(2)不存在实数k ,使得x 1·x 2-x 12-x 22≥0成立 【解析】
试题分析:(1)根据一元二次方程根的判别式列出不等式,解之即可;(2)本题利用韦达定理解决.
试题解析:
(1)∆= ()()2221420k k k +-+≥,解得14
k ≤ (2)由2212120x x x x --≥得 2121230x x x x ()-
+≥, 由根与系数的关系可得:2121221,2x x k x x k k +=+=+
代入得:22364410k k k k +---≥,
化简得:()210k -≤,
得1k =.
由于k 的取值范围为14
k ≤, 故不存在k 使2212120x x x x --≥.
4.关于x 的一元二次方程()22
210x k x k +-+=有两个不等实根1x ,2x . (1)求实数k 的取值范围;
(2)若方程两实根1x ,2x 满足121210x x x x ++-=,求k 的值.
【答案】(1) k <
14;(2) k=0. 【解析】
【分析】
(1)根据一元二次方程的根的判别式得出△>0,求出不等式的解集即可;
(2)根据根与系数的关系得出x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,代入x 1+x 2+x 1x 2-1=0,即可求出k 值.
【详解】
解:(1)∵关于x 的一元二次方程x 2+(2k-1)x+k 2=0有两个不等实根x 1,x 2, ∴△=(2k-1)2-4×1×k 2=-4k+1>0,
解得:k <14
,
即实数k 的取值范围是k <14
; (2)由根与系数的关系得:x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,
∵x 1+x 2+x 1x 2-1=0,
∴1-2k+k 2-1=0,
∴k 2-2k=0
∴k=0或2,
∵由(1)知当k=2方程没有实数根,
∴k=2不合题意,舍去,
∴k=0.
【点睛】
本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.
5.已知1x 、2x 是关于x 的方程222(1)50x m x m -+++=的两个不相等的实数根.
(1)求实数m 的取值范围;
(2)已知等腰ABC ∆的一边长为7,若1x 、2x 恰好是ABC ∆另外两边长,求这个三角形的周长.
【答案】(1)m>2; (2)17
【解析】
试题分析:(1)由根的判别式即可得;
(2)由题意得出方程的另一根为7,将x =7代入求出x 的值,再根据三角形三边之间的关系判断即可得.
试题解析:解:(1)由题意得△=4(m +1)2﹣4(m 2+5)=8m -16>0,解得:m >2; (2)由题意,∵x 1≠x 2时,∴只能取x 1=7或x 2=7,即7是方程的一个根,将x =7代入得:49﹣14(m +1)+m 2+5=0,解得:m =4或m =10.
当m =4时,方程的另一个根为3,此时三角形三边分别为7、7、3,周长为17; 当m =10时,方程的另一个根为15,此时不能构成三角形;
故三角形的周长为17.
点睛:本题主要考查判别式、三角形三边之间的关系,熟练掌握韦达定理是解题的关键.
6.关于x 的一元二次方程
.
(1).求证:方程总有两个实数根;
(2).若方程的两个实数根都是正整数,求m 的最小值.
【答案】(1)证明见解析;(2)-1.
【解析】
【分析】
(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根.
(2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗的最小值.
【详解】
(1)证明:依题意,得
.
,
∴.
∴方程总有两个实数根.
由.
可化为:
得,
∵方程的两个实数根都是正整数,
∴.
∴.
∴的最小值为.
【点睛】
本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.
7.若关于x的一元二次方程x2﹣3x+a﹣2=0有实数根.
(1)求a的取值范围;
(2)当a为符合条件的最大整数,求此时方程的解.
【答案】(1)a≤17
4
;(2)x=1或x=2
【解析】
【分析】(1)由一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于a的不等式,即可求出a的取值范围;
(2)根据(1)确定出a的最大整数值,代入原方程后解方程即可得.
【详解】(1)∵关于x的一元二次方程x2﹣3x+a﹣2=0有实数根,
∴△≥0,即(﹣3)2﹣4(a﹣2)≥0,解得a≤17
4
;
(2)由(1)可知a≤17
4
,
∴a的最大整数值为4,
此时方程为x2﹣3x+2=0,
解得x=1或x=2.
【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情
况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
8.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向B点以1 cm/s的速度移动,点Q从B点沿BC边向点C以2 cm/s的速度移动,两点同时出发.
(1)问几秒后,△PBQ的面积为8cm²?
(2)出发几秒后,线段PQ的长为42cm ?
(3)△PBQ的面积能否为10 cm2?若能,求出时间;若不能,请说明理由.
【答案】(1) 2或4秒2 cm;(3)见解析.
【解析】
【分析】
(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三
角形面积的计算公式,S△PBQ=1
2
BP×BQ,列出表达式,解答出即可;
(2)设经过x秒后线段PQ的长为2cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;
(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.
【详解】
(1)设P,Q经过t秒时,△PBQ的面积为8 cm2,
则PB=6-t,BQ=2t,
∵∠B=90°,
∴1
2
(6-t)× 2t=8,
解得t1=2,t2=4,
∴当P,Q经过2或4秒时,△PBQ的面积为8 cm2;
(2)设x秒后,PQ=2 cm,
由题意,得(6-x)2+4x2=32,
解得x1=2
5
,x2=2,
故经过2
5
秒或2秒后,线段PQ的长为2 cm;
(3)设经过y秒,△PBQ的面积等于10 cm2,
S△PBQ=1
2
×(6-y)× 2y=10,
即y2-6y+10=0,
∵Δ=b 2-4ac =36-4× 10=-4< 0,
∴△PBQ 的面积不会等于10 cm 2.
【点睛】
本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.
9.阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。
求解二元一次方程组,把它转化为一元一次方程来解:求解一元二次方程,把它转化为两个一元一次方程来解。
求解分式方程,把它转化为整式方程来解。
各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知。
用“转化”的数学思想,我们还可以解一些新的方程。
例如,一元三次方程
3220x x x --=,可以通过因式分解把它转化为2(2)0x x x --=,解方程0x =和
220x x --=,可得方程3220x x x --=的解。
(1)问题:方程3220x x x --=的解是10x =,2x =_____,3x =_____。
(2)拓展:用“转化”思想求方程43x x -=的解。
(3)应用:如图,已知矩形草坪ABCD 的长6AD m =,宽4AB m =,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C 。
求AP 的长。
【答案】(1)2,-1; (2)1,3 ; (3)3m.
【解析】
【分析】
(1)因式分解多项式,然后得结论;
(2)两边平方,把无理方程转化为整式方程,求解,验根即可;
(3)设AP 的长为xm ,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解即可.
【详解】
(1)x 3-x 2-2x=0,
x (x 2-x-2)=0,
x (x-2)(x+1)=0
所以x=0或x-2=0或x+1=0
∴x 1=0,x 2=2,x 3=-1;
故答案为: 2,-1;
=
(2x
方程的两边平方,得4x-3=x2
即x2-4x+3=0
(x-3)(x-1)=0
∴x-3=0或x-1=0
∴x1=3,x2=1,
当x=3或1时,.
(3)因为四边形ABCD是矩形,
所以∠A=∠D=90°,AB=CD=4m,
设AP=xm,则PD=(6-x)m
因为BP+CP=10,==
两边平方,得16+(6-x)2+x2+16
整理,得
两边平方并整理,得x2-6x+9=0
即(x-3)2=0
所以x=3.
经检验,x=3是方程的解.
答:AP的长为3m.
【点睛】
考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.
10.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.
()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元;()2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游?
【答案】(1)2280;(2)15
【解析】
【分析】
对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;
对于(2)设这次旅游可以安排x人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x列出方程:(10+x)(200-5x)=2625,求出x,然后根据人均旅游费
用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值.
【详解】
(1)2280
()2因为1020020002625⨯=<.
因此参加人比10人多,
设在10人基础上再增加x 人,
由题意得:()()1020052625x x +-=.
解得 15x = 225x =,
∵2005150x -≥,
∴010x <≤,
经检验 15x =是方程的解且符合题意,225x =(舍去).
1010515x +=+=
答:该单位共有15名员工参加旅游.
【点睛】
本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.。