配套K12通用版2018年高考数学二轮复习课时跟踪检测十九理

合集下载

2018届高三理科数学二轮复习跟踪强化训练19 含解析 精

2018届高三理科数学二轮复习跟踪强化训练19 含解析 精

跟踪强化训练(十九)1.(2017·沈阳质检)已知数列{a n }是公差不为0的等差数列,首项a 1=1,且a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式; (2)设数列{b n }满足b n =a n +,求数列{b n }的前n 项和T n .[解] (1)设数列{a n }的公差为d ,由已知得,a 22=a 1a 4,即(1+d )2=1+3d ,解得d =0或d =1. 又d ≠0,∴d =1,可得a n =n . (2)由(1)得b n =n +2n ,∴T n =(1+21)+(2+22)+(3+23)+…+(n +2n ) =(1+2+3+…+n )+(2+22+23+…+2n ) =n (n +1)2+2n +1-2.[解](1)由题意得,⎩⎪⎨⎪⎧S 1=a 2-2,a 1+a 2=2a 3-6,a 1+a 2+a 3=9,解得⎩⎪⎨⎪⎧a 1=1,a 2=3,a 3=5,当n ≥2时,S n -1=(n -1)a n -(n -1)n , 所以a n =na n +1-n (n +1)-(n -1)a n +(n -1)n , 即a n +1-a n =2.又a 2-a 1=2,因而数列{a n }是首项为1,公差为2的等差数列,从而a n =2n -1.T n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n , 2T n =1×22+3×23+5×24+…+(2n -3)×2n +(2n -1)×2n +1. 两式相减得-T n =1×21+2×22+2×23+…+2×2n -(2n -1)×2n +1 =-2+2×(21+22+23+…+2n )-(2n -1)×2n +1 =-2+2×2×(1-2n )1-2-(2n -1)×2n +1=-2+2n +2-4-(2n -1)×2n +1=-6-(2n -3)×2n +1. 所以T n =6+(2n -3)×2n +1.3.数列{a n }的前n 项和为S n ,且首项a 1≠3,a n +1=S n +3n (n ∈N *).(1)求证:{S n -3n }是等比数列;(2)若{a n }为递增数列,求a 1的取值范围. [解] (1)证明:∵a n +1=S n +3n ,(n ∈N *) ∴S n +1=2S n +3n ,∴S n +1-3n +1=2(S n -3n ),∵a 1≠3. ∴S n +1-3n +1S n -3n=2,∴数列{S n -3n }是公比为2,首项为a 1-3的等比数列. (2)由(1)得S n -3n =(a 1-3)×2n -1,∴S n =(a 1-3)×2n -1+3n , ∴当n ≥2时,a n =S n -S n -1=(a 1-3)×2n -2+2×3n -1,∵{a n }为递增数列,∴n ≥2时,(a 1-3)×2n -1+2×3n >(a 1-3)×2n -2+2×3n -1,∴n ≥2时,2n -2⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫32n -2+a 1-3>0, 可得n ≥2时,a 1>3-12×⎝ ⎛⎭⎪⎫32n -2,又当n =2时,3-12×⎝ ⎛⎭⎪⎫32n -2有最大值为-9,∴a 1>-9,又a 2=a 1+3满足a 2>a 1, ∴a 1的取值范围是(-9,+∞).4.(2017·昆明模拟)设数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n =2a n S n -2S 2n .(1)求数列{a n }的通项公式;(2)是否存在正数k ,使(1+S 1)(1+S 2)…(1+S n )≥k 2n +1对一切正整数n 都成立?若存在,求k 的取值范围;若不存在,请说明理由.[解] (1)∵当n ≥2时,a n =S n -S n -1,a n =2a n S n -2S 2n ,∴S n -S n -1=2(S n -S n -1)S n -2S 2n .∴S n -1-S n =2S n S n -1. ∴1S n-1S n -1=2.∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列, 即1S n=1+(n -1)×2=2n -1.∴S n =12n -1.当n ≥2时,a n =S n -S n -1=12n -1-12(n -1)-1=-2(2n -1)(2n -3).∴数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,-2(2n -1)(2n -3),n ≥2.(2)设b n =(1+S 1)(1+S 2)…(1+S n )2n +1,则b n +1=(1+S 1)(1+S 2)…(1+S n )(1+S n +1)2n +3.由(1)知S n =12n -1,S n +1=12n +1,∴b n +1b n =(1+S n +1)2n +12n +3=2n +2(2n +1)(2n +3)=4n 2+8n +44n 2+8n +3>1.又b n >0,∴数列{b n }是单调递增数列. 由(1+S 1)(1+S 2)…(1+S n )≥k 2n +1,得b n ≥k . ∴k ≤b 1=23=233.∴存在正数k ,使(1+S 1)(1+S 2)…(1+S n )≥k 2n +1对一切正整数n 都成立,且k 的取值范围为⎝ ⎛⎦⎥⎤0,233.。

教育最新K12通用版2018年高考数学二轮复习课时跟踪检测五理

教育最新K12通用版2018年高考数学二轮复习课时跟踪检测五理

课时跟踪检测(五)一、选择题1.设函数f (x )=A sin(ωx +φ)(A >0,ω>0).若函数f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则函数f (x )的最小正周期为( ) A.π2 B .π C.3π2D .2π 解析:选B 由已知可画出草图,如图所示,则T 4=π2+2π32-π2+π62,解得T =π. 2.已知外接圆半径为R 的△ABC 的周长为(2+3)R ,则sin A +sin B +sin C =( ) A .1+32B .1+34C.12+32D.12+ 3 解析:选A 由正弦定理知a +b +c =2R (sin A +sin B +sin C )=(2+3)R ,所以sinA +sinB +sinC =1+32,故选A. 3.若函数f (x )=2m sin ⎝ ⎛⎭⎪⎫2x +π3-2在x ∈⎣⎢⎡⎦⎥⎤0,5π12内存在零点,则实数m 的取值范围是( )A .(-∞,-1]∪[1,+∞)B.⎣⎢⎡⎦⎥⎤-233,2 C .(-∞,-2]∪[1,+∞) D .[-2,1]解析:选C 设x 0为f (x )在⎣⎢⎡⎦⎥⎤0,5π12内的一个零点,则2m sin ⎝ ⎛⎭⎪⎫2x 0+π3-2=0,所以m=1sin ⎝⎛⎭⎪⎫2x 0+π3.因为0≤x 0≤5π12,所以π3≤2x 0+π3≤7π6,所以-12≤sin ⎝ ⎛⎭⎪⎫2x 0+π3≤1,所以m ≤-2或m ≥1,故选C.4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =5,a =3,cos(B -A )=79,则△ABC 的面积为( )A.152 B.523C .5 2D .2 2 解析:选C 在边AC 上取点D 使A =∠ABD ,则cos ∠DBC =cos(∠ABC -A )=79,设AD =DB =x ,在△BCD 中,由余弦定理得,(5-x )2=9+x 2-2×3x ×79,解得x =3.故BD =DC ,在等腰三角形BCD 中,DC 边上的高为22,所以S △ABC =12×5×22=52,故选C.5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6 B.π3 C.2π3 D.5π6解析:选A 由射影定理可知a cos C +c cos A =b ,则(a cos C +c cos A )sin B =b sin B ,又a sin B cos C +c sin B cos A =12b ,则有b sin B =12b ,sin B =12.又a >b ,所以A >B ,则B∈⎝⎛⎭⎪⎫0,π2,故B =π6.6.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足AP ―→=λAB ―→,AQ ―→=(1-λ)AC ―→,λ∈R ,若BQ ―→·CP ―→=-32,则λ=( )A.12B.1±22 C.1±102D.-3±222解析:选A 以点A 为坐标原点,AB 所在的直线为x 轴,过点A 且垂直于AB 的直线为y 轴,建立平面直角坐标系,则A (0,0),B (2,0),C (1,3),∴AB ―→=(2,0),AC ―→=(1,3),又AP ―→=λAB ―→,AQ ―→=(1-λ)AC ―→,∴P (2λ,0),Q (1-λ,3(1-λ)),∴BQ ―→·CP ―→=(-1-λ,3(1-λ))·(2λ-1,-3)=-32,化简得4λ2-4λ+1=0,∴λ=12.二、填空题7.对任意两个非零的平面向量α和β,定义α∘β=α·ββ·β.若平面向量a ,b 满足|a |≥|b |>0,a 与b 的夹角θ∈⎝ ⎛⎭⎪⎫0,π4,且a ∘b 和b ∘a 都在集合⎩⎨⎧⎭⎬⎫n 2|n ∈Z 中,则a ∘b =________.解析:a ∘b =a·b b·b =|a ||b |cos θ|b |2=|a |cos θ|b |,①b ∘a =b·a a·a =|b ||a |cos θ|a |2=|b |cos θ|a |.②∵θ∈⎝⎛⎭⎪⎫0,π4,∴22<cos θ<1.又|a |≥|b |>0,∴0<|b ||a |≤1.∴0<|b ||a |cos θ<1,即0<b ∘a <1.∵b ∘a ∈⎩⎨⎧⎭⎬⎫n 2|n ∈Z ,∴b ∘a =12.①×②,得(a ∘b )(b ∘a )=cos 2θ∈⎝ ⎛⎭⎪⎫12,1,∴12<12(a ∘b )<1,即1<a ∘b <2,∴a ∘b =32. 答案:328.在边长为2的菱形ABCD 中,∠BAD =60°,P ,Q 分别是BC ,BD 的中点,则向量AP ―→与AQ ―→的夹角的余弦值为________.解析:以A 为原点,AB 所在直线为x 轴建立如图所示的直角坐标系,则A (0,0),B (2,0),C (3,3),D (1,3),所以P ⎝ ⎛⎭⎪⎫52,32,Q ⎝ ⎛⎭⎪⎫32,32,则AP ―→=⎝ ⎛⎭⎪⎫52,32,AQ ―→=⎝ ⎛⎭⎪⎫32,32, 所以cos ∠PAQ =AP ―→·AQ ―→|AP ―→||AQ ―→|=154+347×3=32114.答案:321149.(2017·石家庄质检)非零向量m ,n 的夹角为π3,且满足|n |=λ|m |(λ>0),向量组x 1,x 2,x 3由一个m 和两个n 排列而成,向量组y 1,y 2,y 3由两个m 和一个n 排列而成,若x 1·y 1+x 2·y 2+x 3·y 3所有可能值中的最小值为4m 2,则λ=________.解析:由题意,x 1·y 1+x 2·y 2+x 3·y 3的运算结果有以下两种可能:①m 2+m·n +n 2=m 2+λ|m ||m |cosπ3+λ2m 2=⎝ ⎛⎭⎪⎫λ2+λ2+1m 2;②m·n +m·n +m·n =3λ|m |·|m |cos π3=3λ2m 2.又λ2+λ2+1-3λ2=λ2-λ+1=⎝ ⎛⎭⎪⎫λ-122+34>0,所以3λ2m 2=4m 2,即3λ2=4,解得λ=83.答案:83三、解答题10.已知函数f (x )=(3sin x +cos x )2-2.(1)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π2上的最大值和最小值; (2)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=2,a =3,且sin B =2sin C ,求△ABC 的面积.解:(1)f (x )=(3sin x +cos x )2-2 =(3sin 2x +cos 2x +23sin x cos x )-2 =2sin 2x +3sin 2x -1=3sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6, ∵x ∈⎣⎢⎡⎦⎥⎤-π6,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π2,5π6,∴当2x -π6=-π2,即x =-π6时,函数f (x )取得最小值f ⎝ ⎛⎭⎪⎫-π6=-2;当2x -π6=π2,即x =π3时,函数f (x )取得最大值f ⎝ ⎛⎭⎪⎫π3=2. (2)∵f (A )=2,∴2sin ⎝ ⎛⎭⎪⎫2A -π6=2,即sin ⎝⎛⎭⎪⎫2A -π6=1.∵A ∈(0,π),∴2A -π6=π2,解得A =π3.∵sin B =2sin C ,∴b =2c . ∵a 2=b 2+c 2-2bc cos A ,∴3=5c 2-4c 2×cos π3,解得c =1,∴b =2.∴S △ABC =12bc sin A =12×2×1×sin π3=32.11.在△ABC 中,边a ,b ,c 分别是内角A ,B ,C 所对的边,且满足2sin B =sin A +sin C ,设B 的最大值为B 0.(1)求B 0的值;(2)当B =B 0,a =3,c =6,AD ―→=12DB ―→时,求CD 的长.解:(1)由题设及正弦定理知,2b =a +c ,即b =a +c2.由余弦定理知,cos B =a 2+c 2-b22ac=a 2+c 2-⎝⎛⎭⎪⎫a +c 222ac=a 2+c 2-2ac 8ac≥ac -2ac 8ac =12,当且仅当a 2=c 2,即a =c 时等号成立. ∵y =cos x 在(0,π)上单调递减, ∴B 的最大值B 0=π3.(2)∵B =B 0=π3,a =3,c =6,∴b =a 2+c 2-2ac cos B =33, ∴c 2=a 2+b 2,即C =π2,A =π6,由AD ―→=12DB ―→,知AD =13AB =2,在△ACD 中,由余弦定理得CD =AC 2+AD 2-2AC ·AD ·cos π6=13.12.某地拟建一主题游乐园,该游乐园为四边形区域ABCD ,其中三角形区域ABC 为主题活动区,其中∠ACB =60°,∠ABC =45°,AB =126;AD ,CD 为游客通道(不考虑宽度),且∠ADC =120°,三角形区域ADC 为游乐休闲中心供游客休憩.(1)求AC 的长度;(2)记游客通道AD 与CD 的长度和为L ,求L 的最大值. 解:(1)由正弦定理,得AB sin ∠ACB =ACsin ∠ABC,又∠ACB =60°,∠ABC =45°,AB =126, 所以AC =126sin 45°sin 60°=24.(2)设∠CAD =θ(0°<θ<60°),则∠ACD =60°-θ, 在△ADC 中,由正弦定理得AC sin 120°=CD sin θ=AD-θ,所以L =AD +CD=163[sin(60°-θ)+sin θ]=163(sin 60°cos θ-cos 60°sin θ+sin θ) =163sin(60°+θ),故当θ=30°时,L 取到最大值16 3.。

配套K12通用版2018年高考数学二轮复习课时跟踪检测二十三文

配套K12通用版2018年高考数学二轮复习课时跟踪检测二十三文

课时跟踪检测(二十三)A 组——12+4提速练一、选择题1.设f (x )=x ln x ,f ′(x 0)=2,则x 0=( ) A .e 2B .e C.ln 22D .ln 2解析:选B ∵f ′(x )=1+ln x ,∴f ′(x 0)=1+ln x 0=2,∴x 0=e ,故选B. 2.函数f (x )=e xcos x 的图象在点(0,f (0))处的切线方程是( ) A .x +y +1=0 B .x +y -1=0 C .x -y +1=0D .x -y -1=0解析:选C 依题意,f (0)=e 0cos 0=1,因为f ′(x )=e xcos x -e xsin x ,所以f ′(0)=1,所以切线方程为y -1=x -0,即x -y +1=0,故选C.3.已知直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则n =( ) A .-1 B .1 C .3 D .4解析:选C 对于y =x 3+mx +n ,y ′=3x 2+m ,而直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则有⎩⎪⎨⎪⎧3+m =k ,k +1=3,1+m +n =3,可解得n =3.4.若下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (1)=( )A.13 B .-13 C.73 D .-53解析:选A 由题意知,f ′(x )=x 2+2ax +a 2-1,∵a ≠0,∴其图象为最右侧的一个.由f ′(0)=a 2-1=0,得a =±1.由导函数f ′(x )的图象可知,a <0,故a =-1,∴f (x )=13x 3-x 2+1,f (1)=13-1+1=13.5.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12和(1,+∞) B .(0,1)和(2,+∞)C.⎝ ⎛⎭⎪⎫0,12和(2,+∞) D .(1,2)解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x=2x 2-5x +2x=x -x -x>0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,12和(2,+∞).6.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为( )A.⎣⎢⎡⎭⎪⎫12,+∞ B .[3,+∞) C .[-2,3]D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d ,所以f ′(x )=3x 2+2bx +c ,由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1,由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <12时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).7.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于点(1,0),则f (x )的极大值、极小值分别为( )A .-427,0B .0,-427C.427,0 D .0,427解析:选C 由题意知,f ′(x )=3x 2-2px -q ,由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x ,由f ′(x )=3x 2-4x +1=0,得x=13或x =1,易得当x =13时,f (x )取极大值427,当x =1时,f (x )取极小值0. 8.已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)·f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)解析:选D 因为f (x )+xf ′(x )<0,所以[xf (x )]′<0,故xf (x )在(0,+∞)上为单调递减函数,又(x +1)f (x +1)>(x 2-1)·f (x 2-1),所以0<x +1<x 2-1,解得x >2.9.已知函数f (x )的定义域为R ,f ′(x )为其导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(-3,-2)∪(2,3)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)解析:选A 由y =f ′(x )的图象知,f (x )在(-∞,0]上单调递增,在(0,+∞)上单调递减,又f (-2)=1,f (3)=1,∴f (x 2-6)>1可化为-2<x 2-6<3,解得2<x <3或-3<x <-2.10.设函数f (x )=13x -ln x (x >0),则f (x )( )A .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)上均有零点B .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)上均无零点 C .在区间⎝ ⎛⎭⎪⎫1e ,1上有零点,在区间(1,e)上无零点 D .在区间⎝ ⎛⎭⎪⎫1e ,1上无零点,在区间(1,e)上有零点 解析:选D 因为f ′(x )=13-1x ,所以当x ∈(0,3)时,f ′(x )<0,f (x )单调递减,而0<1e <1<e<3,又f ⎝ ⎛⎭⎪⎫1e =13e +1>0,f (1)=13>0,f (e)=e 3-1<0,所以f (x )在区间⎝ ⎛⎭⎪⎫1e ,1上无零点,在区间(1,e)上有零点.11.(2017·成都模拟)已知曲线C 1:y 2=tx (y >0,t >0)在点M ⎝ ⎛⎭⎪⎫4t,2处的切线与曲线C 2:y=ex +1-1也相切,则t ln 4e2t的值为( )A .4e 2B .8eC .2D .8解析:选D 由y =tx ,得y ′=12t ·x -12,则曲线C 1在x =4t 时的切线斜率为k =t4,所以切线方程为y -2=t 4⎝ ⎛⎭⎪⎫x -4t ,即y =t 4x +1.设切线与曲线y =e x +1-1的切点为(x 0,y 0).由y =e x +1-1,得y ′=e x +1,则由e x 0+1=t 4,得切点⎝ ⎛⎭⎪⎫ln t4-1,t 4-1,故切线方程又可表示为y-t 4+1=t 4x -ln t 4+1,即y =t 4x +t 4ln 4t +t 2-1,所以由题意,得t 4ln 4t +t 2-1=1,即t ln 4t+2=8,整理得t ln 4e2t=8,故选D.12.(2018届高三·湘中名校联考)已知函数g (x )=a -x 21e≤x ≤e,e 为自然对数的底数与h (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是( )A .[1,e 2-2]B.⎣⎢⎡⎦⎥⎤1,1e 2+2C.⎣⎢⎡⎦⎥⎤1e 2+2,e 2-2D.[)e 2-2,+∞解析:选A 由题意,知方程x 2-a =2ln x ,即-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e ,e 上有解.设f (x )=2ln x -x 2,则f ′(x )=2x-2x =-x +x -x.易知x ∈⎣⎢⎡⎭⎪⎫1e ,1时f ′(x )>0,x ∈[1,e]时f ′(x )<0,所以函数f (x )在⎣⎢⎡⎭⎪⎫1e ,1上单调递增,在[1,e]上单调递减,所以f (x )极大值=f (1)=-1,又f (e)=2-e 2,f ⎝ ⎛⎭⎪⎫1e =-2-1e2,f (e)<f ⎝ ⎛⎭⎪⎫1e ,所以方程-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e,e 上有解等价于2-e 2≤-a ≤-1,所以a 的取值范围为[1,e 2-2],故选A.二、填空题13.(2017·张掖模拟)若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上单调递减,则实数a的取值范围是________.解析:f ′(x )=x 2-ax +1,∵函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上单调递减,∴f ′(x )≤0在区间⎝ ⎛⎭⎪⎫12,3上恒成立,∴⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫12≤0,f,即⎩⎪⎨⎪⎧14-12a +1≤0,9-3a +1≤0,解得a ≥103,∴实数a 的取值范围为⎣⎢⎡⎭⎪⎫103,+∞.答案:⎣⎢⎡⎭⎪⎫103,+∞ 14.(2017·山东高考)若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中所有具有M 性质的函数的序号为________.①f (x )=2-x;②f (x )=3-x;③f (x )=x 3;④f (x )=x 2+2.解析:设g (x )=e x f (x ),对于①,g (x )=e x ·2-x, 则g ′(x )=(e x ·2-x )′=e x ·2-x(1-ln 2)>0,所以函数g (x )在(-∞,+∞)上为增函数,故①符合要求; 对于②,g (x )=e x ·3-x,则g ′(x )=(e x ·3-x )′=e x ·3-x(1-ln 3)<0,所以函数g (x )在(-∞,+∞)上为减函数,故②不符合要求; 对于③,g (x )=e x ·x 3,则g ′(x )=(e x ·x 3)′=e x ·(x 3+3x 2),显然函数g (x )在(-∞,+∞)上不单调,故③不符合要求; 对于④,g (x )=e x ·(x 2+2),则g ′(x )=[e x·(x 2+2)]′=e x ·(x 2+2x +2)=e x ·[(x +1)2+1]>0, 所以函数g (x )在(-∞,+∞)上为增函数,故④符合要求. 综上,具有M 性质的函数的序号为①④. 答案:①④15.已知函数f (x )=e x-mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围是________.解析:函数f (x )的导数f ′(x )=e x-m ,即切线斜率k =e x-m ,若曲线C 存在与直线y =e x 垂直的切线,则满足(e x -m )e =-1,即e x -m =-1e 有解,即m =e x +1e 有解,∵e x+1e >1e ,∴m >1e.答案:⎝ ⎛⎭⎪⎫1e ,+∞ 16.(2017·兰州模拟)已知函数f (x )=e x+m ln x (m ∈R ,e 为自然对数的底数),若对任意正数x 1,x 2,当x 1>x 2时都有f (x 1)-f (x 2)>x 1-x 2成立,则实数m 的取值范围是________.解析:函数f (x )的定义域为(0,+∞).依题意得,对于任意的正数x 1,x 2,当x 1>x 2时,都有f (x 1)-x 1>f (x 2)-x 2,因此函数g (x )=f (x )-x 在区间(0,+∞)上是增函数,于是当x >0时,g ′(x )=f ′(x )-1=e x+mx-1≥0,即x (e x -1)≥-m 恒成立.记h (x )=x (e x-1),x >0,则有h ′(x )=(x +1)e x -1>(0+1)e 0-1=0(x >0),h (x )在区间(0,+∞)上是增函数,h (x )的值域是(0,+∞),因此-m ≤0,m ≥0.故所求实数m 的取值范围是[0,+∞).答案:[0,+∞)B 组——能力小题保分练1.(2017·陕西质检)设函数f (x )=x sin x 在x =x 0处取得极值,则(1+x 20)(1+cos 2x 0)的值为( )A .1B .-1C .-2D .2解析:选D f ′(x )=sin x +x cos x ,令f ′(x )=0得tan x =-x ,所以tan 2x 0=x 20,故(1+x 20)(1+cos 2x 0)=(1+tan 2x 0)·2cos 2x 0=2cos 2x 0+2sin 2x 0=2,故选D.2.(2017·开封模拟)过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有( ) A .3条 B .2条 C .1条D .0条解析:选A 由题意得,f ′(x )=3x 2-3,设切点为(x 0,x 30-3x 0),那么切线的斜率为k =3x 20-3,则切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),将点A (2,1)代入可得关于x 0的一元三次方程2x 30-6x 20+7=0.令y =2x 30-6x 20+7,则y ′=6x 20-12x 0.由y ′=0得x 0=0或x 0=2.当x 0=0时,y =7>0;x 0=2时,y =-1<0.所以方程2x 30-6x 20+7=0有3个解.故过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有3条,故选A.3.(2017·惠州调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( )A .(e ,+∞)B .(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e)D.⎝ ⎛⎭⎪⎫1e ,e 解析:选D f (x )=x sin x +cos x +x 2,因为f (-x )=f (x ),所以f (x )是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ),所以f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)可变形为f (ln x )<f (1).f ′(x )=x cos x +2x =x (2+cos x ),因为2+cos x >0,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以f (ln x )<f (1)等价于|ln x |<1,即-1<ln x <1,所以1e<x <e.故选D.4.设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)解析:选C 由正弦型函数的图象可知:f (x )的极值点x 0满足f (x 0)=±3,则πx 0m =π2+k π(k ∈Z),从而得x 0=⎝⎛⎭⎪⎫k +12m (k ∈Z).所以不等式x 20+[f (x 0)]2<m 2即为⎝⎛⎭⎪⎫k +122m 2+3<m 2,变形得m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3,其中k ∈Z.由题意,存在整数k 使得不等式m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠-1且k ≠0时,必有⎝⎛⎭⎪⎫k +122>1,此时不等式显然不能成立,故k =-1或k =0,此时,不等式即为34m 2>3,解得m <-2或m >2.5.若对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞,函数f (x )=12x 2-ax -2b 与g (x )=2a ln(x -2)的图象均有交点,则实数b 的取值范围是( )A.⎣⎢⎡⎭⎪⎫1516+12ln 2,+∞B.⎣⎢⎡⎭⎪⎫158+ln 2,+∞C.⎝ ⎛⎭⎪⎫12,1516+12ln 2D.⎝ ⎛⎭⎪⎫1516+12ln 2,+∞ 解析:选A 依题意,原问题等价于对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞,关于x 的方程12x 2-ax -2a ln(x -2)=2b 有解.设h (x )=12x 2-ax -2a ln(x -2),则h ′(x )=x -a -2a x -2=xx -a -x -2,所以h (x )在(2,a +2)上单调递减,在(a +2,+∞)上单调递增,当x →2时h (x )→+∞,当x →+∞时,h (x )→+∞,h (a +2)=-12a 2-2a ln a +2,记p (a )=-12a 2-2a ln a +2,则h (x )的值域为[p (a ),+∞),故2b ∈[p (a ),+∞)对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞恒成立,即2b ≥p (a )max ,而p ′(a )=-a -2ln a -2≤-12+2ln 2-2<0,故p (a )单调递减,所以p (a )≤p ⎝ ⎛⎭⎪⎫12=158+ln2,所以b ≥1516+12ln 2,故选A.6.(2017·张掖模拟)定义在R 上的可导函数f (x )满足f (1)=1,且2f ′(x )>1,当x ∈⎣⎢⎡⎦⎥⎤-π2,3π2时,不等式f (2cos x )>32-2sin 2x 2的解集为( ) A.⎝ ⎛⎭⎪⎫π3,4π3B.⎝ ⎛⎭⎪⎫-π3,4π3C.⎝⎛⎭⎪⎫0,π3 D.⎝ ⎛⎭⎪⎫-π3,π3解析:选D 令g (x )=f (x )-x 2-12,则g ′(x )=f ′(x )-12>0,∴g (x )在R 上单调递增,且g (1)=f (1)-12-12=0,∵f (2cos x )-32+2sin 2x 2=f (2cos x )-2cos x 2-12=g (2cos x ),∴f (2cos x )>32-2sin 2x 2,即g (2cos x )>0,∴2cos x >1,又x ∈⎣⎢⎡⎦⎥⎤-π2,3π2,∴x ∈⎝ ⎛⎭⎪⎫-π3,π3.。

配套K12通用版2018年高考数学二轮复习课时跟踪检测十二理

配套K12通用版2018年高考数学二轮复习课时跟踪检测十二理

课时跟踪检测(十二)A 组——12+4提速练一、选择题1.(2017·云南统考)在⎝⎛⎭⎪⎫x -1x 10的二项展开式中,x 4的系数为( )A .-120B .-60C .60D .120解析:选A ⎝⎛⎭⎪⎫x -1x 10的展开式的通项T r +1=C r 10x 10-r ·⎝⎛⎭⎪⎫-1xr =(-1)r C r 10x 10-2r,令10-2r=4,得r =3,所以该二项展开式中x 4的系数为-C 310=-120.2.(2017·长沙调研)⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 2y 3的系数是( )A .-20B .-5C .5D .20解析:选A ⎝ ⎛⎭⎪⎫12x -2y 5展开式的通项T r +1=C r 5⎝ ⎛⎭⎪⎫12x 5-r ·(-2y )r =C r 5·⎝ ⎛⎭⎪⎫125-r ·(-2)r ·x5-r·y r ,令r =3,得x 2y 3的系数为C 35·⎝ ⎛⎭⎪⎫122·(-2)3=-20.3.旅游体验师小李受某旅游网站的邀约,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若甲景区不能最先旅游,乙景区和丁景区不能最后旅游,则小李旅游的方案有( )A .24种B .18种C .16种D .10种解析:选D 若甲景区在最后一个体验,则有A 33种方案;若甲景区不在最后一个体验,则有A 12A 22种方案.所以小李旅游的方案共有A 33+A 12A 22=10(种).4.现有4名教师参加说课比赛,共有4道备选题目,若每位教师从中有放回地随机选出一道题目进行说课,其中恰有一道题目没有被这4位教师选中的情况有( )A .288种B .144种C .72种D .36种解析:选B 首先选择题目,从4道题目中选出3道,选法有C 34种;其次将获得同一道题目的2位教师选出,选法有C 24种;最后将选出的3道题目分配给3组教师,分配方式有A 33种.由分步乘法计数原理,知满足题意的情况共有C 34C 24A 33=144(种).5.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A .30种B .36种C .60种D .72种解析:选A 甲、乙两人从4门课程中各选修2门有C 24C 24=36种选法,甲、乙所选的课程中完全相同的选法有C 24=6种,则甲、乙所选的课程中至少有1门不相同的选法共有36-6=30(种).6.(x 2-2)⎝⎛⎭⎪⎫1+2x 5的展开式中x -1的系数为( )A .60B .50C .40D .20解析:选A 依题意,⎝⎛⎭⎪⎫1+2x 5的展开式的通项T r +1=C r 5·2r ·x -r,⎝ ⎛⎭⎪⎫1+2x 5的展开式中含x -1(当r =1时),x -3(当r =3时)项的系数分别为2C 15,23C 35,所以(x 2-2)⎝ ⎛⎭⎪⎫1+2x 5的展开式中x -1的系数为23C 35-2×2C 15=60.7.⎝ ⎛⎭⎪⎫ax +1x (2x -1)5的展开式中各项系数的和为2,则该展开式中的常数项为( )A .-20B .-10C .10D .20解析:选C 令x =1,可得a +1=2,所以a =1,所以⎝ ⎛⎭⎪⎫ax +1x (2x -1)5=⎝ ⎛⎭⎪⎫x +1x (2x -1)5,则展开式中常数项为2C 45(-1)4=10.8.学校组织学生参加社会调查,某小组共有5名男同学,4名女同学.现从该小组中选出3名同学分别到A ,B ,C 三地进行社会调查,若选出的同学中男女均有,则不同的安排方法有( )A .70种B .140种C .840种D .420种解析:选D 从9名同学中任选3名分别到A ,B ,C 三地进行社会调查有C 39A 33种安排方法,3名同学全是男生或全是女生有(C 35+C 34)A 33种安排方法,故选出的同学中男女均有的不同安排方法有C 39A 33-(C 34+C 35)A 33=420(种).9.已知(x +2)15=a 0+a 1(1-x )+a 2(1-x )2+…+a 15(1-x )15,则a 13的值为( ) A .945 B .-945 C .1 024D .-1 024解析:选B 由(x +2)15=[3-(1-x )]15=a 0+a 1(1-x )+a 2(1-x )2+…+a 15(1-x )15,得a 13=C 1315×32×(-1)13=-945.10.(2017·合肥质检)已知(ax +b )6的展开式中x 4项的系数与x 5项的系数分别为135与-18,则(ax +b )6的展开式中所有项系数之和为( )A .-1B .1C .32D .64解析:选D 由二项展开式的通项公式可知x 4项的系数为C 26a 4b 2,x 5项的系数为C 16a 5b ,则由题意可得⎩⎪⎨⎪⎧C 26a 4b 2=135,C 16a 5b =-18,解得a +b =±2,令x =1,得(ax +b )6的展开式中所有项的系数之和为(a +b )6=64,故选D.11.(2017·全国卷Ⅲ)(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80 B .-40 C .40D .80解析:选C 当第一个括号内取x 时,第二个括号内要取含x 2y 3的项,即C 35(2x )2(-y )3,当第一个括号内取y 时,第二个括号内要取含x 3y 2的项,即C 25(2x )3(-y )2,所以x 3y 3的系数为C 25×23-C 35×22=10×(8-4)=40.12.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.则不同取法的种数为( )A .232B .252C .472D .484解析:选C 由题意,不考虑特殊情况,从16张卡片中任取3张共有C 316种取法,其中取出的这三张卡片是同一种颜色有4C 34种取法,取出2张红色卡片有C 24·C 112种取法,故所求的取法共有C 316-4C 34-C 24·C 112=472(种),故选C.二、填空题13.(2018届高三·湘中名校联考)设1+x 5=a 0+a 1(x -1)+a 2(x -1)2+…+a 5(x -1)5,则a 0+a 1+a 2+…+a 5=________.解析:令x =2,得1+25=a 0+a 1+a 2+…+a 5,即a 0+a 1+a 2+…+a 5=33. 答案:3314.(2017·浙江高考)已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a 5=________.解析:由题意知a 4为含x 的项的系数,根据二项式定理得a 4=C 23×12×C 22×22+C 33×13×C 12×2=16,a 5是常数项,所以a 5=C 33×13×C 22×22=4.答案:16 415.“污染治理”“延迟退休”“楼市新政”“共享单车”“中印对峙”成为现在社会关注的5个热点.小王想利用暑假时间调查一下社会公众对这些热点的关注度.若小王准备按照顺序分别调查其中的4个热点,则“共享单车”作为其中的一个调查热点,但不作为第一个调查热点的调查顺序有________种.解析:先从“污染治理”“延迟退休”“楼市新政”“中印对峙”这4个热点中选出3个,有C 34种不同的选法,在调查时“共享单车”安排的顺序有A 13种可能情况,其余3个热点安排的顺序有A 33种可能情况,故有C 34A 13A 33=72种不同的调查顺序.答案:7216.编号为A ,B ,C ,D ,E 的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A 球不能放在4号,5号,B 球必须放在与A 球相邻的盒子中,则不同的放法的种数为________.解析:根据A 球所在的位置可分三类情况:①若A 球放在1号盒子内,则B 球只能放在2号盒子内,余下的三个盒子放C ,D ,E 球,有A 33=6种不同的放法;②若A 球放在3号盒子内,则B 球只能放在2号盒子内,余下的三个盒子放C ,D ,E 球,有A 33=6种不同的放法;③若A 球放在2号盒子内,则B 球可以放在1号,3号,4号中的任何一个盒子内,余下的三个盒子放C ,D ,E 球,有C 13·A 33=18种不同的放法.综上可得不同的放法共有6+6+18=30(种).答案:30B 组——能力小题保分练1.若(1-2x )2 018=a 0+a 1x +a 2x 2+…+a 2 018x2 018,则a 12+a 222+…+a 2 01822 018的值为( )A .2B .0C .-1D .-2解析:选C 令x =0,得a 0=1. 令x =12,得1+a 12+a 222+…+a 2 01822 018=0.则a 12+a 222+…+a 2 01822 018=-1. 2.(2017·武昌调研)若⎝⎛⎭⎪⎫3x -3x n的展开式中所有项系数的绝对值之和为1 024,则该展开式中的常数项为( )A .-270B .270C .-90D .90解析:选C ⎝ ⎛⎭⎪⎫3x -3x n 的展开式中所有项系数的绝对值之和等于⎝ ⎛⎭⎪⎫3x +3x n的展开式中所有项系数之和.令x =1,得4n=1 024,∴n =5.则⎝⎛⎭⎪⎫3x -3x n =⎝ ⎛⎭⎪⎫3x -3x 5,其通项T r +1=C r 53x5-r·(-3x )r =C r 5·35-r·(-1)r·x523r r+-,令r -52+r3=0,解得r =3,∴该展开式中的常数项为T 4=C 35·32·(-1)3=-90,故选C.3.(2016·全国卷Ⅲ)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个解析:选C 由题意知:当m =4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a 1=0,a 8=1.不考虑限制条件“对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数”,则中间6个数的情况共有C 36=20(种),其中存在k ≤2m ,a 1,a 2,…,a k 中0的个数少于1的个数的情况有:①若a 2=a 3=1,则有C 14=4(种);②若 a 2=1,a 3=0,则a 4=1,a 5=1,只有1种;③若a 2=0,则a 3=a 4=a 5=1,只有1种.综上,不同的“规范01数列”共有20-6=14(种).故共有14个.故选C.4.若⎝ ⎛⎭⎪⎫ax +1x ⎝ ⎛⎭⎪⎫2x +1x 5展开式中的常数项为-40,则a =________.解析:⎝ ⎛⎭⎪⎫2x +1x 5展开式的通项T r +1=C r 5(2x )5-r·⎝ ⎛⎭⎪⎫1x r =C r 525-r x 5-2r ,因为⎝ ⎛⎭⎪⎫ax +1x ⎝ ⎛⎭⎪⎫2x +1x 5的展开式中的常数项为-40,所以ax C 3522x -1+1xC 2523x =-40,即40a +80=-40,解得a =-3.答案:-35.福州大学的8名学生准备拼车去湘西凤凰古城旅游,其中大一、大二、大三、大四每个年级各2名,分乘甲、乙两辆汽车.每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有________种.解析:可分两类:第一类,大一的孪生姐妹乘坐甲车,则可再分三步:第一步,从大二、大三、大四三个年级中任选两个年级,有C 23种不同的选法;第二步,从所选出的两个年级中各抽取一名同学,有C 12C 12种不同的选法;第三步,余下的4名同学乘乙车有C 44种不同的选法,根据分步乘法计数原理,可知有C 23C 12C 12C 44种不同的乘坐方式.第二类,大一的孪生姐妹乘坐乙车,则可再分三步:第一步,从大二、大三、大四三个年级中任选一个年级(此年级的2名同学乘甲车),有C 13种不同的选法;第二步,余下的两个年级中各抽取一名同学,有C 12C 12种不同的选法;第三步,余下的2名同学乘乙车有C 22种不同的选法,根据分步乘法计数原理,可知有C 13C 12C 12C 22种不同的乘坐方式.根据分类加法计数原理,满足要求的乘坐方式种数为C 23C 12C 12C 44+C 13C 12C 12C 22=24.答案:246.(2017·陕西质检)从一架钢琴挑出的10个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为________(用数字作答).解析:依题意共有8类不同的和声,当有k (k =3,4,5,6,7,8,9,10)个键同时按下时,有C k10种不同的和声,则和声总数为C 310+C 410+C 510+…+C 1010=210-C 010-C 110-C 210=1 024-1-10-45=968.答案:968。

教育最新K12通用版2018年高考数学二轮复习课时跟踪检测二十五文

教育最新K12通用版2018年高考数学二轮复习课时跟踪检测二十五文

课时跟踪检测(二十五)一、选择题1.已知直线ax +by =1经过点(1,2),则2a +4b的最小值为( ) A. 2 B .2 2 C .4D .4 2解析:选B 因为直线ax +by =1经过点(1,2),所以a +2b =1,则2a+4b≥22a·22b=22a +2b=22,当且仅当a =2b =12时等号成立.2.(2018届高三·湖南五市十校联考)已知函数f (x )=x +sin x (x ∈R),且f (y 2-2y +3)+f (x 2-4x +1)≤0,则当y ≥1时,yx +1的取值范围是( )A.⎣⎢⎡⎦⎥⎤14,34 B.⎣⎢⎡⎦⎥⎤14,1 C .[1,32-3]D.⎣⎢⎡⎭⎪⎫13,+∞ 解析:选A 函数f (x )=x +sin x (x ∈R)为奇函数,又f ′(x )=1+cos x ≥0,所以函数f (x )在其定义域内单调递增,则f (x 2-4x +1)≤f (-y 2+2y -3),即x 2-4x +1≤-y 2+2y -3,化简得(x -2)2+(y -1)2≤1,当y ≥1时表示的区域为上半圆及其内部,如图所示.令k =yx +1=yx --,其几何意义为过点(-1,0)与半圆相交或相切的直线的斜率,斜率最小时直线过点(3,1),此时k min =13--=14,斜率最大时直线刚好与半圆相切,圆心到直线的距离d =|2k -1+k |k 2+1=1(k >0),解得k max=34,故选A. 3.(2017·石家庄质检)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤r 2(r 为常数)表示的平面区域的面积为π,若x ,y 满足上述约束条件,则z =x +y +1x +3的最小值为( ) A .-1 B .-52+17C.13D .-75解析:选 D 作出不等式组表示的平面区域,如图中阴影部分所示,由题意,知14πr 2=π,解得r =2.z =x +y +1x +3=1+y -2x +3,表示可行域内的点与点P (-3,2)连线的斜率加上1,由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =1-125=-75,故选D.4.(2017·沈阳质检)已知函数f (x )=⎩⎪⎨⎪⎧2x+22,x ≤1,|log 2x -,x >1,则函数F (x )=f [f (x )]-2f (x )-32的零点个数是( )A .4B .5C .6D .7解析:选A 令f (x )=t ,则函数F (x )可化为y =f (t )-2t -32,则函数F (x )的零点问题可转化为方程f (t )-2t -32=0的根的问题.令y =f (t )-2t -32=0,即f (t )=2t +32,如图①,由数形结合得t 1=0,1<t 2<2,如图②,再由数形结合得,当f (x )=0时,x =2,有1个解,当f (x )=t 2时,有3个解,所以y =f [f (x )]-2f (x )-32共有4个零点.故选A.5.(2018届高三·湖北七市(州)联考)已知函数f (x )=x 2+(a +8)x +a 2+a -12(a <0),且f (a 2-4)=f (2a -8),则f n -4a n +1(n ∈N *)的最小值为( )A.374 B.358 C.283 D.485解析:选A 二次函数f (x )=x 2+(a +8)x +a 2+a -12图象的对称轴为直线x =-a +82,由f (a 2-4)=f (2a -8)及二次函数的图象,可以得出a 2-4+2a -82=-a +82,解得a =-4或a =1,又a <0,∴a =-4,f (x )=x 2+4x ,∴f n -4a n +1=n 2+4n +16n +1=n +2+n ++13n +1=n +1+13n +1+2≥2n +13n +1+2=213+2,当且仅当n +1=13n +1,即n =13-1时等号成立,又n ∈N *,∴当n =4时,f n -4a n +1=485,n =3时,f n -4a n +1=374<485,∴最小值为374,故选A.6.(2018届高三·广东省五校联考)已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f (x )g ′(x )>f ′(x )g (x ),f (x )=a x ·g (x )(a >0,a ≠1),f g+f -g -=52.在有穷数列⎩⎨⎧⎭⎬⎫f n gn (n =1,2,…,10)中,任意取正整数k (1≤k ≤10),则前k 项和大于1516的概率是( ) A.15 B.25 C.35 D.45解析:选C 由f (x )=a x·g (x ),可得a x=f xg x,⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x gx[g x2<0,所以f xg x 为减函数,所以0<a <1.由fg +f -g -=52,可得a +1a =52,解得a =12或a =2,又0<a <1,所以a =12.当a =12时,f n g n =⎝ ⎛⎭⎪⎫12n 是以12为首项,12为公比的等比数列,则前k 项和为12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12k =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k 1-12=1-⎝ ⎛⎭⎪⎫12k .由1-⎝ ⎛⎭⎪⎫12k>1516可得k >4,即当5≤k ≤10时,前k 项和大于1516,故所求的概率为10-410=610=35,故选C. 二、填空题7.若对于定义在R 上的函数f (x ),其图象是连续不断的,且存在常数λ(λ∈R)使得f (x+λ)+λf (x )=0对任意实数x 都成立,则称f (x )是一个“λ­伴随函数”.有下列关于“λ­伴随函数”的结论:①f (x )=0是常数函数中唯一的“λ­伴随函数”; ②f (x )=x 不是“λ­伴随函数”; ③f (x )=x 2是一个“λ­伴随函数”; ④“12­伴随函数”至少有一个零点.其中不正确的是________.(填序号)解析:对于①,若f (x )=c ≠0,则取λ=-1,此时f (x +λ)+λf (x )=f (x -1)-f (x )=c -c =0,则f (x )=c ≠0是“-1­伴随函数”,①错误;对于②,当f (x )=x 时,若f (x )是“λ­伴随函数”,则f (x +λ)+λf (x )=0,即(x +λ)+λx =0对任意x 成立,易知不存在这样的λ,所以f (x )=x 不是“λ­伴随函数”,②正确;对于③,若f (x )=x 2是一个“λ­伴随函数”,则(x +λ)2+λx 2=0对任意实数x 都成立,易知不存在这样的λ,所以f (x )=x 2不是“λ­伴随函数”,③错误;对于④,若f (x )是“12­伴随函数”,则f ⎝ ⎛⎭⎪⎫x +12+12f (x )=0,取x =0,有f ⎝ ⎛⎭⎪⎫12+12f (0)=0,若f (0),f ⎝ ⎛⎭⎪⎫12均为0,则函数有零点,若f (0),f ⎝ ⎛⎭⎪⎫12均不为零,则f (0),f ⎝ ⎛⎭⎪⎫12异号,由零点存在定理知,函数在⎝ ⎛⎭⎪⎫0,12上一定有零点,④正确.答案:①③8.(2017·南昌模拟)已知实数x ,y 满足⎩⎪⎨⎪⎧3x -2y -3≤0,x -3y +6≥0,2x +y -2≥0,在这两个实数x ,y 之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为________.解析:设在这两个实数x ,y 之间插入三个实数a 1,a 2,a 3,即x ,a 1,a 2,a 3,y 构成等差数列,所以这个等差数列后三项的和为a 2+a 3+y =x +y2+x +y2+y2+y =34(x +3y ),令z =x +3y ,作出不等式组表示的可行域,如图中阴影部分所示,将直线x +3y =0平移至A 处时,z 取最大值.由⎩⎪⎨⎪⎧3x -2y -3=0,x -3y +6=0,解得A (3,3),所以z max =3+3×3=12.所以(a 2+a 3+y )max =34(x +3y )max =34×12=9.答案:99.(2017·云南统考)已知y =f (x )是R 上的偶函数,对于任意的x ∈R ,均有f (x )=f (2-x ),当x ∈[0,1]时,f (x )=(x -1)2,则函数g (x )=f (x )-log 2 017|x -1|的所有零点之和为________.解析:因为函数f (x )是偶函数,所以f (x )=f (2-x )=f (x +2),所以函数f (x )的周期为2,又当x ∈[0,1]时,f (x )=(x -1)2,将偶函数y =log 2 017|x |的图象向右平移一个单位长度得到函数y =log 2 017|x -1|的图象,由此可在同一平面直角坐标系下作出函数y =f (x )与y =log 2 017|x -1|图象(图略),函数g (x )的零点,即为函数y =f (x )与y =log 2 017|x -1|图象的交点的横坐标,当x >2 018时,两函数图象无交点,又两函数图象在[1,2 018]上有2 016个交点,由对称性知两函数图象在[-2 016,1]上也有2 016个交点,且它们关于直线x =1对称,所以函数g (x )的所有零点之和为4 032.答案:4 032 三、解答题10.(2017·张掖模拟)已知函数f (x )=mxln x ,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e 为自然对数的底数).(1)求f (x )的解析式及单调递减区间;(2)是否存在最小的常数k ,使得对任意x ∈(0,1),f (x )>kln x +2x 恒成立?若存在,求出k 的值;若不存在,请说明理由.解:(1)f ′(x )=mx -x2(x >0,且x ≠1),由f ′(e 2)=12=m 4,得m =2,故f (x )=2x ln x ,此时f ′(x )=x -x2,由f ′(x )<0得0<x <1或1<x <e ,所以函数f (x )的单调递减区间为(0,1),(1,e).(2)f (x )>k ln x +2x 恒成立,即2x ln x >k ln x +2x 恒成立⇔k ln x <2xln x-2x 恒成立,当x ∈(0,1)时,ln x <0,则有k >2x -2x ·ln x 恒成立, 令g (x )=2x -2x ·ln x ,则g ′(x )=2x -ln x -2x,再令h (x )=2x -ln x -2,得h ′(x )=x -1x<0, 所以h (x )在(0,1)内单调递减, 所以h (x )>h (1)=0,故g ′(x )=h xx>0, 所以g (x )在(0,1)内单调递增,g (x )<g (1)=2,则k ≥2. 故存在最小的常数k =2满足题意.11.(2018届高三·西安八校联考)设函数f (x )=m e x-ln x -1. (1)当m =0时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)当m ≥1时,证明:f (x )>1.解:(1)当m =0时,f (x )=-ln x -1,则f ′(x )=-1x,所以f (1)=-1,f ′(1)=-1.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -(-1)=-(x -1),即y =-x . 故曲线y =f (x )在点(1,f (1))处的切线方程为y =-x . (2)当m ≥1时,f (x )=m e x-ln x -1≥e x-ln x -1. 要证f (x )>1,只需证e x-ln x -2>0. 设g (x )=e x -ln x -2,则g ′(x )=e x-1x.设h (x )=e x -1x ,则h ′(x )=e x+1x2>0,所以函数h (x )=g ′(x )=e x-1x在(0,+∞)上单调递增.因为g ′⎝ ⎛⎭⎪⎫12=e 12-2<0,g ′(1)=e -1>0, 所以函数g ′(x )=e x-1x 在(0,+∞)上有唯一零点x 0,且x 0∈⎝ ⎛⎭⎪⎫12,1.因为g ′(x 0)=0,所以e x 0=1x 0,即ln x 0=-x 0.当x ∈(0,x 0)时,g ′(x )<0, 当x ∈(x 0,+∞)时,g ′(x )>0,所以当x =x 0时,g (x )取得极小值(也是最小值)g (x 0).故g (x )≥g (x 0)=e x 0-ln x 0-2=1x 0+x 0-2=x 0-2x 0>0.综上,当m ≥1时,f (x )>1.12.(2017·云南调研)已知函数f (x )=ln x -ax . (1)讨论函数f (x )的单调性;(2)当函数f (x )有两个不相等的零点x 1,x 2时,证明:x 1x 2>e 2. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=1x-a ,①当a ≤0时,f ′(x )>0,则函数f (x )在(0,+∞)上递增;②当a >0时,若x ∈⎝⎛⎭⎪⎫0,1a ,则f ′(x )>0,函数f (x )在⎝ ⎛⎭⎪⎫0,1a 上递增.若x ∈⎝ ⎛⎭⎪⎫1a ,+∞,则f ′(x )<0,函数f (x )在⎝ ⎛⎭⎪⎫1a,+∞上递减.(2)证明:不妨设x 1>x 2>0,由已知得⎩⎪⎨⎪⎧ln x 1=ax 1,ln x 2=ax 2⇒⎩⎪⎨⎪⎧ln x 1-ln x 2=ax 1-x 2,ln x 1+ln x 2=a x 1+x 2,可得a =ln x 1-ln x 2x 1-x 2,要证x 1x 2>e 2,只需证ln(x 1x 2)>2,即证ln x 1+ln x 2=a (x 1+x 2)=(x 1+x 2)·ln x 1-ln x 2x 1-x 2>2,即证ln x 1-ln x 2>x 1-x 2x 1+x 2,即证ln x 1x 2>x 1-x 2x 1+x 2,令x 1x 2=t (t >1),即证ln t >t -t +1,即证ln t -t -t +1>0.设g (t )=ln t -t -t +1,则g ′(t )=t -2t t +2>0,g (t )在(1,+∞)上单调递增,又g (1)=0,∴g (t )>g (1)=0,综上,原不等式成立.。

【配套K12】通用版2018年高考数学二轮复习课时跟踪检测二十文

【配套K12】通用版2018年高考数学二轮复习课时跟踪检测二十文

课时跟踪检测(二十)A 组——12+4提速练一、选择题 1.函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)解析:选C 由题意可知x 满足log 2x -1>0,即log 2x >log 22,根据对数函数的性质得x >2,即函数f (x )的定义域是(2,+∞).2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,π+x ,x ≤0,则下列结论正确的是( )A .函数f (x )是偶函数B .函数f (x )是减函数C .函数f (x )是周期函数D .函数f (x )的值域为[-1,+∞)解析:选D 由函数f (x )的解析式,知f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数.当x >0时,f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1;当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x ) ∈[-1,1].所以函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).故选D.3.(2017·合肥模拟)函数y =4cos x -e |x |(e 为自然对数的底数)的图象可能是( )解析:选A 令f (x )=4cos x -e |x |,因为f (-x )=4cos(-x )-e|-x |=f (x ),所以函数f (x )是偶函数,其图象关于y 轴对称,排除选项B ,D.又f (0)=4cos 0-e 0=3>0,所以选项A 满足条件.故选A.4.已知函数f (x -1)是定义在R 上的奇函数,且在[0,+∞)上是增函数,则函数f (x )的图象可能是( )解析:选B 函数f (x -1)的图象向左平移1个单位,即可得到函数f (x )的图象.因为函数f (x -1)是定义在R 上的奇函数,所以函数f (x -1)的图象关于原点对称,所以函数f (x )的图象关于点(-1,0)对称,排除A ,C ,D ,故选B.5.(2017·长春质检)下列函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选D 选项A ,B 是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.故选D.6.(2017·陕西质检)奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (8)=( ) A .-1 B .0 C .1 D .-2解析:选B 由奇函数f (x )的定义域为R ,可得f (0)=0,由f (x +2)为偶函数,可得f (-x +2)=f (x +2),故f (x +4)=f [(x +2)+2]=f [-(x +2)+2]=f (-x )=-f (x ),则f (x +8)=f [(x +4)+4]=-f (x +4)=-[-f (x )]=f (x ),即函数f (x )的周期为8,所以f (8)=f (0)=0,故选B.7.(2018届高三·湖南五市十校联考)函数y =-xx x -2的图象大致为( )选A 当x >2时,2-x <0,e x >0,(x -1)2>0,∴y <0,此时函数的图象在x 轴的下方,排除B ;当x <2且x ≠1时,2-x >0,e x>0,(x -1)2>0,∴y >0,此时函数的图象在x 轴的上方,故选A.8.(2017·天津高考)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:选C 由f (x )为奇函数,知g (x )=xf (x )为偶函数.因为f (x )在R 上单调递增,f (0)=0,所以当x >0时,f (x )>0,所以g (x )在(0,+∞)上单调递增,且g (x )>0.又a =g (-log 25.1)=g (log 25.1),b =g (20.8),c =g (3),20.8<2=log 24<log 25.1<log 28=3,所以b <a <c .9.已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎪⎫x +12=f ⎝⎛⎭⎪⎫x -12,则f (6)=( )A .-2B .-1C .0D .2解析:选D 由题意知当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (x +1)=f (x ).又当-1≤x ≤1时,f (-x )=-f (x ),∴f (6)=f (1)=-f (-1).又当x <0时,f (x )=x 3-1,∴f (-1)=-2,∴f (6)=2.故选D.10.已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -,x >0,若方程f (x )=x +a 有两个不同实根,则a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(0,1)D .(-∞,+∞)解析:选A x ≤0时,f (x )=2-x-1,0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.故当x >0时,f (x )是周期函数,f (x )的图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).11.(2018届高三·广西三市联考)已知函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧e x ,x ≤4,4e 5-x,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),则m 的取值范围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2C .(ln 2,2]D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:选D 作出函数y 1=e|x -2|和y =g (x )的图象,如图所示,由图可知当x =1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e5-x,得e2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.12.(2017·洛阳统考)已知函数f (x )=⎩⎪⎨⎪⎧a -x +4-2a ,x <1,1+log 2x ,x ≥1.若f (x )的值域为R ,则实数a 的取值范围是( )A .(1,2]B .(-∞,2]C .(0,2]D .[2,+∞)解析:选A 依题意,当x ≥1时,f (x )=1+log 2x 单调递增,f (x )=1+log 2x 在区间[1,+∞)上的值域是[1,+∞).因此,要使函数f (x )的值域是R ,则需函数f (x )在(-∞,1)上的值域M ⊇(-∞,1).①当a -1<0,即a <1时,函数f (x )在(-∞,1)上单调递减,函数f (x )在(-∞,1)上的值域M =(-a +3,+∞),显然此时不能满足M ⊇(-∞,1),因此a <1不满足题意;②当a -1=0,即a =1时,函数f (x )在(-∞,1)上的值域M ={2},此时不能满足M ⊇(-∞,1),因此a =1不满足题意;③当a -1>0,即a >1时,函数f (x )在(-∞,1)上单调递增,函数f (x )在(-∞,1)上的值域M =(-∞,-a +3),由M ⊇(-∞,1)得⎩⎪⎨⎪⎧a >1,-a +3≥1,解得1<a ≤2.综上所述,满足题意的实数a 的取值范围是(1,2],故选A.二、填空题13.(2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x,则f (919)=________.解析:∵f (x +4)=f (x -2),∴f (x +6)=f (x ), ∴f (x )的周期为6,∵919=153×6+1,∴f (919)=f (1).又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6. 答案:614.(2017·陕西质检)已知函数f (x )=1|x |-1,下列关于函数f (x )的结论:①y =f (x )的值域为R ;②y =f (x )在(0,+∞)上单调递减; ③y =f (x )的图象关于y 轴对称;④y =f (x )的图象与直线y =ax (a ≠0)至少有一个交点. 其中正确结论的序号是________. 解析:函数f (x ) =1|x |-1=⎩⎪⎨⎪⎧1x -1,x ≥0,1-x -1,x <0,其图象如图所示,由图象可知f (x )的值域为(-∞,-1)∪(0,+∞),故①错;f (x )在(0,1)和(1,+∞)上单调递减,而在(0,+∞)上不是单调的,故②错;f (x )的图象关于y 轴对称,故③正确;由于f (x )在每个象限都有图象,所以与过原点的直线y =ax (a ≠0)至少有一个交点,故④正确.答案:③④15.(2017·惠州调研)已知定义在R 上的函数y =f (x )满足条件f ⎝ ⎛⎭⎪⎫x +32=-f (x ),且函数y =f ⎝ ⎛⎭⎪⎫x -34为奇函数,给出以下四个结论: ①函数f (x )是周期函数;②函数f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中正确结论的序号为________.解析:f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +32+32=-fx +32=f (x ),所以f (x )是周期为3的周期函数,①正确;函数f ⎝ ⎛⎭⎪⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称,②正确;因为f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称,-34=-x +⎝ ⎛⎭⎪⎫-32+x 2,所以f (-x )=-f ⎝⎛⎭⎪⎫-32+x ,又f ⎝⎛⎭⎪⎫-32+x =-f ⎝⎛⎭⎪⎫-32+x +32=-f (x ),所以f (-x )=f (x ),③正确;f (x )是周期函数,在R 上不可能是单调函数,④错误.故正确结论的序号为①②③.答案:①②③16.(2017·云南统考)已知函数f (x )=⎩⎨⎧3x 2+1+x 2+x ,x ≥0,3x 2+1+x 2-x ,x <0,若f (x -1)<f (2x +1),则x 的取值范围为________.解析:当x >0时,-x <0,f (-x )=3(-x )2+ln(1+-x2+x )=3x 2+ln(1+x 2+x )=f (x ),同理可得,当x <0时,f (-x )=f (x ),所以f (x )是偶函数.因为当x >0时,函数f (x )单调递增,所以不等式f (x -1)<f (2x +1)等价于|x -1|<|2x +1|,整理得x (x +2)>0,解得x >0或x <-2.答案:(-∞,-2)∪(0,+∞)B 组——能力小题保分练1.(2017·郑州质检)函数f (x )=1-2x1+2x cos x 的图象大致为( )解析:选C 依题意,f (-x )=1-2-x1+2-x cos(-x )=2x-2-x 2x+2-xcos x =2x-12x +1cos x =-f (x ),因此函数f (x )是奇函数,其图象关于原点对称,结合各选项知,选项A ,B 均不正确;当0<x <1时,1-2x1+2x <0,cos x >0,f (x )<0,结合选项知,C 正确,故选C.2.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).3.(2017·成都模拟)已知函数f (x )=a x(a >0,a ≠1)的反函数的图象经过点⎝⎛⎭⎪⎫22,12.若函数g (x )的定义域为R ,当x ∈[-2,2]时,有g (x )=f (x ),且函数g (x +2)为偶函数,则下列结论正确的是( )A .g (π)<g (3)<g (2)B .g (π)<g (2)<g (3)C .g (2)<g (3)<g (π)D .g (2)<g (π)<g (3)解析:选C 因为函数f (x )的反函数的图象经过点⎝⎛⎭⎪⎫22,12,所以函数f (x )的图象经过点⎝ ⎛⎭⎪⎫12,22,所以a 12=22,即a =12,函数f (x )在R 上单调递减.函数g (x +2)为偶函数,所以函数g (x )的图象关于直线x =2对称,又x ∈[-2,2]时,g (x )=f (x )且g (x )单调递减,所以x ∈[2,6]时,g (x )单调递增,根据对称性,可知在[-2,6]上距离对称轴x =2越远的自变量,对应的函数值越大,所以g (2)<g (3)<g (π).故选C.4.(2017·广州模拟)已知函数f (x )=x 2x -1+cos ⎝ ⎛⎭⎪⎫x -π+12,则∑k =12 016f ⎝ ⎛⎭⎪⎫k 2 017的值为( )A .2 016B .1 008C .504D .0解析:选B 因为f (x )=x -12+122⎝ ⎛⎭⎪⎫x -12+cos ⎝ ⎛⎭⎪⎫x -π+12=12+14⎝ ⎛⎭⎪⎫x -12+sin ⎝ ⎛⎭⎪⎫x -12,所以f (x )的图象是由y =14x +sin x +12的图象向右平移12个单位长度得到的,因为曲线y =sin ⎝ ⎛⎭⎪⎫x -12是由曲线y =sin x 向右平移12个单位长度得到的,所以曲线y =sin ⎝ ⎛⎭⎪⎫x -12关于点⎝ ⎛⎭⎪⎫12,0对称,又曲线y =14⎝ ⎛⎭⎪⎫x -12关于点⎝ ⎛⎭⎪⎫12,0对称,所以f (x )的图象关于⎝ ⎛⎭⎪⎫12,12对称,所以f (x )+f (1-x )= 1.所以∑k =12 016f ⎝ ⎛⎭⎪⎫k 2 017= f ⎝ ⎛⎭⎪⎫12 017+ f ⎝ ⎛⎭⎪⎫22 017+…+ f ⎝ ⎛⎭⎪⎫2 0162 017= 1 008×⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫2 0162 017=1 008,故选B. 5.设曲线y =f (x )与曲线y =x 2+a (x >0)关于直线y =-x 对称,且f (-2)=2f (-1),则a =________.解析:依题意得,曲线y =f (x )即为-x =(-y )2+a (y <0),化简后得y =--x -a ,即f (x )=--x -a ,于是有-2-a =-21-a ,解得a =23.答案:236.已知函数f (x )满足对任意的x ,y ∈R ,都有f (xy )=f (x )+f (y )成立,函数g (x )满足对任意的x ,y ∈R ,都有g (xy )=g (x )-g (y )成立,且f (3)=2,g (-2)=3,则f (-3)+g (2)=________.解析:根据题意,函数f (x )满足对任意的x ,y ∈R ,都有f (xy )=f (x )+f (y )成立,令x=y=1,则f(1)=f(1)+f(1),即f(1)=0;令x=y=-1,则f(1)=f(-1)+f(-1),则f(-1)=0;令y=-1,则f(-x)=f(-1)+f(x),∴f(-x)=f(x),即函数f(x)为偶函数,f(-3)=f(3)=2.函数g(x)满足对任意的x,y∈R,都有g(xy)=g(x)-g(y)成立,令x=y =-1,则g(1)=g(-1)-g(-1)=0;令x=1,y=-1,则g(-1)=g(1)-g(-1),即g(-1)=0;令y=-1,则g(-x)=g(x)-g(-1),∴g(-x)=g(x),即函数g(x)为偶函数,∴g(2)=g(-2)=3.∴f(-3)+g(2)=2+3=5.答案:5。

2018学高考文科数学通用版练酷专题二轮复习课时跟踪检测(九)数列含答案

2018学高考文科数学通用版练酷专题二轮复习课时跟踪检测(九)数列含答案

课时跟踪检测(九)数列错误!1.(2017·合肥模拟)已知错误!是等差数列,且a1=1,a4=4,则a10=()A.-错误!B.-错误!C。

错误!D。

错误!解析:选A 设等差数列错误!的公差为d,由题意可知,错误!=错误!+3d=错误!,解得d=-错误!,所以错误!=错误!+9d=-错误!,所以a10=-错误!。

2.(2018届高三·西安八校联考)设等差数列{a n}的前n项和为S n,且a2+a7+a12=24,则S13=()A.52 B.78C.104 D.208解析:选C 依题意得3a7=24,a7=8,S13=错误!=13a7=104。

3.(2017·云南模拟)已知数列{a n}是等差数列,若a1-1,a3-3,a5-5依次构成公比为q的等比数列,则q=( )A.-2 B.-1C.1 D.2解析:选C 依题意,注意到2a3=a1+a5,2a3-6=a1+a5-6,即有2(a3-3)=(a1-1)+(a5-5),即a1-1,a3-3,a5-5成等差数列;又a1-1,a3-3,a5-5依次构成公比为q的等比数列,因此有a1-1=a3-3=a5-5(若一个数列既是等差数列又是等比数列,则该数列是一个非零的常数列),q=错误!=1。

4.(2017·兰州模拟)已知等差数列{a n}的前n项和为S n,若a1=2,a8+a10=28,则S9=( )A.36 B.72C.144 D.288解析:选B 法一:∵a8+a10=2a1+16d=28,a1=2,∴d=错误!,∴S9=9×2+错误!×错误!=72。

法二:∵a8+a10=2a9=28,∴a9=14,∴S9=错误!=72。

5.已知数列{a n}的前n项和S n满足S n+S m=S n+m,其中m,n 为正整数,且a1=1,那么a10=()A.1 B.9C.10 D.55解析:选A ∵S n+S m=S n+m,a1=1,∴S1=1。

【配套K12】通用版2018年高考数学二轮复习课时跟踪检测二理

【配套K12】通用版2018年高考数学二轮复习课时跟踪检测二理

课时跟踪检测(二)A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x<k π2+5π12(k ∈Z),所以函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12 (k ∈Z),故选B. 2.函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f(x)的解析式为( )A .f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4B .f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4C .f(x)=sin ⎝⎛⎭⎪⎫4x +π4 D .f(x)=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f(x)的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f(x)=sin(2x +φ).又函数f(x)的图象经过点⎝⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f(x)=sin ⎝⎛⎭⎪⎫2x +π4,故选A.3.(2017·天津高考)设函数f(x)=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z),①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k′π(k′∈Z),②由①②得ω=-23+43(k′-2k).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π, ∴f(x)的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f(x)=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f(x)=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f(x)=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x→π2时,y<0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m(m>0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m>0,故当k =0时,m 最小,此时m =π6.6.(2017·云南检测)函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则f(x)的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k),k ∈ZD .(-3+8k,1+8k),k ∈Z解析:选D 由题图,知函数f(x)的最小正周期为T =4×(3-1)=8,所以ω=2πT =π4,所以f(x)=sin ⎝⎛⎭⎪⎫π4x +φ.把(1,1)代入,得sin ⎝ ⎛⎭⎪⎫π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f(x)=sin ⎝ ⎛⎭⎪⎫π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k∈Z),得8k -3≤x≤8k+1(k ∈Z),所以函数f(x)的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f(x)=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( ) A.65 B .1 C.35D.15解析:选 A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f(x)=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f(x)的最大值为65.8.(2017·武昌调研)若f(x)=cos 2x +acos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D f(x)=1-2sin 2x -asin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g(t)=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f(x)在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a≤-4,故选D. 9.已知函数f(x)=sin(2x +φ)(0<φ<π),若将函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3D.π6解析:选D 函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数解析式为y=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f(x)=sin ωx +3cos ωx(ω>0)满足f(α)=-2,f(β)=0,且|α-β|的最小值为π2,则函数f(x)的解析式为( )A .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π3B .f(x)=2sin ⎝ ⎛⎭⎪⎫x -π3C .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π6D .f(x)=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f(x)=sin ωx +3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3.因为f(α)=-2,f(β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f(x)的最小正周期),故ω=2πT=1,所以f(x)=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f(x)=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f(x)的图象向右平移3π4个单位长度后得到函数g(x)的图象,则函数g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( ) A .-2 B .-1C .- 2D .- 3解析:选B f(x)=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴g(x)=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -3π4+π3=-2sin ⎝ ⎛⎭⎪⎫2x -π6,则g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f(x)=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 解析:选D f(x)=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,因为0<φ<π且f(x)为奇函数,所以φ=3π4,即f(x)=-2sin ωx ,又直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f(x)的最小正周期为π2,由2πω=π2,可得ω=4,故f(x)=-2sin 4x ,由2k π+π2≤4x≤2k π+3π2,k ∈Z ,得k π2+π8≤x≤k π2+3π8,k ∈Z ,令k =0,得π8≤x≤3π8,此时f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.二、填空题13.(2017·全国卷Ⅱ)函数f(x)=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解析:依题意,f(x)=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝ ⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f(x)max =1. 答案:114.已知函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________.解析:函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其图象的一条对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.答案:±215.(2017·深圳调研)已知函数f(x)=cos xsin x(x ∈R),则下列四个结论中正确的是________.(写出所有正确结论的序号)①若f(x 1)=-f(x 2),则x 1=-x 2; ②f(x)的最小正周期是2π;③f(x)在区间⎣⎢⎡⎦⎥⎤-π4,π4上是增函数;④f(x)的图象关于直线x =3π4对称. 解析:因为f(x)=cos xsin x =12sin 2x ,所以f(x)是周期函数,且最小正周期为T =2π2=π,所以①②错误;由2k π-π2≤2x≤2k π+π2(k ∈Z),解得k π-π4≤x≤k π+π4(k ∈Z),当k =0时,-π4≤x≤π4,此时f(x)是增函数,所以③正确;由2x =π2+k π(k ∈Z),得x =π4+k π2(k ∈Z),取k =1,则x =3π4,故④正确.答案:③④16.已知函数f(x)=Acos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,f(x)的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+…+f(2 016)+f(2 017)=________.解析:∵函数f(x)=Acos 2(ωx +φ)+1=A·1+ωx +2φ2+1=A2cos(2ωx +2φ)+1+A 2⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,∴A 2+1+A2=3,∴A =2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即2π2ω=4,∴ω=π4.再根据f(x)的图象与y 轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<π2,∴2φ=π2,φ=π4.故函数f(x)的解析式为f(x)=cos ⎝ ⎛⎭⎪⎫π2x +π2+2=-sin π2x +2,∴f(1)+f(2)+…+f(2016)+f(2017)=-⎝ ⎛⎭⎪⎫sin π2+sin 2π2+sin 3π2+…+sin 2 016π2+sin 2 017π2+2×2 017=504×0-sin π2+4034=0-1+4 034=4 033.答案:4 033B 组——能力小题保分练1.曲线y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4和直线y =12在y 轴右侧的交点的横坐标按从小到大的顺序依次记为P 1,P 2,P 3,…,则|P 3P 7|=( )A .πB .2πC .4πD .6π解析:选B y =2cos ⎝⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4=cos 2x -sin 2x =cos 2x ,故曲线对应的函数为周期函数,且最小正周期为π,直线y =12在y 轴右侧与函数y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4在每个周期内的图象都有两个交点,又P 3与P 7相隔2个周期,故|P 3P 7|=2π,故选B.2.已知函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,则φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤-π3,π6C.⎣⎢⎡⎭⎪⎫-π4,0 D.⎣⎢⎡⎦⎥⎤-π3,0 解析:选D 因为函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,又-π6+φ<2x +φ≤π3+φ,所以2×π6+φ≤π3,且2×⎝ ⎛⎭⎪⎫-π12+φ≥-π2,解得-π3≤φ≤0,故选D.3.已知函数f(x)=Asin(ωx +φ)⎝ ⎛⎭⎪⎫A>0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f(x)的图象关于直线x =-2π3对称B .f(x)的图象关于点⎝ ⎛⎭⎪⎫-5π12,0对称 C .若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,- 3 ]D .将函数y =2sin ⎝ ⎛⎭⎪⎫2x -π6的图象向左平移π6个单位长度得到函数f(x)的图象解析:选C 根据题中所给的图象,可知函数f(x)的解析式为f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴当x =-2π3时,2×⎝ ⎛⎭⎪⎫-2π3+π3=-π,f ⎝ ⎛⎭⎪⎫-2π3=2sin(-π)=0,从而f(x)的图象关于点⎝ ⎛⎭⎪⎫-2π3,0对称,而不是关于直线x =-2π3对称,故A 不正确;当x =-5π12时,2×⎝ ⎛⎭⎪⎫-5π12+π3=-π2,∴f(x)的图象关于直线x =-5π12对称,而不是关于点⎝ ⎛⎭⎪⎫-5π12,0对称,故B 不正确;当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,2x +π3∈⎣⎢⎡⎦⎥⎤-2π3,π3,f(x)∈[-2, 3 ],结合正弦函数图象的性质,可知若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m的取值范围是(-2,- 3 ],故C 正确;根据图象平移变换的法则,可知应将y =2sin ⎝⎛⎭⎪⎫2x -π6的图象向左平移π4个单位长度得到f(x)的图象,故D 不正确.故选C.4.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数:①f(x)=sin x +cos x ;②f(x)=2(sin x +cos x); ③f(x)=sin x ;④f(x)=2sin x + 2. 其中互为生成函数的是( ) A .①② B .①④ C .③④D .②④解析:选B 首先化简题中①②两个函数解析式可得:①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4,②f(x)=2sin ⎝⎛⎭⎪⎫x +π4,可知③f(x)=sin x 的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f(x)=sin x 不与其他函数互为生成函数;同理①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4(④f(x)=2sin x +2)的图象与②f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象也必须经过伸缩变换才能重合,而④f(x)=2sin x +2的图象向左平移π4个单位长度,再向下平移2个单位长度即可得到①f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象,∴①④互为生成函数,故选B.5.已知函数f(x)=Asin(ωx +φ)(A ,ω,φ均为正常数)的最小正周期为π,且当x =2π3时,函数f(x)取得最小值,则( ) A .f(1)<f(-1)<f(0) B .f(0)<f(1)<f(-1) C .f(-1)<f(0)<f(1) D .f(1)<f(0)<f(-1)解析:选C 因为函数f(x)=Asin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,故f(x)=Asin(2x +φ),因为当x =2π3时,函数f(x)取得最小值,所以2×2π3+φ=2k π-π2,k ∈Z ,解得φ=2k π-11π6,k ∈Z ,又φ>0,故可取k =1,则φ=π6,故f(x)=Asin ⎝ ⎛⎭⎪⎫2x +π6,所以f(-1)=Asin ⎝ ⎛⎭⎪⎫-2+π6<0,f(1)=Asin ⎝ ⎛⎭⎪⎫2+π6>0,f(0)=Asin π6=12A>0,故f(-1)最小.又sin ⎝ ⎛⎭⎪⎫2+π6=sin ⎝ ⎛⎭⎪⎫π-2-π6=sin ⎝ ⎛⎭⎪⎫5π6-2>sin π6,故f(1)>f(0).综上可得f(-1)<f(0)<f(1),故选C.6.若函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,则φ=________. 解析:因为函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,故它们的最小正周期相同,即2πω=2π2,所以ω=2,故函数f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z ,故函数f(x)的图象的对称轴为x =k π2+π8,k ∈Z.令2x +φ=m π,m ∈Z ,则x =m π2-φ2,m∈Z ,故函数g(x)的图象的对称轴为x =m π2-φ2,m ∈Z ,故k π2+π8-m π2+φ2=n π2,m ,n ,k ∈Z ,即φ=(m +n -k)π-π4,m ,n ,k ∈Z ,又|φ|<π2,所以φ=-π4.答案:-π4。

通用版2018学高考数学二轮复习练酷专题课时跟踪检测十九立体几何理

通用版2018学高考数学二轮复习练酷专题课时跟踪检测十九立体几何理

课时跟踪检测(十九) 立体几何1.(2018届高三·广西五校联考)如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =AE =2.(1)求证:BD ⊥平面ACFE ;(2)当直线FO 与平面BED 所成的角为45°时,求异面直线OF 与BE 所成的角的余弦值大小.解:(1)证明:∵四边形ABCD 是菱形, ∴BD ⊥AC .∵AE ⊥平面ABCD ,BD ⊂平面ABCD , ∴BD ⊥AE .∵AC ∩AE =A ,∴BD ⊥平面ACFE .(2)以O 为坐标原点,OA ―→,OB ―→的方向为x 轴,y 轴正方向,过O 且平行于CF 的直线为z 轴(向上为正方向),建立如图所示的空间直角坐标系O ­xyz ,设CF =a ,则B (0,3,0),D (0,-3,0),E (1,0,2),F (-1,0,a )(a >0),OF ―→=(-1,0,a ).设平面BED 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·OB ―→=0,n ·OE ―→=0,即⎩⎨⎧3y =0,x +2z =0,令z =1,则n =(-2,0,1),由题意得sin 45°=|cos 〈OF ―→,n 〉|=|OF ·n ||OF ―→||n |=|2+a |a 2+1·5=22,解得a =3或a =-13.由a >0,得a =3,OF ―→=(-1,0,3),BE ―→=(1,-3,2), ∴cos 〈OF ―→,BE ―→〉=-1+610×8=54,故异面直线OF 与BE 所成的角的余弦值为54. 2.(2017·合肥模拟)如图所示,在四棱台ABCD ­A 1B 1C 1D 1中,AA 1⊥底面ABCD ,四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2.(1)若M 为CD 中点,求证:AM ⊥平面AA 1B 1B ;(2)求直线DD 1与平面A 1BD 所成角的正弦值. 解:(1)证明:连接AC ,∵四边形ABCD 为菱形, ∠BAD =120°, ∴△ACD 为等边三角形, 又M 为CD 中点, ∴AM ⊥CD ,由CD ∥AB 得,AM ⊥AB .∵AA 1⊥底面ABCD ,AM ⊂平面ABCD ,∴AM ⊥AA 1. 又AB ∩AA 1=A , ∴AM ⊥平面AA 1B 1B .(2)∵四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2, ∴DM =1,AM =3, ∴∠AMD =∠BAM =90°, 又AA 1⊥底面ABCD ,∴以A 为坐标原点,AB ,AM ,AA 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A ­xyz ,则A 1(0,0,2),B (2,0,0),D (-1,3,0),D 1⎝ ⎛⎭⎪⎫-12,32,2,∴DD 1―→=⎝ ⎛⎭⎪⎫12,-32,2,BD ―→=(-3,3,0),A 1B ―→=(2,0,-2).设平面A 1BD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BD ―→=0,n ·A 1B ―→=0,即⎩⎨⎧-3x +3y =0,2x -2z =0,令x =1,则n =(1,3,1),∴|cos 〈n ,DD 1―→〉|=|n ·DD 1―→||n |·|DD 1―→|=15×5=15.∴直线DD 1与平面A 1BD 所成角的正弦值为15.3.(2018届高三·洛阳四校调研)如图,四边形ABEF 和四边形ABCD均是直角梯形,∠FAB =∠DAB =90°,二面角F ­AB ­D 是直二面角,BE ∥AF ,BC ∥AD ,AF =AB =BC =2,AD =1.(1)证明:在平面BCE 上,一定存在过点C 的直线l 与直线DF 平行;(2)求二面角F ­CD ­A 的余弦值.解:(1)证明:由已知得,BE ∥AF ,BE ⊄平面AFD ,AF ⊂平面AFD , ∴BE ∥平面AFD . 同理可得,BC ∥平面AFD .又BE ∩BC =B ,∴平面BCE ∥平面AFD . 设平面DFC ∩平面BCE =l ,则l 过点C .∵平面BCE ∥平面ADF ,平面DFC ∩平面BCE =l ,平面DFC ∩平面AFD =DF , ∴DF ∥l ,即在平面BCE 上一定存在过点C 的直线l ,使得DF ∥l .(2)∵平面ABEF ⊥平面ABCD ,平面ABCD ∩平面ABEF =AB ,FA ⊂平面ABEF , 又∠FAB =90°,∴AF ⊥AB ,∴AF ⊥平面ABCD . ∵AD ⊂平面ABCD ,∴AF ⊥AD . ∵∠DAB =90°,∴AD ⊥AB .以A 为坐标原点,AD ,AB ,AF 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,由已知得,D (1,0,0),C (2,2,0),F (0,0,2),∴DF ―→=(-1,0,2),DC ―→=(1,2,0).设平面DFC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DF ―→=0,n ·DC ―→=0,即⎩⎪⎨⎪⎧-x +2z =0,x +2y =0,令z =1,则n =(2,-1,1),不妨取平面ACD 的一个法向量为m =(0,0,1),∴cos 〈m ,n 〉=m ·n |m ||n |=16=66,由于二面角F ­CD ­A 为锐角, 因此二面角F ­CD ­A 的余弦值为66. 4.(2017·全国卷Ⅱ)如图,四棱锥P ­ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M ­AB ­D 的余弦值. 解:(1)证明:取PA 的中点F ,连接EF ,BF .因为E 是PD 的中点,所以EF ∥AD ,EF =12AD .由∠BAD =∠ABC =90°,得BC ∥AD , 又BC =12AD ,所以EF 綊BC ,所以四边形BCEF 是平行四边形,CE ∥BF , 又CE ⊄平面PAB ,BF ⊂平面PAB , 故CE ∥平面PAB .(2)由已知得BA ⊥AD ,以A 为坐标原点,AB ―→的方向为x 轴正方向,|AB ―→|为单位长度,建立如图所示的空间直角坐标系A ­xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC ―→=(1,0,-3),AB ―→=(1,0,0).设M (x ,y ,z )(0<x <1),则BM ―→=(x -1,y ,z ),PM ―→=(x ,y -1,z -3). 因为BM 与底面ABCD 所成的角为45°, 而n =(0,0,1)是底面ABCD 的法向量, 所以|cos 〈BM ―→,n 〉|=sin 45°,|z | x -1 2+y 2+z2=22, 即(x -1)2+y 2-z 2=0. ① 又M 在棱PC 上,设PM ―→=λPC ―→, 则x =λ,y =1,z =3-3λ. ②由①②解得⎩⎪⎨⎪⎧x =1+22,y =1,z =-62(舍去),或⎩⎪⎨⎪⎧x =1-22,y =1,z =62,所以M ⎝ ⎛⎭⎪⎫1-22,1,62,从而AM ―→=⎝⎛⎭⎪⎫1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量, 则⎩⎪⎨⎪⎧m ·AM ―→=0,m ·AB ―→=0,即⎩⎨⎧2-2 x 0+2y 0+6z 0=0,x 0=0,所以可取m =(0,-6,2).于是cos 〈m ,n 〉=m ·n |m ||n |=105.由图知二面角M ­AB ­D 为锐角, 因此二面角M ­AB ­D 的余弦值为105. 5.(2017·开封模拟)如图①,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AD =CD =12AB =2.将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D ­ABC ,如图②所示.(1)证明:平面ABD ⊥平面BCD ; (2)求二面角D ­AB ­C 的余弦值.解:(1)证明:易知AC ⊥BC ,又平面ADC ⊥平面ABC , 平面ADC ∩平面ABC =AC ,BC ⊂平面ABC , ∴BC ⊥平面ACD ,∴AD ⊥BC .又AD ⊥CD ,BC ∩CD =C ,∴AD ⊥平面BCD , ∵AD ⊂平面ABD , ∴平面ABD ⊥平面BCD .(2)以C 为坐标原点,建立如图所示的空间直角坐标系C ­xyz ,则C (0,0,0),A (22,0,0),D (2,0,2),B (0,22,0),AD ―→=(-2,0,2),AB ―→=(-22,22,0). 设平面ABD 的法向量m =(x ,y ,z ). 则⎩⎪⎨⎪⎧m ·AD ―→=0,m ·AB ―→=0,即⎩⎨⎧-2x +2z =0,-22x +22y =0,令x =1,得y =1,z =1,所以平面ABD 的一个法向量m =(1,1,1). 易知平面ABC 的一个法向量n =(0,0,1),∴cos 〈m ,n 〉=m ·n |m |·|n |=33,由图知,二面角D ­AB ­C 为锐角, ∴二面角D ­AB ­C 的余弦值为33.6.(2018届高三·湖北五校联考)如图,在四棱锥P ­ABCD 中,PA⊥平面ABCD ,AD ∥BC ,AD ⊥CD ,且AD =CD =22,BC =42,PA =2.(1)求证:AB ⊥PC ;(2)在线段PD 上,是否存在一点M ,使得二面角M ­AC ­D 的大小为45°,如果存在,求BM 与平面MAC 所成角的正弦值,如果不存在,请说明理由.解:(1)证明:如图,由已知得四边形ABCD 是直角梯形,由AD =CD =22,BC =42, 可得AB =AC =4, 所以BC 2=AB 2+AC 2,所以∠BAC =90°,即AB ⊥AC , 因为PA ⊥平面ABCD ,所以PA ⊥AB , 又PA ∩AC =A , 所以AB ⊥平面PAC , 所以AB ⊥PC .(2)存在,理由如下:取BC 的中点E ,则AE ⊥BC ,以A 为坐标原点,AE ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则A (0,0,0),C (22,22,0),D (0,22,0),P (0,0,2),B (22,-22,0),PD ―→=(0,22,-2),AC ―→=(22,22,0).设PM ―→=t PD ―→(0<t <1), 则点M 的坐标为(0,22t ,2-2t ), 所以AM ―→=(0,22t,2-2t ).设平面MAC 的法向量是n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·AM ―→=0,即⎩⎨⎧22x +22y =0,22ty + 2-2t z =0,令x =1,得y =-1,z =2t 1-t, 则n =⎝ ⎛⎭⎪⎫1,-1,2t 1-t . 又m =(0,0,1)是平面ACD 的一个法向量,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪⎪⎪2t t -12+⎝ ⎛⎭⎪⎫2t t -12=22,解得t =12,即点M 是线段PD 的中点.此时平面MAC 的一个法向量n =(1,-1,2), 又BM ―→=(-22,32,1). 设BM 与平面MAC 所成的角为θ,则sin θ=|cos 〈n ,BM ―→〉|=422×33=269.故BM 与平面MAC 所成角的正弦值为269.。

推荐学习K12通用版2018年高考数学二轮复习课时跟踪检测二文

推荐学习K12通用版2018年高考数学二轮复习课时跟踪检测二文

课时跟踪检测(二)A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12 (k ∈Z),故选B.2.函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4C .f (x )=sin ⎝⎛⎭⎪⎫4x +π4 D .f (x )=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f (x )的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f (x )=sin(2x +φ).又函数f (x )的图象经过点⎝ ⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4,故选A. 3.(2017·天津高考)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z),①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k ′π(k ′∈Z),②由①②得ω=-23+43(k ′-2k ).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f (x )=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f (x )=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x →π2时,y <0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m (m >0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m >0,故当k =0时,m 最小,此时m =π6.6.(2017·云南检测)函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则f (x )的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k ),k ∈ZD .(-3+8k,1+8k ),k ∈Z解析:选D 由题图,知函数f (x )的最小正周期为T =4×(3-1)=8,所以ω=2πT =π4,所以f (x )=sin ⎝⎛⎭⎪⎫π4x +φ.把(1,1)代入,得sin ⎝ ⎛⎭⎪⎫π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k ∈Z),得8k -3≤x ≤8k +1(k ∈Z),所以函数f (x )的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( ) A.65 B .1 C.35D.15解析:选A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f (x )=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f (x )的最大值为65.8.(2017·武昌调研)若f (x )=cos 2x +a cos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D f (x )=1-2sin 2x -a sin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g (t )=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a ≤-4,故选D.9.已知函数f (x )=sin(2x +φ)(0<φ<π),若将函数f (x )的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3D.π6解析:选 D 函数f (x )的图象向左平移π6个单位长度后所得图象对应的函数解析式为y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f (x )=sin ωx +3cos ωx (ω>0)满足f (α)=-2,f (β)=0,且|α-β|的最小值为π2,则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3B .f (x )=2sin ⎝ ⎛⎭⎪⎫x -π3C .f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6D .f (x )=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f (x )=sin ωx +3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3.因为f (α)=-2,f (β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f (x )的最小正周期),故ω=2πT=1,所以f (x )=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( )A .-2B .-1C .- 2D .- 3解析:选 B f (x )=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -3π4+π3=-2sin ⎝ ⎛⎭⎪⎫2x -π6,则g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 解析:选D f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝⎛⎭⎪⎫ωx +φ+π4,因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,得k π2+π8≤x ≤k π2+3π8,k∈Z ,令k =0,得π8≤x ≤3π8,此时f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.二、填空题13.(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解析:依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1. 答案:114.已知函数f (x )=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________.解析:函数f (x )=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其图象的一条对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.答案:±215.(2017·深圳调研)已知函数f (x )=cos x sin x (x ∈R),则下列四个结论中正确的是________.(写出所有正确结论的序号)①若f (x 1)=-f (x 2),则x 1=-x 2; ②f (x )的最小正周期是2π;③f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上是增函数;④f (x )的图象关于直线x =3π4对称.解析:因为f (x )=cos x sin x =12sin 2x ,所以f (x )是周期函数,且最小正周期为T =2π2=π,所以①②错误;由2k π-π2≤2x ≤2k π+π2(k ∈Z),解得k π-π4≤x ≤k π+π4(k ∈Z),当k =0时,-π4≤x ≤π4,此时f (x )是增函数,所以③正确;由2x =π2+k π(k ∈Z),得x =π4+k π2(k ∈Z),取k =1,则x =3π4,故④正确.答案:③④16.已知函数f (x )=A cos 2(ωx +φ)+1⎝⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,f (x )的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f (1)+f (2)+…+f (2 016)+f (2 017)=________.解析:∵函数f (x )=A cos 2(ωx +φ)+1=A ·1+ωx +2φ2+1=A2cos(2ωx +2φ)+1+A 2⎝ ⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,∴A 2+1+A2=3,∴A =2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即2π2ω=4,∴ω=π4.再根据f (x )的图象与y 轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<π2,∴2φ=π2,φ=π4.故函数f (x )的解析式为f (x )=cos ⎝⎛⎭⎪⎫π2x +π2+2=-sin π2x +2,∴f (1)+f (2)+…+f (2 016)+f (2 017)=-⎝ ⎛⎭⎪⎫sin π2+sin 2π2+sin 3π2+…+sin 2 016π2+sin 2 017π2+2×2 017=504×0-sin π2+4 034=0-1+4 034=4 033.答案:4 033B 组——能力小题保分练1.曲线y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4和直线y =12在y 轴右侧的交点的横坐标按从小到大的顺序依次记为P 1,P 2,P 3,…,则|P 3P 7|=( )A .πB .2πC .4πD .6π解析:选B y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝⎛⎭⎪⎫x -π4=cos 2x -sin 2x =cos 2x ,故曲线对应的函数为周期函数,且最小正周期为π,直线y =12在y 轴右侧与函数y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4在每个周期内的图象都有两个交点,又P 3与P 7相隔2个周期,故|P 3P 7|=2π,故选B.2.已知函数f (x )=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,则φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤-π3,π6C.⎣⎢⎡⎭⎪⎫-π4,0 D.⎣⎢⎡⎦⎥⎤-π3,0解析:选D 因为函数f (x )=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,又-π6+φ<2x +φ≤π3+φ,所以2×π6+φ≤π3,且2×⎝ ⎛⎭⎪⎫-π12+φ≥-π2,解得-π3≤φ≤0,故选D.3.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f (x )的图象关于直线x =-2π3对称B .f (x )的图象关于点⎝ ⎛⎭⎪⎫-5π12,0对称 C .若方程f (x )=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,-3 ]D .将函数y =2sin ⎝⎛⎭⎪⎫2x -π6的图象向左平移π6个单位长度得到函数f (x )的图象 解析:选C 根据题中所给的图象,可知函数f (x )的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴当x=-2π3时,2×⎝ ⎛⎭⎪⎫-2π3+π3=-π,f ⎝ ⎛⎭⎪⎫-2π3=2sin(-π)=0,从而f (x )的图象关于点⎝ ⎛⎭⎪⎫-2π3,0对称,而不是关于直线x =-2π3对称,故A 不正确;当x =-5π12时,2×⎝ ⎛⎭⎪⎫-5π12+π3=-π2,∴f (x )的图象关于直线x =-5π12对称,而不是关于点⎝ ⎛⎭⎪⎫-5π12,0对称,故B 不正确;当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,2x +π3∈⎣⎢⎡⎦⎥⎤-2π3,π3,f (x )∈[-2, 3 ],结合正弦函数图象的性质,可知若方程f (x )=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,- 3 ],故C 正确;根据图象平移变换的法则,可知应将y =2sin ⎝ ⎛⎭⎪⎫2x -π6的图象向左平移π4个单位长度得到f (x )的图象,故D 不正确.故选C.4.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数:①f (x )=sin x +cos x ;②f (x )=2(sin x +cos x ); ③f (x )=sin x ;④f (x )=2sin x + 2. 其中互为生成函数的是( ) A .①② B .①④C .③④D .②④解析:选 B 首先化简题中①②两个函数解析式可得:①f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4,②f (x )=2sin ⎝⎛⎭⎪⎫x +π4,可知③f (x )=sin x 的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f (x )=sin x 不与其他函数互为生成函数;同理①f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4(④f (x )=2sin x +2)的图象与②f (x )=2sin ⎝⎛⎭⎪⎫x +π4的图象也必须经过伸缩变换才能重合,而④f (x )=2sin x +2的图象向左平移π4个单位长度,再向下平移2个单位长度即可得到①f (x )=2sin ⎝⎛⎭⎪⎫x +π4的图象,∴①④互为生成函数,故选B.5.已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正常数)的最小正周期为π,且当x =2π3时,函数f (x )取得最小值,则( )A .f (1)<f (-1)<f (0)B .f (0)<f (1)<f (-1)C .f (-1)<f (0)<f (1)D .f (1)<f (0)<f (-1)解析:选C 因为函数f (x )=A sin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,故f (x )=A sin(2x +φ),因为当x =2π3时,函数f (x )取得最小值,所以2×2π3+φ=2k π-π2,k ∈Z ,解得φ=2k π-11π6,k ∈Z ,又φ>0,故可取k =1,则φ=π6,故f (x )=A sin ⎝⎛⎭⎪⎫2x +π6,所以f (-1)=A sin ⎝⎛⎭⎪⎫-2+π6<0,f (1)=A sin ⎝⎛⎭⎪⎫2+π6>0,f (0)=A sin π6=12A >0,故f (-1)最小.又sin ⎝ ⎛⎭⎪⎫2+π6=sin ⎝ ⎛⎭⎪⎫π-2-π6=sin ⎝ ⎛⎭⎪⎫5π6-2>sin π6,故f (1)>f (0).综上可得f (-1)<f (0)<f (1),故选C.6.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g (x )=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,则φ=________.解析:因为函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g (x )=cos(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,故它们的最小正周期相同,即2πω=2π2,所以ω=2,故函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z ,故函数f (x )的图象的对称轴为x =k π2+π8,k ∈Z.令2x +φ=m π,m ∈Z ,则x =m π2-φ2,m ∈Z ,故函数g (x )的图象的对称轴为x =m π2-φ2,m ∈Z ,故k π2+π8-m π2+φ2=n π2,m ,n ,k ∈Z ,即φ=(m +n -k )π-π4,m ,n ,k ∈Z ,又|φ|<π2,所以φ=-π4.答案:-π4。

配套K12通用版2018年高考数学二轮复习课时跟踪检测八文

配套K12通用版2018年高考数学二轮复习课时跟踪检测八文

课时跟踪检测(八)一、选择题1.已知函数f (n )=⎩⎪⎨⎪⎧n 2n 为奇数,-n 2n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( )A .0B .100C .-100D .10 200解析:选 B 由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,故选B.2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱 B.53钱 C.32钱 D.43钱 解析:选D 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,解得⎩⎪⎨⎪⎧a 1=43,d =-16,故选D.3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里解析:选B 设等比数列{a n }的首项为a 1,公比为q =12,依题意有a 1⎝⎛⎭⎪⎫1-1261-12=378,解得a 1=192,则a 2=192×12=96,即第二天走了96里,故选B.4.已知数列{a n }的通项公式为a n =log (n +1)(n +2)(n ∈N *),我们把使乘积a 1·a 2·a 3·…·a n为整数的n 叫做“优数”,则在(0,2 018]内的所有“优数”的和为( )A .1 024B .2 012C .2 026D .2 036解析:选C a 1·a 2·a 3·…·a n =log 23·log 34·log 45·…·log (n +1)(n +2)=log 2(n +2)=k ,k ∈Z ,令0<n =2k -2≤2 018,则2<2k ≤2 020,1<k ≤10,所有“优数”之和为(22-2)+(23-2)+…+(210-2)=22-291-2-18=211-22=2 026.故选C.5.(2018届高三·湖北七市(州)联考)在各项都为正数的数列{a n }中,首项a 1=2,且点(a 2n ,a 2n -1)在直线x -9y =0上,则数列{a n }的前n 项和S n =( )A .3n-1 B.1--n2C.1+3n2D.3n 2+n 2解析:选A 由点(a 2n ,a 2n -1)在直线x -9y =0上,得a 2n -9a 2n -1=0,即(a n +3a n -1)(a n -3a n -1)=0,又数列{a n }各项均为正数,∴a n +3a n -1>0,∴a n -3a n -1=0,即a na n -1=3,∴数列{a n }是首项a 1=2,公比q =3的等比数列,其前n 项和S n =a 1-q n1-q=2-3n1-3=3n-1,故选A.6.设曲线y =2 018xn +1(n ∈N *)在点(1,2 018)处的切线与x 轴的交点的横坐标为x n ,令a n=log 2 018x n ,则a 1+a 2+…+a 2 017的值为( )A .2 018B .2 017C .1D .-1解析:选D 因为y ′=2 018(n +1)x n,则y ′|x =1=2 018·(n +1),所以曲线在点(1,2 018)处的切线方程是y -2 018=2 018(n +1)×(x -1),令y =0,得x n =nn +1,所以a 1+a 2+…+a 2 017=log 2 018(x 1·x 2·…·x 2 017)=log 2 018⎝ ⎛⎭⎪⎫12×23×…×2 0172 018=log 2 01812 018=-1. 二、填空题7.对于数列{a n },定义H n =a 1+2a 2+…+2n -1a nn为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n ∈N *恒成立,则实数k 的取值范围为________.解析:由H n =2n +1,得n ·2n +1=a 1+2a 2+…+2n -1a n , ①(n -1)·2n =a 1+2a 2+…+2n -2a n -1, ②①-②,得2n -1a n =n ·2n +1-(n -1)·2n ,所以a n =2n +2,a n -kn =(2-k )n +2,又S n ≤S 5对任意的n ∈N *恒成立,所以⎩⎪⎨⎪⎧a 5≥0,a 6≤0,即⎩⎪⎨⎪⎧-k +2≥0,-k +2≤0,解得73≤k ≤125.答案:⎣⎢⎡⎦⎥⎤73,1258.(2017·安阳检测)在数列{a n }中,a 1+a 22+a 33+…+a nn =2n-1(n ∈N *),且a 1=1,若存在n∈N *使得a n ≤n (n +1)λ成立,则实数λ的最小值为________.解析:依题意得,数列⎩⎨⎧⎭⎬⎫a n n 的前n 项和为2n -1,当n ≥2时,a n n =(2n -1)-(2n -1-1)=2n -1,且a 11=21-1=1=21-1,因此a n n =2n -1(n ∈N *),a n n n +=2n -1n +1.记b n =2n -1n +1,则b n >0,b n +1b n=n +n +2=n ++n n +2>n +2n +2=1,即b n +1>b n ,数列{b n }是递增数列,数列{b n }的最小项是b 1=12.依题意得,存在n ∈N *使得λ≥a nn n +=b n 成立,即有λ≥b 1=12,λ的最小值是12.答案:129.(2017·德州模拟)已知四个数a 1,a 2,a 3,a 4依次成等比数列,且公比q (q >0)不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则q 的取值集合是________.解析:因为公比q 不为1,所以不能删去a 1或a 4.设等差数列的公差为d ,则①若删去a 2,则2a 3=a 1+a 4,即2a 1q 2=a 1+a 1q 3,2q 2=1+q 3,整理得q 2(q -1)=(q -1)(q +1),因为q ≠1,所以q 2=q +1,又q >0,所以q =1+52;②若删去a 3,则2a 2=a 1+a 4, 即2a 1q =a 1+a 1q 3,2q =1+q 3, 整理得(q -1)(q 2+q -1)=0, 因为q ≠1,所以q 2+q -1=0, 又q >0,所以q =-1+52.综上所述,q =1+52或q =-1+52.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1+52,1+52 三、解答题10.(2017·惠州调研)已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1.(1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值.解:(1)由已知得,a 1=1,a n +1=a n +2,即a n +1-a n =2,所以数列{a n }是首项为1,公差为2的等差数列,a n =2n -1.(2)数列{a n }的前n 项和S n =n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3,所以q =3,b n =3n -1.数列{b n }的前n 项和T n =1-3n 1-3=3n-12.T n ≤S n ,即3n-12≤n 2,又n ∈N *,所以n =1或2.11.(2017·临川模拟)若数列{b n }对于任意的n ∈N *,都有b n +2-b n =d (常数),则称数列{b n }是公差为d 的准等差数列.如数列c n ,若c n =⎩⎪⎨⎪⎧4n -1,n 为奇数,4n +9,n 为偶数,则数列{c n }是公差为8的准等差数列.设数列{a n }满足a 1=a ,对于n ∈N *,都有a n +a n +1=2n .(1)求证:{a n }是准等差数列; (2)求{a n }的通项公式及前20项和S 20. 解:(1)证明:∵a n +a n +1=2n (n ∈N *), ① ∴a n +1+a n +2=2(n +1)(n ∈N *),②②-①,得a n +2-a n =2(n ∈N *). ∴{a n }是公差为2的准等差数列.(2)∵a 1=a ,a n +a n +1=2n (n ∈N *),∴a 1+a 2=2×1,即a 2=2-a .∴由(1)得a 1,a 3,a 5,…是以a 为首项,2为公差的等差数列;a 2,a 4,a 6…是以2-a 为首项,2为公差的等差数列.当n 为偶数时,a n =2-a +⎝ ⎛⎭⎪⎫n2-1×2=n -a ;当n 为奇数时,a n =a +⎝⎛⎭⎪⎫n +12-1×2=n +a -1.∴a n =⎩⎪⎨⎪⎧n +a -1,n 为奇数,n -a ,n 为偶数.S 20=a 1+a 2+a 3+a 4+…+a 19+a 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=2×1+2×3+…+2×19=2×+2=200.12.已知函数f (x )定义在(-1,1)上,f ⎝ ⎛⎭⎪⎫12=1,满足f (x )-f (y )=f ⎝ ⎛⎭⎪⎫x -y 1-xy ,且x 1=12,x n +1=2x n1+x 2n. (1)证明:f (x )为定义在(-1,1)上的奇函数; (2)求f (x n )的表达式;(3)是否存在自然数m ,使得对任意的n ∈N *,有1f x 1+1f x 2+…+1f x n<m -84恒成立?若存在,求出m 的最小值;若不存在,请说明理由.解:(1)证明:∵x ,y ∈(-1,1),f (x )-f (y )=f ⎝ ⎛⎭⎪⎫x -y 1-xy ,∴当x =y =0时,可得f (0)=0. 当x =0时,f (0)-f (y )=f ⎝ ⎛⎭⎪⎫0-y 1-0·y =f (-y ),∴f (-y )=-f (y ),∴f (x )是(-1,1)上的奇函数.(2)∵f (x n +1)=f ⎝ ⎛⎭⎪⎫2x n 1+x 2n =f ⎝ ⎛⎭⎪⎫x n --x n 1-x n -x n =f (x n )-f (-x n )=2f (x n ),∴f x n +1f x n=2,又f (x 1)=f ⎝ ⎛⎭⎪⎫12=1, ∴{f (x n )}是以1为首项,2为公比的等比数列,其通项公式为f (x n )=2n -1(n ∈N *).(3)假设存在自然数m 使得原不等式恒成立, 即1f x 1+1f x 2+…+1f x n=1+12+122+…+12n -1=2-12n -1<m -84对任意的n ∈N *恒成立.即m >16-82n 对任意的n ∈N *恒成立,∴m ≥16,故存在自然数m 使得对任意的n ∈N *,有1f x 1+1f x 2+…+1f x n<m -84恒成立,且m的最小值为16.。

教育最新K12通用版2018年高考数学二轮复习课时跟踪检测九理

教育最新K12通用版2018年高考数学二轮复习课时跟踪检测九理

课时跟踪检测(九)A组——12+4提速练一、选择题1.如图为一个几何体的侧视图和俯视图,则它的正视图为( )解析:选B 根据题中侧视图和俯视图的形状,判断出该几何体是在一个正方体的上表面上放置一个四棱锥(其中四棱锥的底面是边长与正方体棱长相等的正方形、顶点在底面上的射影是底面一边的中点),结合选项知,它的正视图为B.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10 B.12 C.14 D.16解析:选B 由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为+×2=12,故选B.23.(2017·合肥质检)若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有( )A.0条 B.1条 C.2条 D.0条或2条解析:选 C 因为平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形,所以该三棱锥中与平面α平行的棱有2条,故选C.4.(2017·成都模拟)已知m,n是空间中两条不同的直线,α,β是两个不同的平面,且m⊂α,n⊂β.有下列命题:①若α∥β,则m,n可能平行,也可能异面;②若α∩β=l,且m⊥l,n⊥l,则α⊥β;③若α∩β=l ,且m ⊥l ,m ⊥n ,则α⊥β. 其中真命题的个数是( ) A .0B .1C .2D .3解析:选B 对于①,直线m ,n 可能平行,也可能异面,故①是真命题;对于②,直线m ,n 同时垂直于公共棱,不能推出两个平面垂直,故②是假命题;对于③,当直线n ∥l 时,不能推出两个平面垂直,故③是假命题.故真命题的个数为1.故选B.5.(2017·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3 C.3π2+1 D.3π2+3 解析:选A 由几何体的三视图可得,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长为2的等腰直角三角形,高为3的三棱锥的组合体,故该几何体的体积V =13×12π×12×3+13×12×2×2×3=π2+1.6.(2017·郑州质检)某几何体的三视图如图所示,则该几何体的体积为( )A .80B .160C .240D .480解析:选B 如图所示,题中的几何体是从直三棱柱ABC ­A ′B ′C ′中截去一个三棱锥A ­A ′B ′C ′后所剩余的部分,其中底面△ABC 是直角三角形,AC ⊥AB ,AC =6,AB =8,BB ′=10.因此题中的几何体的体积为⎝ ⎛⎭⎪⎫12×6×8×10-13×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12×6×8×10=23×⎝ ⎛⎭⎪⎫12×6×8×10=160,故选B.7.(2017·合肥质检)一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )A .72+6πB .72+4πC .48+6πD .48+4π解析:选 A 由三视图知,该几何体由一个正方体的34部分与一个圆柱的14部分组合而成(如图所示),其表面积为16×2+(16-4+π)×2+4×2×2+14×2π×2×4=72+6π,故选A.8.某几何体的三视图如图所示,则其体积为( )A .207B .216-9π2C .216-36πD .216-18π解析:选B 由三视图知,该几何体是一个棱长为6的正方体挖去14个底面半径为3,高为6的圆锥而得到的,所以该几何体的体积V =63-14×13×π×32×6=216-9π2,故选B.9.(2017·贵阳检测)三棱锥P ­ABC 的四个顶点都在体积为500π3的球的表面上,底面ABC 所在的小圆面积为16π,则该三棱锥的高的最大值为( )A .4B .6C .8D .10解析:选C 依题意,设题中球的球心为O ,半径为R ,△ABC 的外接圆半径为r ,则4πR33=500π3,解得R =5,由πr 2=16π,解得r =4,又球心O 到平面ABC 的距离为R 2-r 2=3,因此三棱锥P ­ABC 的高的最大值为5+3=8,故选C.10.(2017·洛阳统考)已知三棱锥P ­ABC 的四个顶点均在某球面上,PC 为该球的直径,△ABC 是边长为4的等边三角形,三棱锥P ­ABC 的体积为163,则此三棱锥的外接球的表面积为( )A.16π3B.40π3 C.64π3 D.80π3解析:选D 依题意,记三棱锥P ­ABC 的外接球的球心为O ,半径为R ,点P 到平面ABC 的距离为h ,则由V P ­ABC =13S △ABC h =13×⎝ ⎛⎭⎪⎫34×42×h =163得h =433.又PC 为球O 的直径,因此球心O 到平面ABC 的距离等于12h =233.又正△ABC 的外接圆半径为r =AB 2sin 60°=433,因此R 2=r 2+⎝⎛⎭⎪⎫2332=203,所以三棱锥P ­ABC 的外接球的表面积为4πR 2=80π3,故选D. 11.某几何体的三视图如图所示,则该几何体的体积为( )A.15π2 B .8π C.17π2D .9π解析:选B 依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接恰好形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,故选B.12.(2018届高三·湘中名校联考)已知某几何体的三视图如图所示,则该几何体的体积为( )A.1603 B .32 C.323D .3523解析:选A 由三视图可知, 该几何体是由底面为等腰直角三角形(腰长为4)、高为8的直三棱柱截去一个等底且高为4的三棱锥而得到的,所以该几何体的体积V =12×4×4×8-13×12×4×4×4=1603,故选A. 二、填空题13.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为________.解析:设圆柱高为h ,底面圆半径为r ,周长为c ,圆锥母线长为l .由图得r =2,h =4,则c =2πr =4π,由勾股定理得:l =22+32=4,则S 表=πr 2+ch +12cl =4π+16π+8π=28π.答案:28π14.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为________.解析:由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15.答案:1515.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的________.解析:由侧视图、俯视图知该几何体是高为2、底面积为 12×2×(2+4)=6的四棱锥,其体积为13×6×2=4.而直三棱柱的体积为12×2×2×4=8,则该几何体的体积是原直三棱柱的体积的12.答案:1216.(2017·兰州诊断考试)已知在三棱锥P ­ABC 中,V P ­ABC =433,∠APC =π4,∠BPC =π3,PA ⊥AC ,PB ⊥BC ,且平面PAC ⊥平面PBC ,那么三棱锥P­ABC 外接球的体积为________.解析:如图,取PC 的中点O ,连接AO ,BO ,设PC =2R ,则OA =OB=OC =OP =R ,∴O 是三棱锥P ­ABC 外接球的球心,易知,PB =R ,BC =3R ,∵∠APC =π4,PA ⊥AC ,O 为PC 的中点,∴AO ⊥PC ,又平面PAC ⊥平面PBC ,且平面PAC ∩平面PBC =PC ,∴AO ⊥平面PBC ,∴V P ­ABC =V A ­PBC =13×12×PB ×BC ×AO =13×12×R ×3R ×R =433,解得R =2,∴三棱锥P ­ABC 外接球的体积V =43πR3=32π3.答案:32π3B 组——能力小题保分练1.(2017·石家庄质检)某几何体的三视图如图所示,则该几何体的体积是( )A .16B .20C .52D .60解析:选B 由三视图知,该几何体由一个底面为直角三角形(直角边分别为3,4),高为6的三棱柱截去两个等体积的四棱锥所得,且四棱锥的底面是矩形(边长分别为2,4),高为3,如图所示,所以该几何体的体积V =12×3×4×6-2×13×2×4×3=20,故选B.2.(2017·成都模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥外接球的表面积为( )A .136πB .34πC .25πD .18π解析:选B 由三视图知,该四棱锥的底面是边长为3的正方形,高为4,且有一条侧棱垂直于底面,所以可将该四棱锥补形为长、宽、高分别为3,3,4的长方体,该长方体外接球的半径R 即为该四棱锥外接球的半径,所以2R =32+32+42,解得R =342,所以该四棱锥外接球的表面积为4πR 2=34π,故选B.3.(2018届高三·湖南五市十校联考)如图,小方格是边长为1的正方形,一个几何体的三视图如图所示,则该几何体的表面积为( )A .45π+96B .(25+6)π+96C .(45+4)π+64D .(45+4)π+96解析:选D 由三视图可知,该几何体为一个圆锥和一个正方体的组合体,正方体的棱长为4,圆锥的高为4,底面半径为2,所以该几何体的表面积为S =6×42+π×22+π×2×42+22=(45+4)π+96.4.(2017·石家庄质检)四棱锥P ­ABCD 的底面ABCD 是边长为6的正方形,且PA =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高为( )A .6B .5C.92D.94解析:选D 过点P 作PH ⊥平面ABCD 于点H .由题知,四棱锥P ­ABCD是正四棱锥,内切球的球心O 应在四棱锥的高PH 上.过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,M 为球面与侧面的一个切点.设PH =h ,易知Rt △PMO ∽Rt △PHF ,所以OM FH =PO PF ,即13=h -1h 2+32,解得h =94,故选D.5.(2018届高三·西安市八校联考)在菱形ABCD 中,A =60°,AB =3,将△ABD 折起到△PBD 的位置,若二面角P ­BD ­C 的大小为2π3,则三棱锥P ­BCD 外接球的体积为( )A.4π3B.3π2C.77π6D.77π2解析:选C 依题意,△PBD 、△BCD 均是边长为3的等边三角形.取BD 的中点E ,连接PE ,CE ,则有PE ⊥BD ,CE ⊥BD ,∠PEC 是二面角P ­BD ­C 的平面角,即∠PEC =120°.记三棱锥P ­BCD 的外接球的球心为O ,半径是R ,△PBD ,△BCD 的中心分别为M ,N ,连接OM ,ON ,MN ,OE ,则由OP =OB =OD=OC 得,球心O 在平面PBD ,平面BCD 上的射影分别是△PBD ,△BCD 的中心,即有OM ⊥平面PBD ,OM ⊥PE ,OM ⊥BD ,ON ⊥平面BCD ,ON ⊥NE ,ON ⊥BD ,因此BD ⊥平面OMN .又易证BD ⊥平面OCE ,所以平面OMN ∥平面OCE .又平面OMN 与平面OCE 有公共点O ,因此平面OMN 与平面OCE 重合.在四边形OMEN 中,∠OME =∠ONE =90°,ME =NE =13×⎝ ⎛⎭⎪⎫32×3=12,∠MOE =30°,OE 是四边形OMEN 的外接圆的直径,OE =MEsin ∠MOE =1,ON 2=OE 2-NE 2=12-⎝ ⎛⎭⎪⎫122=34.在Rt △OBN 中,OB 2=ON 2+BN 2=ON 2+BE 2+NE 2=34+⎝⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫122=74,即R =74=72,因此三棱锥P ­BCD 的外接球的体积为43πR 3=77π6,故选C.6.(2017·武昌调研)在矩形ABCD 中,AB <BC ,现将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC 与直线BD 垂直; ②存在某个位置,使得直线AB 与直线CD 垂直; ③存在某个位置,使得直线AD 与直线BC 垂直. 其中正确结论的序号是________.解析:①假设AC 与BD 垂直,过点A 作AE ⊥BD 于点E ,连接CE ,如图所示,则AE ⊥BD ,BD ⊥AC .又AE ∩AC =A ,所以BD ⊥平面AEC ,从而有BD ⊥CE ,而在平面BCD 中,CE 与BD 不垂直,故假设不成立,①错误.②假设AB ⊥CD ,∵AB ⊥AD ,AD ∩CD =D ,∴AB ⊥平面ACD ,∴AB ⊥AC ,由AB <BC 可知,存在这样的直角三角形BAC ,使AB ⊥CD ,故假设成立,②正确.③假设AD ⊥BC ,∵DC ⊥BC ,AD ∩DC =D ,∴BC ⊥平面ADC ,∴BC ⊥AC ,即△ABC 为直角三角形,且AB 为斜边,而AB <BC ,故矛盾,假设不成立,③错误.答案:②。

【配套K12】通用版2018年高考数学二轮复习课时跟踪检测十文

【配套K12】通用版2018年高考数学二轮复习课时跟踪检测十文

课时跟踪检测(十)1.(2018届高三·西安八校联考)如图,AC 是圆O 的直径,点B 在圆O 上,∠BAC =30°,AC ⊥BM ,且BM 交AC 于点M ,EA ⊥平面ABC ,CF ∥AE ,AE =3,AC =4,CF =1.(1)证明:BF ⊥EM ; (2)求三棱锥B ­EFM 的体积.解:(1)证明:∵EA ⊥平面ABC ,∴EA ⊥BM , 又BM ⊥AC ,AC ∩EA =A ,∴BM ⊥平面ACFE , ∴BM ⊥EM .①∵CF ∥AE ,∴CF ⊥平面ABC ,∴CF ⊥AC , ∴FM =MC 2+FC 2=2,又EM =AE 2+AM 2=32,EF =42+22=25, ∴FM 2+EM 2=EF 2,∴EM ⊥FM .②由①②并结合FM ∩BM =M ,得EM ⊥平面BMF ,∴EM ⊥BF . (2)由(1)知EM ⊥平面BMF ,∴V B ­EFM =V E ­BMF =13×S △BMF ×EM =13×⎝ ⎛⎭⎪⎫12×2×3×32= 3. 2.(2017·宝鸡质检)如图,四边形PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,AM =2.(1)求证:平面PAC ⊥平面ABC ; (2)求三棱锥P ­MAC 的体积.解:(1)证明:由∠PCB =90° 得PC ⊥CB . 又AB ⊥PC ,AB ∩CB =B ,所以PC ⊥平面ABC . 又PC ⊂平面PAC ,所以平面PAC ⊥平面ABC .(2)在平面PCBM 内,过点M 作MN ⊥BC 交BC 于点N ,连接AN ,则CN =PM =1,又PM ∥BC ,所以四边形PMNC 为平行四边形,所以PC ∥MN且PC =MN ,由(1)得PC ⊥平面ABC ,所以MN ⊥平面ABC ,在△ACN 中,AN 2=AC 2+CN 2-2AC ·CN cos 120°=3,即AN = 3.又AM =2,所以在Rt △AMN 中,MN =1,所以PC =MN =1.在平面ABC 内,过点A 作AH ⊥BC 交BC 的延长线于点H ,则AH ⊥平面PMC , 因为AC =CN =1,∠ACB =120°,所以∠ANC =30°. 所以在Rt △AHN 中,AH =12AN =32,而S △PMC =12×1×1=12,所以V P ­MAC =V A ­PMC =13×S △PMC ×AH =13×12×32=312.3.(2017·云南检测)如图,在四棱锥P ­ABCD 中,PC ⊥平面ABCD ,底面ABCD 是平行四边形,AB =BC =2a ,AC =23a ,E 是PA 的中点.(1)求证:平面BED ⊥平面PAC ; (2)求点E 到平面PBC 的距离.解:(1)证明:在平行四边形ABCD 中,AB =BC , ∴四边形ABCD 是菱形,∴BD ⊥AC . ∵PC ⊥平面ABCD ,BD ⊂平面ABCD , ∴PC ⊥BD .又PC ∩AC =C ,∴BD ⊥平面PAC , ∵BD ⊂平面BED , ∴平面BED ⊥平面PAC .(2)设AC 交BD 于点O ,连接OE ,如图.在△PCA 中,易知O 为AC 的中点,又E 为PA 的中点, ∴EO ∥PC .∵PC ⊂平面PBC ,EO ⊄平面PBC ,∴EO ∥平面PBC . ∴点O 到平面PBC 的距离就是点E 到平面PBC 的距离. ∵PC ⊥平面ABCD ,PC ⊂平面PBC ,∴平面PBC ⊥平面ABCD ,且两平面的交线为BC . 在平面ABCD 内过点O 作OH ⊥BC 于点H , 则OH ⊥平面PBC .在Rt △BOC 中,BC =2a ,OC =12AC =3a ,∴OB =a .由S △BOC =12OC ·OB =12BC ·OH ,得OH =OB ·OC BC =a ·3a 2a =32a .∴点E 到平面PBC 的距离为32a . 4.(2017·郑州模拟)如图,已知四棱锥S ­ABCD ,底面梯形ABCD中,AD ∥BC ,平面SAB ⊥平面ABCD ,△SAB 是等边三角形,已知AC =2AB =4,BC =2AD =2CD =25,M 是SD 上任意一点,SM ―→=m MD ―→,且m >0.(1)求证:平面SAB ⊥平面MAC ;(2)试确定m 的值,使三棱锥S ­ABC 的体积为三棱锥S ­MAC 体积的3倍.解:(1)证明:在△ABC 中,由于AB =2,AC =4,BC =25,∴AB 2+AC 2=BC 2,故AB ⊥AC .又平面SAB ⊥平面ABCD ,平面SAB ∩平面ABCD =AB ,AC ⊂平面ABCD ,∴AC ⊥平面SAB ,又AC ⊂平面MAC ,故平面SAB ⊥平面MAC .(2)V S ­MAC =V M ­SAC =mm +1V D ­SAC =mm +1V S ­ACD ,∴V S ­ABC V S ­MAC =m +1m ·V S ­ABC V S ­ACD =m +1m ·S △ABC S △ACD =m +1m·2=3, ∴m =2,即当m =2时,三棱锥S ­ABC 的体积为三棱锥S ­MAC 体积的3倍. 5.(2017·石家庄质检)如图,在三棱柱ABC ­DEF 中,侧面ABED是边长为2的菱形,且∠ABE =π3,BC =212.点F 在平面ABED 内的正投影为G ,且点G在AE 上,FG =3,点M 在线段CF 上,且CM =14CF .(1)证明:直线GM ∥平面DEF ; (2)求三棱锥M ­DEF 的体积.解:(1)证明:∵点F 在平面ABED 内的正投影为G ,∴FG ⊥平面ABED ,∴FG ⊥GE ,又BC =212=EF ,FG =3,∴GE =32.∵四边形ABED 是边长为2的菱形,且∠ABE =π3,∴AE =2,∴AG =12.如图,过点G 作GH ∥AD 交DE 于点H ,连接FH .则GH AD =GEAE ,∴GH =32,由CM =14CF 得MF =32=GH .∵GH ∥AD ∥MF ,∴四边形GHFM 为平行四边形, ∴GM ∥FH .又GM ⊄平面DEF ,FH ⊂平面DEF ,∴GM ∥平面DEF .(2)由(1)知GM ∥平面DEF ,连接GD ,则有V M ­DEF =V G ­DEF .又V G ­DEF =V F ­DEG =13FG ·S △DEG =13FG ·34S△DAE =34,∴V M­DEF=34.。

通用版2018年高考数学二轮复习课时跟踪检测十九文

通用版2018年高考数学二轮复习课时跟踪检测十九文

课时跟踪检测(十九)一、选择题1.若过点P (2,1)的直线l 与圆C :x 2+y 2+2x -4y -7=0相交于两点A ,B ,且∠ACB =60°(其中C 为圆心),则直线l 的方程是( )A .4x -3y -5=0B .x =2或4x -3y -5=0C .4x -3y +5=0D .x =2或4x -3y +5=0解析:选B 由题意可得,圆C 的圆心为C (-1,2),半径为23,因为∠ACB =60°,所以△ABC 为正三角形,边长为23,所以圆心C 到直线l 的距离为3.若直线l 的斜率不存在,则直线l 的方程为x =2,与圆相交,且圆心C 到直线l 的距离为3,满足条件;若直线l 的斜率存在,设l :y -1=k (x -2),则圆心C 到直线l 的距离d =|3k +1|k 2+1=3,解得k =43,所以此时直线l 的方程为4x -3y -5=0.2.圆心在直线x -y -4=0上,且经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点的圆的方程为( )A .x 2+y 2-x +7y -32=0 B .x 2+y 2-x +7y -16=0 C .x 2+y 2-4x +4y +9=0 D .x 2+y 2-4x +4y -8=0解析:选A 设经过两圆的交点的圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0,即x 2+y 2+61+λx +6λ1+λy -4+28λ1+λ=0,其圆心坐标为⎝ ⎛⎭⎪⎫-31+λ,-3λ1+λ,又圆心在直线x -y -4=0上,所以-31+λ+3λ1+λ-4=0,解得λ=-7,故所求圆的方程为x 2+y 2-x +7y -32=0.3.(2017²洛阳统考)已知双曲线E :x 24-y 22=1,直线l 交双曲线于A ,B 两点,若线段AB 的中点坐标为⎝ ⎛⎭⎪⎫12,-1,则l 的方程为( ) A .4x +y -1=0 B .2x +y =0 C .2x +8y +7=0D .x +4y +3=0解析:选C 依题意,设点A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 214-y 212=1,x 224-y222=1,两式相减得x 21-x 224=y 21-y 222,即y 1-y 2x 1-x 2=12³x 1+x 2y 1+y 2.又线段AB 的中点坐标是⎝ ⎛⎭⎪⎫12,-1,因此x 1+x 2=1,y 1+y 2=-2,x 1+x 2y 1+y 2=-12,则y 1-y 2x 1-x 2=-14,即直线AB 的斜率为-14,直线l 的方程为y +1=-14⎝⎛⎭⎪⎫x -12,即2x+8y +7=0,故选C.4.(2017²云南统考)抛物线M 的顶点是坐标原点O ,焦点F 在x 轴的正半轴上,准线与曲线E :x 2+y 2-6x +4y -3=0只有一个公共点,设A 是抛物线M 上一点,若OA ―→²AF ―→=-4,则点A的坐标是( )A .(-1,2)或(-1,-2)B .(1,2)或(1,-2)C .(1,2)D .(1,-2)解析:选B 设抛物线M 的方程为y 2=2px (p >0),则其准线方程为x =-p2.曲线E 的方程可化为(x -3)2+(y +2)2=16,由题意知圆心E 到准线的距离d =3+p2=4,解得p =2,所以抛物线M 的方程为y 2=4x ,F (1,0).设A ⎝ ⎛⎭⎪⎫y 204,y 0,则OA ―→=⎝ ⎛⎭⎪⎫y 204,y 0,AF ―→=⎝ ⎛⎭⎪⎫1-y 204,-y 0,所以OA ―→²AF―→=y 204⎝⎛⎭⎪⎫1-y 204-y 20=-4,解得y 0=±2,所以x 0=1,所以点A 的坐标为(1,2)或(1,-2),故选B.5.(2017²成都模拟)已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB ―→|=2,OC ―→=53OA ―→-23OB ―→.若M 是线段AB 的中点,则OC ―→²OM ―→的值为( ) A .3 B .2 3 C .2D .-3解析:选A 由条件易知△OAB 为正三角形,OA ―→²OB ―→=|OA ―→|²|OB ―→|²cos π3=2.又由M为AB 的中点,知OM ―→=12(OA ―→+OB ―→),所以OC ―→²OM ―→=⎝ ⎛⎭⎪⎫53 OA ―→-23OB ―→²12(OA ―→+OB ―→)=12⎝ ⎛⎭⎪⎫53|OA ―→|2+OA ―→²OB ―→-23|OB ―→|2=3. 6.(2017²武昌调研)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,经过右焦点F 垂直于l 1的直线分别交l 1,l 2于A ,B 两点.若|OA |,|AB |,|OB |成等差数列,且AF ―→与FB ―→反向,则该双曲线的离心率为( )A.52B. 3C. 5D.52解析:选C 由题可知,双曲线的实轴长为2a ,虚轴长为2b ,令∠AOF =α,则由题意知tanα=b a ,在△AOB 中,∠AOB =180°-2α,tan ∠AOB =-tan 2α=|AB ||OA |,∵|OA |,|AB |,|OB |成等差数列,∴设|OA |=m -d ,|AB |=m ,|OB |=m +d ,∵OA ⊥BF ,∴(m -d )2+m 2=(m +d )2,整理,得d =14m ,∴-tan 2α=-2tan α1-tan 2α=|AB ||OA |=m 34m =43,解得b a =2或b a =-12(舍去),∴b =2a ,c =4a 2+a 2=5a ,∴e =ca= 5.二、填空题7.设P ,Q 分别为圆x 2+y 2-8x +15=0和抛物线y 2=4x 上的点,则P ,Q 两点间的最小距离是________.解析:由题意知,圆的标准方程为(x -4)2+y 2=1,则圆心C (4,0),半径为1.由题意知P ,Q 间的最小距离为圆心C (4,0)到抛物线上的点的最小距离减去半径1.设以(4,0)为圆心,r 为半径的圆的方程为(x -4)2+y 2=r 2,与y 2=4x 联立,消去y 整理得,x 2-4x +16-r 2=0,令Δ=16-4(16-r 2)=0,解得r =23,所以|PQ |min =23-1.答案:23-18.(2017²山东高考)在平面直角坐标系xOy 中,双曲线x 2a -y 2b=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.解析:法一:设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知 |AF |=y 1+p 2,|BF |=y 2+p 2,|OF |=p2,由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .联立⎩⎪⎨⎪⎧x 2a 2-y 2b2=1,x 2=2py消去x ,得a 2y 2-2pb 2y +a 2b 2=0, 所以y 1+y 2=2pb 2a 2,所以2pb2a2=p ,即b 2a 2=12,故b a =22, 所以双曲线的渐近线方程为y =±22x .法二:设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知|AF |=y 1+p 2,|BF |=y 2+p 2,|OF |=p2,由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .k AB =y 2-y 1x 2-x 1=x 222p -x 212p x 2-x 1=x 2+x 12p.由⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y 22b 2=1,得k AB =y 2-y 1x 2-x 1=b 2 x 1+x 2 a 2 y 1+y 2 =b 2a 2²x 1+x 2p ,则b 2a 2²x 1+x 2p =x 2+x 12p , ∴b 2a 2=12,故b a =22, ∴双曲线的渐近线方程为y =±22x . 答案:y =±22x 9.(2017²石家庄质检)已知F 为双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,过原点的直线l 与双曲线交于M ,N 两点,且MF ―→²NF ―→=0,△MNF 的面积为ab ,则该双曲线的离心率为________.解析:因为MF ―→²NF ―→=0, 所以MF ―→⊥NF ―→.设双曲线的左焦点为F ′,则由双曲线的对称性知四边形F ′MFN 为矩形,则有|MF |=|NF ′|,|MN |=2c .设点N 在双曲线右支上,由双曲线的定义知,|NF ′|-|NF |=2a , 所以|MF |-|NF |=2a .因为S △MNF =12|MF |²|NF |=ab ,所以|MF |²|NF |=2ab .在Rt △MNF 中,|MF |2+|NF |2=|MN |2,即(|MF |-|NF |)2+2|MF |²|NF |=|MN |2,所以(2a )2+2²2ab =(2c )2,把c 2=a 2+b 2代入,并整理,得b a =1,所以e =c a=1+⎝ ⎛⎭⎪⎫b a 2= 2.答案: 2 三、解答题10.(2017²陕西质检)已知椭圆与抛物线y 2=42x 有一个相同的焦点,且该椭圆的离心率为22. (1)求椭圆的标准方程.(2)过点P (0,1)的直线与该椭圆交于A ,B 两点,O 为坐标原点,若AP ―→=2PB ―→,求△AOB 的面积.解:(1)依题意,设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由题意可得c =2,又e =c a =22,∴a =2. ∴b 2=a 2-c 2=2,∴椭圆的标准方程为x 24+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2),故AP ―→=(-x 1,1-y 1),PB ―→=(x 2,y 2-1).由AP ―→=2PB ―→,得⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2 y 2-1 .设直线AB 的方程为y =kx +1,代入椭圆方程整理,得(2k 2+1)x 2+4kx -2=0, ∴x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1.将x 1=-2x 2代入上式可得,x 2=4k 2k 2+1,x 1=-8k2k 2+1. ∴x 1x 2=-32k 22k 2+1 2=-22k 2+1,解得k 2=114. ∴△AOB 的面积S =12|OP |²|x 1-x 2|= x 1+x 2 2-4x 1x 22=12²28k 2+22k 2+1=3148. 11.(2018届高三²广西三市联考)已知右焦点为F 2(c,0)的椭圆C :x 2a 2+y 2b2=1(a >b >0)过点⎝ ⎛⎭⎪⎫1,32,且椭圆C 关于直线x =c 对称的图形过坐标原点. (1)求椭圆C 的方程;(2)过点⎝ ⎛⎭⎪⎫12,0作直线l 与椭圆C 交于E ,F 两点,线段EF 的中点为M ,点A 是椭圆C 的右顶点,求直线MA 的斜率k 的取值范围.解:(1)∵椭圆C 过点⎝ ⎛⎭⎪⎫1,32,∴1a 2+94b 2=1,①∵椭圆C 关于直线x =c 对称的图形过坐标原点,∴a =2c , ∵a 2=b 2+c 2,∴b 2=34a 2,②由①②得a 2=4,b 2=3, ∴椭圆C 的方程为x 24+y 23=1.(2)依题意,直线l 过点⎝ ⎛⎭⎪⎫12,0且斜率不为零,故可设其方程为x =my +12. 由⎩⎪⎨⎪⎧x =my +12,x 24+y 23=1消去x ,并整理得4(3m 2+4)y 2+12my -45=0.设E (x 1,y 1),F (x 2,y 2),M (x 0,y 0),∴y 1+y 2=-3m 3m 2+4,∴y 0=y 1+y 22=-3m 2 3m 2+4 , ∴x 0=my 0+12=23m 2+4,∴k =y 0x 0-2=m4m 2+4.当m =0时,k =0; 当m ≠0时,k =m4m 2+4=14m +4m, ∵⎪⎪⎪⎪⎪⎪4m +4m =4|m |+4|m |≥8, ∴0<1⎪⎪⎪⎪⎪⎪4m +4m ≤18,∴0<|k |≤18,∴-18≤k ≤18且k ≠0.综上可知,直线MA 的斜率k 的取值范围是⎣⎢⎡⎦⎥⎤-18,18. 12.(2017²武昌调研)已知直线y =k (x -2)与抛物线Γ:y 2=12x 相交于A ,B 两点,M 是线段AB 的中点,过M 作y 轴的垂线交Γ于点N .(1)证明:抛物线Γ在点N 处的切线与直线AB 平行;(2)是否存在实数k 使NA ―→²NB ―→=0?若存在,求k 的值;若不存在,请说明理由.解:(1)证明:显然k ≠0,由⎩⎪⎨⎪⎧y =k x -2 ,y 2=12x ,消去y 并整理,得2k 2x 2-(8k 2+1)x +8k2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k 2+12k 2,x 1x 2=4,设M (x M ,y M ),N (x N ,y N ).则x M =x 1+x 22=8k 2+14k2,y M =k (x M -2)=k ⎝ ⎛⎭⎪⎫8k 2+14k 2-2=14k. 由题设条件可知,y N =y M =14k ,x N =2y 2N =18k 2,∴N ⎝ ⎛⎭⎪⎫18k 2,14k .对于函数y 2=12x 即x =2y 2,有x ′=4y ,∴x ′|y =y N =4³14k =1k ,即抛物线在N 处的切线斜率为k ,∴抛物线Г在点N 处的切线与直线AB 平行. (2)假设存在实数k ,使NA ―→²NB ―→=0,则NA ⊥NB . ∵M 是AB 的中点,∴|MN |=12|AB |.由(1)得|AB |=1+k2|x 1-x 2|=1+k2² x 1+x 2 2-4x 1x 2=1+k 2²⎝ ⎛⎭⎪⎫8k 2+12k 22-4³4=1+k 2²16k 2+12k 2. ∵MN ⊥y 轴,∴|MN |=|x M -x N |=8k 2+14k 2-18k 2=16k 2+18k 2. ∴16k 2+18k 2=12 1+k 2²16k 2+12k 2,解得k =±12.1 2,使NA―→²NB―→=0.故存在实数k=±。

2018年高考数学(理科,通用版)练酷专题二轮复习课时跟踪检测:(一) 集合、常用逻辑用语(精编含解析)

2018年高考数学(理科,通用版)练酷专题二轮复习课时跟踪检测:(一) 集合、常用逻辑用语(精编含解析)

课时跟踪检测(一)集合、常用逻辑用语1. 设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A. {1,-3}B. {1,0}C. {1,3}D. {1,5}【答案】C【解析】因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m=3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.故选C 2. 设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A. (1,2)B. (1,2]C. (-2,1)D. [-2,1)【答案】D【解析】由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}故选D.3. 已知命题q:∀x∈R,x2>0,则( )A. 命题綈q:∀x∈R,x2≤0为假命题B. 命题綈q:∀x∈R,x2≤0为真命题C. 命题綈q:∃x0∈R,≤0为假命题D. 命题綈q:∃x0∈R,≤0为真命题【答案】D【解析】全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x=0时,x2≤0成立,所以﹁q为真命题.故选D.4. 命题“若a>b,则a+c>b+c”的否命题是( )A. 若a≤b,则a+c≤b+cB. 若a+c≤b+c,则a≤bC. 若a+c>b+c,则a>bD. 若a>b,则a+c≤b+c【答案】A故选A.5. “x>1”是“x2+2x>0”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】由,得或,所以“”是“”的充分不必要条件,故选A.6. 已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A. (-∞,-2)B. [2,+∞)C. [-2,2]D. (-∞,-2]∪[2,+∞)【答案】D【解析】因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.故答案为:D.7. 已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是( )A. {x|2<x<3}B. {x|-1<x≤0}C. {x|0≤x<6}D. {x|x<-1}【答案】C【解析】由x2-5x-6<0,解得-1<x<6,所以A={x|-1<x<6}.由2x<1,解得x<0,所以B={x|x<0}.又图中阴影部分表示的集合为(∁U B)∩A,因为∁U B={x|x≥0},所以(∁U B)∩A={x|0≤x<6}.故答案为; C .8. 已知命题p:∃x0∈(-∞,0),2x0<3x0;命题q:∀x∈,tan x>sin x,则下列命题为真命题的是( )A. p∧qB. p∨(﹁q)C. (﹁p)∧qD. p∧(﹁q)【答案】C【解析】根据指数函数的图象与性质知命题p是假命题,﹁p是真命题;∵x∈,且tan x=,∴0x<1,tan x>sin x,∴q为真命题,故选C.9. 祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】的体积相等,在同高处的截面积相等,由于A、B体积相等,A、B在同高处的截面积不恒相等,譬如一个为柱体另一个为椎体,所以条件不充分;反之成立,条件是必要的,因此是的必要不充分条件.选B.10. 设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},若P={x|log2x<1},Q={x||x-2|<1},则P-Q=( )A. {x|0<x<1}B. {x|0<x≤1}C. {x|1≤x<2}D. {x|2≤x<3}【答案】B【解析】试题分析:因为,所以考点:新定义下的集合的运算.11. 命题p:“∃x0∈R,使得+mx0+2m+5<0”,命题q:“关于x的方程2x-m=0有正实数解”,若“p或q”为真,“p且q”为假,则实数m的取值范围是( )A. [1,10]B. (-∞,-2)∪(1,10]C. [-2,10]D. (-∞,-2]∪(0,10]【答案】B故答案为:B.点睛:本题考查了一元二次方程的解与判别式的关系、一元二次不等式的解集与判别式的关系、复合命题的真假判定,对于“p或q”为真,则只需要其中一个为真,“p或q” 为假,则两个均为假.12. 下列选项中,说法正确的是( )A. 若a>b>0,则ln a<ln bB. 向量a=(1,m)与b=(m,2m-1)(m∈R)垂直的充要条件是m=1C. 命题“∀n∈N*,3n>(n+2)·2n-1”的否定是“∀n∈N*,3n≥(n+2)·2n-1”D. 已知函数f(x)在区间[a,b]上的图象是连续不断的,则命题“若f(a)·f(b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题为假命题【答案】D【解析】A中,因为函数y=ln x(x>0)是增函数,所以若a>b>0,则ln a>ln b,故A错;B中,若a⊥b,则m+m(2m-1)=0,解得m=0,故B错;C中,命题“∀n∈N*,3n>(n+2)·2n-1”的否定是“∃n0∈N*,3n0≤(n0+2)·2n0-1”,故C错;D中,原命题的逆命题是“若f(x)在区间(a,b)内至少有一个零点,则f(a)·f(b)<0”,是假命题,如函数f(x)=x2-2x-3在区间[-2,4]上的图象是连续不断的,且在区间(-2,4)内有两个零点,但f(-2)·f(4)>0,故D正确.故答案为;D .点睛:本题考查命题的否定,充要条件及四种命题,解题的关键是掌握并理解命题否定的书写方法规则,全称命题的否定是特称命题,特称命题的否定是全称命题,书写时注意量词的变化.在判断命题的充要条件时,可以先找命题的逆否命题,判断逆否命题的充要条件即可.13. 若集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则实数a的值为________.【答案】1或-【解析】试题分析:由题意可知,集合中的方程有且只有一个根.当时,方程变为,符合题意;当时,有,解得.考点:1.子集的个数;2.由方程根的情况讨论参数的取值范围.14. 已知集合A=B={x|-1<x<m+1,x∈R},若x∈B成立的一个充分不必要的条件是x∈A,则实数m的取值范围是________.【答案】(2,+∞)【解析】A=={x|-1<x<3},∵x∈B成立的一个充分不必要条件是x∈A,∴A B,∴m+1>3,即m>2.故答案:(2,+∞)15. 已知非空集合A,B满足下列四个条件:①A∪B={1,2,3,4,5,6,7};②A∩B=∅;③A中的元素个数不是A中的元素;④B中的元素个数不是B中的元素.(1)如果集合A中只有1个元素,那么A=________;(2)有序集合对(A,B)的个数是________.【答案】(1). {6} (2). 32【解析】(1)若集合A中只有1个元素,则集合B中有6个元素,6∉B,故A={6}.(2)当集合A中有1个元素时,A={6},B={1,2,3,4,5,7},此时有序集合对(A,B)有1个;当集合A中有2个元素时,5∉B,2∉A,此时有序集合对(A,B)有5个;当集合A中有3个元素时,4∉B,3∉A,此时有序集合对(A,B)有10个;当集合A中有4个元素时,3∉B,4∉A,此时有序集合对(A,B)有10个;当集合A中有5个元素时,2∉B,5∉A,此时有序集合对(A,B)有5个;当集合A中有6个元素时,A={1,2,3,4,5,7},B={6},此时有序集合对(A,B)有1个.综上可知,有序集合对(A,B)的个数是1+5+10+10+5+1=32.答案:(1){6} (2)3216. 下列说法中不正确的是________.(填序号)①若a∈R,则“<1”是“a>1”的必要不充分条件;②“p∧q为真命题”是“p∨q为真命题”的必要不充分条件;③若命题p:“∀x∈R,sin x+cos x≤”,则p是真命题;④命题“∃x0∈R,+2x0+3<0”的否定是“∀x∈R,x2+2x+3>0”.【答案】②④【解析】由<1,得a <0或a >1,反之,由a >1,得<1,∴“<1”是“a >1”的必要不充分条件,故①正确;由p ∧q 为真命题,知p ,q 均为真命题,所以p ∨q 为真命题,反之,由p ∨q 为真命题,得p ,q 至少有一个为真命题,所以p ∧q 不一定为真命题,所以“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件,故②不正确;∵sin x +cos x =,∴命题p 为真命题,③正确;命题“∃x 0∈R ,+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3≥0”,故④不正确.故答案:②④点睛:本题考查命题的否定,充要条件及四种命题,解题的关键是掌握并理解命题否定的书写方法规则,全称命题的否定是特称命题,特称命题的否定是全称命题,书写时注意量词的变化.。

教育最新K12通用版2018年高考数学二轮复习课时跟踪检测二理

教育最新K12通用版2018年高考数学二轮复习课时跟踪检测二理

课时跟踪检测(二)A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x<k π2+5π12(k ∈Z),所以函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12 (k ∈Z),故选B. 2.函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f(x)的解析式为( )A .f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4B .f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4C .f(x)=sin ⎝⎛⎭⎪⎫4x +π4 D .f(x)=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f(x)的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f(x)=sin(2x +φ).又函数f(x)的图象经过点⎝⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f(x)=sin ⎝⎛⎭⎪⎫2x +π4,故选A.3.(2017·天津高考)设函数f(x)=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z),①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k′π(k′∈Z),②由①②得ω=-23+43(k′-2k).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π, ∴f(x)的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f(x)=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f(x)=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f(x)=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x→π2时,y<0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m(m>0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m>0,故当k =0时,m 最小,此时m =π6.6.(2017·云南检测)函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则f(x)的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k),k ∈ZD .(-3+8k,1+8k),k ∈Z解析:选D 由题图,知函数f(x)的最小正周期为T =4×(3-1)=8,所以ω=2πT =π4,所以f(x)=sin ⎝⎛⎭⎪⎫π4x +φ.把(1,1)代入,得sin ⎝ ⎛⎭⎪⎫π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f(x)=sin ⎝ ⎛⎭⎪⎫π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k∈Z),得8k -3≤x≤8k+1(k ∈Z),所以函数f(x)的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f(x)=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( ) A.65 B .1 C.35D.15解析:选 A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f(x)=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f(x)的最大值为65.8.(2017·武昌调研)若f(x)=cos 2x +acos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D f(x)=1-2sin 2x -asin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g(t)=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f(x)在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a≤-4,故选D. 9.已知函数f(x)=sin(2x +φ)(0<φ<π),若将函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3D.π6解析:选D 函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数解析式为y=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f(x)=sin ωx +3cos ωx(ω>0)满足f(α)=-2,f(β)=0,且|α-β|的最小值为π2,则函数f(x)的解析式为( )A .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π3B .f(x)=2sin ⎝ ⎛⎭⎪⎫x -π3C .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π6D .f(x)=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f(x)=sin ωx +3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3.因为f(α)=-2,f(β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f(x)的最小正周期),故ω=2πT=1,所以f(x)=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f(x)=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f(x)的图象向右平移3π4个单位长度后得到函数g(x)的图象,则函数g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( ) A .-2 B .-1C .- 2D .- 3解析:选B f(x)=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴g(x)=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -3π4+π3=-2sin ⎝ ⎛⎭⎪⎫2x -π6,则g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f(x)=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 解析:选D f(x)=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,因为0<φ<π且f(x)为奇函数,所以φ=3π4,即f(x)=-2sin ωx ,又直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f(x)的最小正周期为π2,由2πω=π2,可得ω=4,故f(x)=-2sin 4x ,由2k π+π2≤4x≤2k π+3π2,k ∈Z ,得k π2+π8≤x≤k π2+3π8,k ∈Z ,令k =0,得π8≤x≤3π8,此时f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.二、填空题13.(2017·全国卷Ⅱ)函数f(x)=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解析:依题意,f(x)=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝ ⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f(x)max =1. 答案:114.已知函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________.解析:函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其图象的一条对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.答案:±215.(2017·深圳调研)已知函数f(x)=cos xsin x(x ∈R),则下列四个结论中正确的是________.(写出所有正确结论的序号)①若f(x 1)=-f(x 2),则x 1=-x 2; ②f(x)的最小正周期是2π;③f(x)在区间⎣⎢⎡⎦⎥⎤-π4,π4上是增函数;④f(x)的图象关于直线x =3π4对称. 解析:因为f(x)=cos xsin x =12sin 2x ,所以f(x)是周期函数,且最小正周期为T =2π2=π,所以①②错误;由2k π-π2≤2x≤2k π+π2(k ∈Z),解得k π-π4≤x≤k π+π4(k ∈Z),当k =0时,-π4≤x≤π4,此时f(x)是增函数,所以③正确;由2x =π2+k π(k ∈Z),得x =π4+k π2(k ∈Z),取k =1,则x =3π4,故④正确.答案:③④16.已知函数f(x)=Acos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,f(x)的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+…+f(2 016)+f(2 017)=________.解析:∵函数f(x)=Acos 2(ωx +φ)+1=A·1+ωx +2φ2+1=A2cos(2ωx +2φ)+1+A 2⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,∴A 2+1+A2=3,∴A =2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即2π2ω=4,∴ω=π4.再根据f(x)的图象与y 轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<π2,∴2φ=π2,φ=π4.故函数f(x)的解析式为f(x)=cos ⎝ ⎛⎭⎪⎫π2x +π2+2=-sin π2x +2,∴f(1)+f(2)+…+f(2016)+f(2017)=-⎝ ⎛⎭⎪⎫sin π2+sin 2π2+sin 3π2+…+sin 2 016π2+sin 2 017π2+2×2 017=504×0-sin π2+4034=0-1+4 034=4 033.答案:4 033B 组——能力小题保分练1.曲线y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4和直线y =12在y 轴右侧的交点的横坐标按从小到大的顺序依次记为P 1,P 2,P 3,…,则|P 3P 7|=( )A .πB .2πC .4πD .6π解析:选B y =2cos ⎝⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4=cos 2x -sin 2x =cos 2x ,故曲线对应的函数为周期函数,且最小正周期为π,直线y =12在y 轴右侧与函数y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4在每个周期内的图象都有两个交点,又P 3与P 7相隔2个周期,故|P 3P 7|=2π,故选B.2.已知函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,则φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤-π3,π6C.⎣⎢⎡⎭⎪⎫-π4,0 D.⎣⎢⎡⎦⎥⎤-π3,0 解析:选D 因为函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,又-π6+φ<2x +φ≤π3+φ,所以2×π6+φ≤π3,且2×⎝ ⎛⎭⎪⎫-π12+φ≥-π2,解得-π3≤φ≤0,故选D.3.已知函数f(x)=Asin(ωx +φ)⎝ ⎛⎭⎪⎫A>0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f(x)的图象关于直线x =-2π3对称B .f(x)的图象关于点⎝ ⎛⎭⎪⎫-5π12,0对称 C .若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,- 3 ]D .将函数y =2sin ⎝ ⎛⎭⎪⎫2x -π6的图象向左平移π6个单位长度得到函数f(x)的图象解析:选C 根据题中所给的图象,可知函数f(x)的解析式为f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴当x =-2π3时,2×⎝ ⎛⎭⎪⎫-2π3+π3=-π,f ⎝ ⎛⎭⎪⎫-2π3=2sin(-π)=0,从而f(x)的图象关于点⎝ ⎛⎭⎪⎫-2π3,0对称,而不是关于直线x =-2π3对称,故A 不正确;当x =-5π12时,2×⎝ ⎛⎭⎪⎫-5π12+π3=-π2,∴f(x)的图象关于直线x =-5π12对称,而不是关于点⎝ ⎛⎭⎪⎫-5π12,0对称,故B 不正确;当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,2x +π3∈⎣⎢⎡⎦⎥⎤-2π3,π3,f(x)∈[-2, 3 ],结合正弦函数图象的性质,可知若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m的取值范围是(-2,- 3 ],故C 正确;根据图象平移变换的法则,可知应将y =2sin ⎝⎛⎭⎪⎫2x -π6的图象向左平移π4个单位长度得到f(x)的图象,故D 不正确.故选C.4.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数:①f(x)=sin x +cos x ;②f(x)=2(sin x +cos x); ③f(x)=sin x ;④f(x)=2sin x + 2. 其中互为生成函数的是( ) A .①② B .①④ C .③④D .②④解析:选B 首先化简题中①②两个函数解析式可得:①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4,②f(x)=2sin ⎝⎛⎭⎪⎫x +π4,可知③f(x)=sin x 的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f(x)=sin x 不与其他函数互为生成函数;同理①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4(④f(x)=2sin x +2)的图象与②f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象也必须经过伸缩变换才能重合,而④f(x)=2sin x +2的图象向左平移π4个单位长度,再向下平移2个单位长度即可得到①f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象,∴①④互为生成函数,故选B.5.已知函数f(x)=Asin(ωx +φ)(A ,ω,φ均为正常数)的最小正周期为π,且当x =2π3时,函数f(x)取得最小值,则( ) A .f(1)<f(-1)<f(0) B .f(0)<f(1)<f(-1) C .f(-1)<f(0)<f(1) D .f(1)<f(0)<f(-1)解析:选C 因为函数f(x)=Asin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,故f(x)=Asin(2x +φ),因为当x =2π3时,函数f(x)取得最小值,所以2×2π3+φ=2k π-π2,k ∈Z ,解得φ=2k π-11π6,k ∈Z ,又φ>0,故可取k =1,则φ=π6,故f(x)=Asin ⎝ ⎛⎭⎪⎫2x +π6,所以f(-1)=Asin ⎝ ⎛⎭⎪⎫-2+π6<0,f(1)=Asin ⎝ ⎛⎭⎪⎫2+π6>0,f(0)=Asin π6=12A>0,故f(-1)最小.又sin ⎝ ⎛⎭⎪⎫2+π6=sin ⎝ ⎛⎭⎪⎫π-2-π6=sin ⎝ ⎛⎭⎪⎫5π6-2>sin π6,故f(1)>f(0).综上可得f(-1)<f(0)<f(1),故选C.6.若函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,则φ=________. 解析:因为函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,故它们的最小正周期相同,即2πω=2π2,所以ω=2,故函数f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z ,故函数f(x)的图象的对称轴为x =k π2+π8,k ∈Z.令2x +φ=m π,m ∈Z ,则x =m π2-φ2,m∈Z ,故函数g(x)的图象的对称轴为x =m π2-φ2,m ∈Z ,故k π2+π8-m π2+φ2=n π2,m ,n ,k ∈Z ,即φ=(m +n -k)π-π4,m ,n ,k ∈Z ,又|φ|<π2,所以φ=-π4.答案:-π4。

【配套K12】通用版2018年高考数学二轮复习课时跟踪检测三文

【配套K12】通用版2018年高考数学二轮复习课时跟踪检测三文

课时跟踪检测(三)A 组——12+4提速练一、选择题1.(2017·沈阳质量检测)已知△ABC 中,A =π6,B =π4,a =1,则b =( )A .2B .1 C. 3D . 2解析:选D 由正弦定理a sin A =bsin B ,得1sin π6=b sinπ4,即112=b22,∴b =2,故选D.2.(2017·张掖模拟)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若c =2a ,b sin B -a sin A =12a sin C ,则sin B =( )A.74B.34C.73D.13解析:选A 由b sin B -a sin A =12a sin C ,得b 2-a 2=12ac ,∵c =2a ,∴b =2a ,∴cos B=a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34,则sin B = 1-⎝ ⎛⎭⎪⎫342=74. 3.已知sin β=35⎝ ⎛⎭⎪⎫π2<β<π,且sin(α+β)=cos α,则tan(α+β)=( ) A .-2 B .2 C .-12D .12解析:选A ∵sin β=35,且π2<β<π,∴cos β=-45,tan β=-34.∵sin(α+β)=sin αcos β+cos αsin β=cos α, ∴tan α=-12,∴tan(α+β)=tan α+tan β1-tan α·tan β=-2.4.若△ABC 的三个内角A ,B ,C 对应的边分别为a ,b ,c ,且a cos C ,b cos B ,c cos A 成等差数列,则B =( )A .30°B .60°C .90°D .120°解析:选B 由题意知2b cos B =a cos C +c cos A ,根据正弦定理可得2sin B cos B =sin A cosC +cos A sin C ,即2sin B cos B =sin(A +C )=sin B ,解得cos B =12,所以B =60°.5.(2018届高三·贵州七校联考)已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线y =2x 上,则sin ⎝⎛⎭⎪⎫2θ+π4的值为( )A .-7210B.7210 C .-210D.210解析:选D 由三角函数的定义得tan θ=2,cos θ=±55,所以tan 2θ=2tan θ1-tan 2θ=-43,cos 2θ=2cos 2θ-1=-35,所以sin 2θ=cos 2θtan 2θ=45,所以sin ⎝ ⎛⎭⎪⎫2θ+π4=22(sin 2θ+cos 2θ)=22×⎝ ⎛⎭⎪⎫45-35=210,故选D. 6.(2017·青岛模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a sin A =(2sinB +sinC )b +(2c +b )sin C ,则A =( )A .60°B .120°C .30°D .150°解析:选B 由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理a 2=b 2+c 2-2bc cos A ,得cos A =-12,又A 为三角形的内角,故A =120°.7.(2017·惠州调研)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.2+1B.3+1 C .2D. 5解析:选B 由正弦定理bsin B =csin C,得sin B =b sin Cc =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1. 8.(2017·长沙模拟)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2+b 2=4a +2b-5且a 2=b 2+c 2-bc ,则sin B 的值为( )A.32B.34 C.22D.35解析:选B 由a 2+b 2=4a +2b -5可知(a -2)2+(b -1)2=0,故a =2且b =1.又a 2=b 2+c2-bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12,故sin A =32.根据正弦定理a sin A =bsin B,得sin B=322=34,故选B. 9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2b cos C ,则△ABC 的形状是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形D .等边三角形解析:选C ∵a =2b cos C =2b ·a 2+b 2-c 22ab,即b 2-c 2=0,∴b =c ,∴△ABC 是等腰三角形,故选C.10.在△ABC 中,A =60°,BC =10,D 是AB 边上不同于A ,B 的任意一点,CD =2,△BCD 的面积为1,则AC 的长为( )A .2 3 B. 3 C.33D.233解析:选D 由S △BCD =1,可得12×CD ×BC ×sin∠DCB =1,即sin ∠DCB =55,所以cos ∠DCB=255或cos ∠DCB =-255,又∠DCB <∠ACB =180°-A -B =120°-B <120°,所以cos ∠DCB >-12,所以cos ∠DCB =255.在△BCD 中,cos ∠DCB =CD 2+BC 2-BD 22CD ·BC =255,解得BD =2,所以cos ∠DBC =BD 2+BC 2-CD 22BD ·BC =31010,所以sin ∠DBC =1010.在△ABC 中,由正弦定理可得AC =BC sin B sin A=233,故选D. 11.如图,在△ABC 中,∠C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos∠A =( )A.223 B.24 C.64D.63解析:选C 因为DE ⊥AB ,DE =22,所以AD =22sin ∠A ,所以BD =AD =22sin ∠A .因为AD =DB ,所以∠A =∠ABD ,所以∠BDC =∠A +∠ABD =2∠A .在△BCD 中,由正弦定理BD sin ∠C =BCsin ∠BDC ,得22sin ∠A 32=4sin 2∠A ,整理得cos ∠A =64.12.已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5解析:选D ∵23cos 2A +cos 2A =23cos 2A +2cos 2A -1=25cos 2A -1=0,∴cos 2A =125,∵△ABC 为锐角三角形,∴cos A =15.由余弦定理知a 2=b 2+c 2-2bc cos A ,即49=b 2+36-125b ,解得b =5或b =-135(舍去).二、填空题13.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析:由正弦定理,得sin B =b sin C c =6sin 60°3=22, 因为0°<B <180°, 所以B =45°或135°.因为b <c ,所以B <C ,故B =45°, 所以A =180°-60°-45°=75°. 答案:75°14.(2017·广州模拟)设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2sin C =4sin A ,(ca +cb )(sin A -sin B )=sin C (27-c 2),则△ABC 的面积为________.解析:由a 2sin C =4sin A 得ac =4,由(ca +cb )(sin A -sin B )=sin C (27-c 2)得(a +b )(a -b )=27-c 2,即a 2+c 2-b 2=27,∴cos B =a 2+c 2-b 22ac =74,则sin B =34,∴S △ABC =12ac sinB =32.答案:3215.(2018届高三·湖北七市(州)联考)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,C =120°,a =2b ,则tan A =________.解析:由余弦定理得,c 2=a 2+b 2-2ab cos C =4b 2+b 2-2×2b ×b ×⎝ ⎛⎭⎪⎫-12=7b 2,∴c =7b ,则cos A =b 2+c 2-a 22bc =b 2+7b 2-4b 22×b ×7b=277,∴sin A =1-cos 2A =1-47=217,∴tan A =sin A cos A=32. 答案:3216.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =________.解析:由题意可得12AB ·BC ·sin B =12,又AB =1,BC =2,所以sin B =22,所以B =45°或B =135°.当B =45°时,由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B =1,此时AC =AB =1,BC =2,易得A =90°,与“钝角三角形”条件矛盾,舍去.所以B =135°.由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B = 5.答案: 5B 组——能力小题保分练1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C =( )A.34 B .43 C .-43D .-34解析:选C 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,即sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C=4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C. 2.(2017·合肥质检)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sinA +sinB )=(c -b )·sinC .若a =3,则b 2+c 2的取值范围是( )A .(5,6]B .(3,5)C .(3,6]D .[5,6]解析:选A 由正弦定理可得,(a -b )(a +b )=(c -b )c ,即b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12,则A =π3.又b sin B =c sin C =a sinπ3=2,所以b =2sin B ,c =2sin C ,所以b 2+c 2=4(sin 2B +sin 2C )=4[sin 2B +sin 2(A +B )]=4 ⎩⎪⎨⎪⎧1-cos 2B 2+1-A +B2⎭⎪⎬⎪⎫=3sin 2B -cos 2B +4=2sin ⎝ ⎛⎭⎪⎫2B -π6+4.又△ABC 是锐角三角形,所以B ∈⎝ ⎛⎭⎪⎫π6,π2,则2B-π6∈⎝ ⎛⎭⎪⎫π6,5π6,所以sin ⎝⎛⎭⎪⎫2B -π6∈⎝ ⎛⎦⎥⎤12,1,所以b 2+c 2的取值范围是(5,6],故选A.3.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°,已知山高BC =100 m ,则山高MN =________m.解析:在三角形ABC 中,AC =1002,在三角形MAC 中,MA sin 60°=ACsin 45°,解得MA =1003,在三角形MNA 中,MN 1003=sin 60°=32,故MN =150,即山高MN 为150 m .答案:1504.在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =________.解析:如图,AD 为△ABC 中BC 边上的高.设BC =a ,由题意知AD =13BC =13a ,B =π4,易知BD =AD =13a ,DC =23a .在Rt △ABD 中,AB = ⎝ ⎛⎭⎪⎫13a 2+⎝ ⎛⎭⎪⎫13a 2=23a . 在Rt △ACD 中,AC =⎝ ⎛⎭⎪⎫13a 2+⎝ ⎛⎭⎪⎫23a 2=53a . ∵S △ABC =12AB ·AC ·sin∠BAC =12BC ·AD ,即12×23a×53a ·sin∠BAC =12a ·13a ,∴sin ∠BAC =31010.答案:310105.如图,在△ABC 中,AB =2,点D 在边BC 上,BD =2DC ,cos ∠DAC =31010,cos ∠C =255,则AC =________. 解析:因为BD =2DC ,设CD =x ,AD =y ,则BD =2x ,因为cos ∠DAC =31010,cos ∠C =255,所以sin ∠DAC =1010,sin ∠C =55,在△ACD 中,由正弦定理可得AD sin ∠C =CD sin ∠DAC ,即y 55=x1010,即y =2x .又cos ∠ADB =cos(∠DAC +∠C )=31010×255-1010×55=22,则∠ADB =π4.在△ABD 中,AB 2=BD 2+AD 2-2BD ×AD cos π4,即2=4x 2+2x 2-2×2x ×2x ×22,即x 2=1,所以x =1,即BD =2,DC =1,AD =2,在△ACD 中,AC 2=CD 2+AD 2-2CD ×AD cos 3π4=5,得AC = 5.答案: 56.(2017·成都模拟)已知△ABC 中,AC =2,BC =6,△ABC 的面积为32.若线段BA 的延长线上存在点D ,使∠BDC =π4,则CD =________. 解析:因为S △ABC =12AC ·BC ·sin∠BCA ,即32=12×2×6×sin∠BCA ,所以sin ∠BCA =12.因为∠BAC >∠BDC =π4,所以∠DAC <3π4,又∠DAC=∠ABC +∠ACB ,所以∠ACB <3π4,则∠BCA =π6,所以cos ∠BCA =32.在△ABC 中,AB 2=AC 2+BC 2-2AC ·BC ·cos∠BCA =2+6-2×2×6×32=2,所以AB =2=AC ,所以∠ABC =∠ACB =π6,在△BCD 中,BC sin ∠BDC =CD sin ∠ABC ,即622=CD12,解得CD= 3.答案: 3。

【配套K12】通用版2018年高考数学二轮复习课时跟踪检测十一文

【配套K12】通用版2018年高考数学二轮复习课时跟踪检测十一文

课时跟踪检测(十一)一、选择题1.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30解析:选 C 由三视图知,该几何体是一个长方体的一半再截去一个三棱锥后得到的,如图所示,该几何体的体积V =12×4×3×5-13×12×4×3×(5-2)=24,故选C.2.(2017·西安模拟)湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下了一个直径为12 cm ,深2 cm 的空穴,则该球的表面积是( )A .100π cm 2B .200π cm 2C.400π3cm 2D .400π cm 2解析:选D 设球的半径为r ,如图所示阴影部分以上为浸入水中部分,由勾股定理可知,r 2=(r -2)2+62,解得r =10.所以球的表面积为4πr2=4π×100=400π cm 2.3.(2018届高三·湖南五市十校联考)圆锥的母线长为L ,过顶点的最大截面的面积为12L 2,则圆锥底面半径与母线长的比rL的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎣⎢⎡⎭⎪⎫12,1 C.⎝ ⎛⎭⎪⎫0,22 D.⎣⎢⎡⎭⎪⎫22,1 解析:选D 设圆锥的高为h ,过顶点的截面的顶角为θ,则过顶点的截面的面积S =12L 2sinθ,而0<sin θ≤1,所以当sin θ=1,即截面为等腰直角三角形时取最大值,故圆锥的轴截面的顶角必须大于或等于90°,得L >r ≥L cos 45°=22L ,所以22≤r L<1.4.(2017·太原模拟)如图,已知在多面体ABC ­DEFG 中,AB ,AC ,AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为( )A .2B .4C .6D .8解析:选B 过点C 作CM ∥AB ,过点B 作BM ∥AC ,且BM ∩CM =M ,取DG 的中点N ,连接FM ,FN ,CN ,CF ,如图所示.易知ABMC ­DEFN 是长方体,且三棱锥F ­BCM 与三棱锥C ­FGN 的体积相等,故几何体的体积等于长方体的体积4.故选B.5.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆周长约为( )A .1丈3尺B .5丈4尺C .9丈2尺D .48丈6尺解析:选B 设圆柱底面圆半径为r 尺,高为h 尺,依题意,圆柱体积V =πr 2h ≈3×r 2×1313=2 000×1.62,所以r 2≈81,即r ≈9,所以圆柱底面圆周长为2πr ≈54,54尺=5丈4尺,即圆柱底面圆周长约为5丈4尺,故选B.6.(2017·沈阳质检)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A ­BCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD=CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则f (x )的图象大致是( )解析:选A 如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则由鳖臑的定义知PQ ∥AB ,QR ∥CD ,PQ ⊥QR .设AB =BD =CD =1,CP =x (0≤x ≤1),则CP AC =x 3=PQ 1,即PQ =x 3,又QR 1=BQ BC =AP AC =3-x3,所以QR =3-x 3,所以PR =PQ 2+QR 2=⎝ ⎛⎭⎪⎫x 32+⎝⎛⎭⎪⎫3-x 32=332x 2-23x +3,又由题知PR ⊥BD ,所以f (x )=362x 2-23x +3=66⎝⎛⎭⎪⎫x -322+34,结合选项知选A.二、填空题7.有一个倒圆锥形容器,它的轴截面是顶角的余弦值为0.5的等腰三角形.在容器内放一个半径为r 的铁球,并注水,使水面与球正好相切,然后将球取出,则这时容器中水的深度为________.解析:如图所示,作出轴截面,因轴截面是顶角的余弦值为0.5的等腰三角形,所以顶角为60°,所以该轴截面为正三角形.根据切线性质知当球在容器内时,水的深度为3r ,水面所在圆的半径为3r ,则容器内水的体积V =13π·(3r )23r -43πr 3=53πr 3.将球取出后,设容器中水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积V ′=13π⎝ ⎛⎭⎪⎫33h 2·h =19πh 3,由V =V ′,得h =315r ,所以这时容器中水的深度为315r .答案:315r8.已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为32R ,AB =AC =BC =23,则球O 的表面积为________.解析:设△ABC 外接圆的圆心为O 1,半径为r ,因为AB =AC =BC =23,所以△ABC 为正三角形,其外接圆的半径r =232sin 60°=2,因为OO 1⊥平面ABC ,所以OA 2=OO 21+r 2,即R 2=⎝ ⎛⎭⎪⎫32R 2+22,解得R 2=16,所以球O 的表面积为4πR 2=64π.答案:64π9.(2017·云南调研)已知四棱锥P ­ABCD 的所有顶点都在体积为500π81的球面上,底面ABCD是边长为2的正方形,则四棱锥P ­ABCD 体积的最大值为________.解析:依题意,设球的半径为R ,则有4π3R 3=500π81,R =53,正方形ABCD 的外接圆半径r =1,球心到平面ABCD 的距离h =R 2-r 2=⎝ ⎛⎭⎪⎫532-12=43,因此点P 到平面ABCD 的距离的最大值为h +R =43+53=3,因此四棱锥P ­ABCD 体积的最大值为13×(2)2×3=2.答案:2 三、解答题10.(2017·洛阳统考)如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,AB ∥CD ,AB ⊥BC ,DC =BC =12AB =1,点M 在线段EC 上.(1)证明:平面BDM ⊥平面ADEF ;(2)若AE ∥平面MDB ,求三棱锥E ­BDM 的体积.解:(1)证明:∵DC =BC =1,AB ∥CD ,AB ⊥BC ,∴BC ⊥CD ,BD = 2. 在梯形ABCD 中,AD =2,AB =2,∴AD 2+BD 2=AB 2,∴∠ADB =90°,∴AD ⊥BD . 又平面ADEF ⊥平面ABCD ,ED ⊥AD ,平面ADEF ∩平面ABCD =AD ,ED ⊂平面ADEF , ∴ED ⊥平面ABCD .∵BD ⊂平面ABCD ,∴BD ⊥ED . 又AD ∩ED =D ,∴BD ⊥平面ADEF . 又BD ⊂平面BDM ,∴平面BDM ⊥平面ADEF . (2)如图,连接AC 交BD 于点O ,连接MO ,∵平面EAC ∩平面MBD =MO ,AE ∥平面MDB ,AE ⊂平面EAC ,∴AE∥OM .又AB ∥CD ,∴EM MC =AO OC =ABCD=2,则S △EDM =23S △EDC =23×12×1×2=23.∵ED ⊥平面ABCD ,BC ⊂平面ABCD ,∴DE ⊥BC . 由(1)知,BC ⊥CD ,又ED ∩DC =D ,∴BC ⊥平面EDC .∴V E ­BDM =V B ­EDM =13S △EDM ·BC =13×23×1=29.11.(2017·石家庄质检)如图,四棱锥P ­ABCD 中,PA ⊥底面ABCD ,底面ABCD 为梯形,AD ∥BC ,CD ⊥BC ,AD =2,AB =BC =3,PA =4,M 为AD的中点,N 为PC 上一点,且PC =3PN .(1)求证:MN ∥平面PAB ; (2)求点M 到平面PAN 的距离.解:(1)证明:在平面PBC 内作NH ∥BC 交PB 于点H ,连接AH ,在△PBC 中,NH ∥BC ,且NH =13BC =1,AM =12AD =1.又AD ∥BC ,∴NH ∥AM 且NH =AM , ∴四边形AMNH 为平行四边形, ∴MN ∥AH ,又AH ⊂平面PAB ,MN ⊄平面PAB , ∴MN ∥平面PAB .(2)连接AC ,MC ,PM ,平面PAN 即为平面PAC ,设点M 到平面PAC 的距离为h . 由题意可得CD =22,AC =23,∴S △PAC =12PA ·AC =43,S △AMC =12AM ·CD =2,由V M ­PAC =V P ­AMC ,得13S △PAC ·h =13S △AMC ·PA ,即43h =2×4,∴h =63, ∴点M 到平面PAN 的距离为63. 12.(2018届高三·湖北七市(州)联考)《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵ABM ­DCP 与刍童ABCD ­A 1B 1C 1D 1的组合体中,AB =AD ,A 1B 1=A 1D 1.(1)证明:直线BD ⊥平面MAC ;(2)若AB =1,A 1D 1=2,MA =3,三棱锥A ­A 1B 1D 1的体积V ′=233,求该组合体的体积.解:(1)证明:由题可知ABM ­DCP 是底面为直角三角形的直棱柱, ∴AD ⊥平面MAB ,∴AD ⊥MA , 又MA ⊥AB ,AD ∩AB =A , ∴MA ⊥平面ABCD , ∴MA ⊥BD ,又AB =AD ,∴四边形ABCD 为正方形,∴BD ⊥AC , 又MA ∩AC =A , ∴BD ⊥平面MAC .(2)设刍童ABCD ­A 1B 1C 1D 1的高为h ,则三棱锥A ­A 1B 1D 1的体积V ′=13×12×2×2×h =233,∴h =3,故该组合体的体积V =12×1×3×1+13×(12+22+12×22)×3=32+733=1736.。

【配套K12】[学习](全国通用版)2018-2019高中数学 模块综合检测 新人教B版必修2

【配套K12】[学习](全国通用版)2018-2019高中数学 模块综合检测 新人教B版必修2

模块综合检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若a,b是异面直线,b,c是异面直线,则a,c的位置关系为()A.相交、平行或异面B.相交或平行C.异面D.平行或异面与c可以相交、平行或异面,分别如图中的①,②,③.2已知直线l1:(k-3)x+(4-2k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是()A.1或3B.1或C.3或D.1或2k=3时,l1:-2y+1=0,l2:-2y+3=0,显然平行;当k=2时,l1:-x+1=0,l2:-2x-2y+3=0,显然不平行;当k≠3,且k≠2时,要使l1∥l2,应有⇒k=.综上所述k=3或k=,故选C.3由三视图可知,该几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台,其中有一侧棱垂直于底面,底面为直角梯形.4在直线3x-4y-27=0上到点P(2,1)距离最近的点的坐标为()A.(5,-3)B.(9,0)C.(-3,5)D.(-5,3)P(2,1)向此直线引垂线,其垂足即为所求的点,过点P作直线3x-4y-27=0的垂线方程为4x+3y+m=0.因为点P(2,1)在此垂线上,所以4×2+3×1+m=0.所以m=-11.由联立求解,得所求的点的坐标为(5,-3).5若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-11C1的圆心是原点(0,0),半径r1=1,圆C2:(x-3)2+(y-4)2=25-m,圆心C2(3,4),半径r2=,由两圆相外切,得|C1C2|=r1+r2,即1+=5,解得m=9.故选C.6某几何体的三视图(单位:cm)如图,则该几何体的体积是()A.72 cm3B.90 cm3C.108 cm3D.138 cm3,其体积为6×4×3+×3×4×3=90 (cm3).7若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆所作的切线长的最小值是()A.2B.3C.4D.6(x+1)2+(y-2)2=2,则圆心为(-1,2),半径为.因为圆关于直线2ax+by+6=0对称,所以圆心在直线2ax+by+6=0上,所以-2a+2b+6=0,即b=a-3,点(a,b)到圆心的距离为d=.所以当a=2时,d有最小值=3,此时切线长最小,为=4,故选C.8一块石材表示的几何体的三视图如图,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4,石材为一个三棱柱(相对应的长方体的一半),则可知能得到的最大球为三棱柱的内切球.由题意可知主视图三角形的内切圆的半径即为球的半径,可得R==2.9垂直于直线y=x+1且与圆x2+y2=4相切于第三象限的直线方程是()A.x+y+2=0B.x+y+2=0C.x+y-2=0D.x+y-2=0y=-x+k(k<0),又圆心(0,0)到直线y=-x+k的距离为2,即=2,∴k=±2,又k<0,∴k=-2.故直线方程为y=-x-2,即x+y+2=0.10如图,在正四棱柱ABCD-A1B1C1D1中,AB=3,BB1=4,长为1的线段PQ在棱AA1上移动,长为3的线段MN在棱CC1上移动,点R在棱BB1上移动,则四棱锥R-PQMN的体积是 ()A.12B.10C.6D.不确定R-PQMN的高为d,则d=,S四边形PQMN=×(1+3)×3=6,V R-PQMN=S四边形PQMN·d=×6=6,故选C.11已知点A,B,C,D为同一球面上的四点,且AB=AC=AD=2,AB⊥AC,AC⊥AD,AD⊥AB,则这个球的表面积是()A.16πB.20πC.12πD.8π,且该正方体的八个顶点都在球面上,即球为正方体的外接球,所以2=2R,R=,S=4πR2=12π,故选C.12已知A(-2,0),B(0,2),实数k是常数,M,N是圆x2+y2+kx=0上两个不同点,P是圆x2+y2+kx=0上的动点,如果点M,N关于直线x-y-1=0对称,则△PAB面积的最大值是()A.3-B.4C.3+D.6x2+y2+kx=0的圆心位于直线x-y-1=0上,于是有--1=0,即k=-2,因此圆心坐标是(1,0),半径是1.由题意可得|AB|=2,直线AB的方程是=1,即x-y+2=0,圆心(1,0)到直线AB的距离等于,点P到直线AB的距离的最大值是+1,△PAB面积的最大值为×2=3+,故选C.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13正方体不在同一表面上的两个顶点的坐标分别为A(1,3,1),B(5,7,5),则正方体的棱长为.,|AB|为正方体的对角线长.设正方体的棱长为x,则|AB|=x.∵|AB|==4,∴4x,即x=4.14经过点P(2,-3)作圆x2+y2=20的弦AB,且使|AB|=8,则弦AB所在的直线方程为.,因为|AB|=8,所以|OC|==2.当直线AB的斜率存在时,设AB所在直线方程为y+3=k(x-2),即kx-y-2k-3=0,圆心O到AB的距离为=2,解得k=-.此时,AB所在的直线方程为5x+12y+26=0.当直线AB的斜率不存在时,可知AB所在的直线方程为x=2时,符合题意.故所求弦AB所在直线的方程是5x+12y+26=0或x=2.x+12y+26=0或x=215设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2.若它们的侧面积相等,且,则的值是.,所以.又圆柱的侧面积S侧=2πrh,所以S侧1=2πr1h1=S侧2=2πr2h2,则,故.16在三棱锥P-ABC中,底面是边长为2 cm的正三角形,PA=PB=3 cm,转动点P时,三棱锥的最大体积为.P到平面ABC距离最大时体积最大,此时平面PAB⊥平面ABC,如图,易求得PD=2 cm.所以V=×4×2(cm3).cm3三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17(本小题满分10分)过点P(1,2)的直线l被两平行线l1:4x+3y+1=0与l2:4x+3y+6=0截得的线段长|AB|=,求直线l的方程.l与l1,l2不垂直,则设直线l的方程为y-2=k(x-1).由解得A;由解得B.∵|AB|=,∴,整理,得7k2-48k-7=0,解得k1=7或k2=-.因此,所求直线l的方程为x+7y-15=0或7x-y-5=0.18(本小题满分12分)如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.(1)求证:平面A1AC⊥平面BA1C;(2)求的最大值.C是底面圆周上异于A,B的一点,且AB为底面圆的直径,∴BC⊥AC.又AA1⊥底面ABC,∴BC⊥AA1,又AC∩AA1=A,∴BC⊥平面A1AC.又BC⊂平面BA1C,∴平面A1AC⊥平面BA1C.Rt△ACB中,设AC=x,∴BC=(0<x<2),∴S△ABC·AA1=AC·BC·AA1=(0<x<2).∵0<x<2,∴0<x2<4.∴当x2=2,即x=时,的值最大,且的最大值为.19(本小题满分12分)如图,在四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.求证:(1)AP∥平面BEF;(2)BE⊥平面PAC.设AC∩BE=O,连接OF,EC.因为E为AD的中点,AB=BC=AD,AD∥BC,所以AE∥BC,AE=AB=BC,所以O为AC的中点.又在△PAC中,F为PC的中点,所以AP∥OF.又OF⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)由题意知,ED∥BC,ED=BC,所以四边形BCDE为平行四边形,所以BE∥CD.又AP⊥平面PCD,所以AP⊥CD,所以AP⊥BE.因为四边形ABCE为菱形,所以BE⊥AC.又AP∩AC=A,AP,AC⊂平面PAC,所以BE⊥平面PAC.20(本小题满分12分)已知圆C过点M(0,-2),N(3,1),且圆心C在直线x+2y+1=0上.(1)求圆C的方程;(2)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.设圆C的方程为:x2+y2+Dx+Ey+F=0,则有故圆C的方程为x2+y2-6x+4y+4=0.(2)设符合条件的实数a存在,因为l垂直平分弦AB,故圆心C(3,-2)必在l上,所以l的斜率k PC=-2.k AB=a=-,所以a=.把直线ax-y+1=0即y=ax+1,代入圆C的方程,消去y,整理得(a2+1)x2+6(a-1)x+9=0.由于直线ax-y-1=0交圆C于A,B两点,则Δ=36(a-1)2-36(a2+1)>0,即-2a>0,解得a<0.则实数a的取值范围是(-∞,0).由于∉(-∞,0),故不存在实数a,使得过点P(2,0)的直线l垂直平分弦AB.21(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.(1)求证:PC∥平面EBD;(2)求三棱锥C-PAD的体积V C-PAD;(3)在侧棱PC上是否存在一点M,满足PC⊥平面MBD,若存在,求PM的长;若不存在,说明理由.AC,BD相交于点F,连接EF,∵四棱锥P-ABCD底面ABCD为菱形,∴F为AC的中点,又∵E为PA的中点,∴EF∥PC.又∵EF⊂平面EBD,PC⊄平面EBD,∴PC∥平面EBD.底面ABCD为菱形,∠ABC=60°,∴△ACD是边长为2的正三角形,又∵PA⊥底面ABCD,∴PA为三棱锥P-ACD的高,∴V C-PAD=V P-ACD=S△ACD·PA=×22×2=.PC上存在一点M,满足PC⊥平面MBD,下面给出证明.∵四棱锥P-ABCD的底面ABCD为菱形,∴AC⊥BD,∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.∵AC∩PA=A,∴BD⊥平面PAC,∴BD⊥PC.在△PBC内,可求PB=PC=2,BC=2,在平面PBC内,作BM⊥PC,垂足为M,设PM=x,则有8-x2=4-(2-x)2,解得x=<2.连接MD,∵PC⊥BD,BM⊥PC,BM∩BD=B,BM⊂平面BDM,BD⊂平面BDM.∴PC⊥平面BDM.∴满足条件的点M存在,此时PM的长为.22(本小题满分12分)已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O和点A,与y轴交于点O和点B,其中O为原点.(1)求证:△OAB的面积为定值;(2)设直线y=-2x+4与圆C交于点M,N,若OM=ON,求圆C的方程.圆C过原点O,∴OC2=t2+.设圆C的方程是(x-t)2+=t2+,令x=0,得y1=0,y2=;令y=0,得x1=0,x2=2t,∴S△OAB=OA·OB=×|2t|=4,即△OAB的面积为定值.OM=ON,CM=CN,∴OC垂直平分线段MN.∵k MN=-2,∴k OC=.∴t,解得t=2或t=-2.当t=2时,圆心C的坐标为(2,1),OC=,此时,C到直线y=-2x+4的距离d=,圆C与直线y=-2x+4相交于两点.符合题意,此时,圆的方程为(x-2)2+(y-1)2=5.当t=-2时,圆心C的坐标为(-2,-1),OC=,此时C到直线y=-2x+4的距离d=.圆C与直线y=-2x+4不相交,因此,t=-2不符合题意,舍去.故圆C的方程为(x-2)2+(y-1)2=5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(十九)1.(2017·石家庄质检)设M ,N ,T 是椭圆x 216+y 212=1上的三个点,M ,N 在直线x =8上的射影分别为M 1,N 1.(1)若直线MN 过原点O ,直线MT ,NT 的斜率分别为k 1,k 2,求证:k 1k 2为定值; (2)若M ,N 不是椭圆长轴的端点,点L 的坐标为(3,0),△M 1N 1L 与△MNL 的面积之比为5∶1,求MN 中点K 的轨迹方程.解:(1)证明:设M (p ,q ),N (-p ,-q ),T (x 0,y 0),则k 1k 2=y 0-qy 0+q x 0-p x 0+p =y 20-q2x 20-p2,又⎩⎪⎨⎪⎧p 216+q 212=1,x 216+y 2012=1,故x 20-p 216+y 20-q212=0,即y 20-q2x 20-p 2=-34,所以k 1k 2=-34,为定值. (2)设直线MN 与x 轴相交于点R (r,0),S △MNL =12|r -3|·|y M -y N |,S △M 1N 1L =12·5·|yM 1-yN 1|.因为S △M 1N 1L =5S △MNL ,所以12·5·|yM 1-yN 1|=5·12|r -3|·|y M -y N |,又|yM 1-yN 1|=|y M -y N |,解得r =4(舍去),或r =2,即直线MN 经过点F (2,0). 设M (x 1,y 1),N (x 2,y 2),K (x 0,y 0),①当MN 垂直于x 轴时,MN 的中点K 即为F (2,0);②当MN 与x 轴不垂直时,设MN 的方程为y =k (x -2),则⎩⎪⎨⎪⎧x 216+y 212=1,y =k x -消去y得,(3+4k 2)x 2-16k 2x +16k 2-48=0.x 1+x 2=16k 23+4k 2,x 1x 2=16k 2-483+4k 2.x 0=8k 23+4k 2,y 0=-6k3+4k2.消去k ,整理得(x 0-1)2+4y 23=1(y 1≠0).经检验,(2,0)也满足(x 0-1)2+4y 23=1.综上所述,点K 的轨迹方程为(x -1)2+4y23=1(x >0).2.(2018届高三·湘中名校联考)如图,曲线C 由上半椭圆C 1:y 2a 2+x 2b2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32. (1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),是否存在直线l ,使得以PQ 为直径的圆恰好过点A ,若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)在C 2的方程中,令y =0,可得x =±1, 所以A (-1,0),B (1,0).又A ,B 两点是上半椭圆C 1的左、右顶点,所以b =1. 设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1可得a =2,∴a =2,b =1. (2)由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).由题易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0). 代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0. 设点P 的坐标为(x P ,y P ),又直线l 经过点B (1,0), ∴x P +1=2k 2k 2+4,x P ·1=k 2-4k 2+4.从而y P =-8k k 2+4,∴点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4. 同理,由⎩⎪⎨⎪⎧y =k x -k ,y =-x 2+y得点Q 的坐标为(-k -1,-k 2-2k ). ∴AP ―→=2k k 2+4(k ,-4),AQ ―→=-k (1,k +2).依题意可知AP ⊥AQ ,∴AP ―→·AQ ―→=0,即-2k 2k 2+4[k -4(k +2)]=0,∵k ≠0,∴k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意,故直线l 的方程为y =-83(x -1).3.(2017·张掖模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,右焦点为F ,右顶点为E ,P 为直线x =54a 上的任意一点,且(PF ―→+PE ―→)·EF ―→=2.(1)求椭圆C 的方程;(2)过F 且垂直于x 轴的直线AB 与椭圆交于A ,B 两点(点A 在第一象限),动直线l 与椭圆C 交于M ,N 两点,且M ,N 位于直线AB 的两侧,若始终保持∠MAB =∠NAB ,求证:直线MN 的斜率为定值.解:(1)设P ⎝ ⎛⎭⎪⎫54a ,t ,F (c,0),E (a,0), 则PF ―→=⎝ ⎛⎭⎪⎫c -54a ,-t ,PE ―→=⎝ ⎛⎭⎪⎫-a 4,-t ,EF ―→=(c -a,0),所以(PF ―→+PE ―→)·EF ―→=⎝ ⎛⎭⎪⎫c -32a ,-2t ·()c -a ,0=2,即⎝ ⎛⎭⎪⎫c -32a ·(c -a )=2,又e =c a =12, 所以a =2,c =1,b =3, 从而椭圆C 的方程为x 24+y 23=1.(2)由(1)知A ⎝ ⎛⎭⎪⎫1,32,设M (x 1,y 1),N (x 2,y 2), 设MN 的方程:y =kx +m ,代入椭圆方程x 24+y 23=1,得(4k 2+3)x 2+8kmx +4m 2-12=0, 所以x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3.又M ,N 是椭圆上位于直线AB 两侧的动点,若始终保持∠MAB =∠NAB , 则k AM +k AN =0,即y 1-32x 1-1+y 2-32x 2-1=0,⎝ ⎛⎭⎪⎫kx 1+m -32(x 2-1)+⎝⎛⎭⎪⎫kx 2+m -32(x 1-1)=0, 即(2k -1)(2m +2k -3)=0,得k =12.故直线MN 的斜率为定值12.4.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点(22,2),且离心率为22,F 1,F 2是椭圆E的左、右焦点.(1)求椭圆E 的方程;(2)若A ,B 是椭圆E 上关于y 轴对称的两点(A ,B 不是长轴的端点),点P 是椭圆E 上异于A ,B 的一点,且直线PA ,PB 分别交y 轴于点M ,N ,求证:直线MF 1与直线NF 2的交点G 在定圆上.解:(1)由题意知⎩⎪⎨⎪⎧8a 2+4b2=1,c a =22,a 2=b 2+c 2,解得⎩⎨⎧a =4,b =22,c =22,故椭圆E 的方程为x 216+y 28=1.(2)证明:设B (x 0,y 0),P (x 1,y 1),则A (-x 0,y 0). 直线PA 的方程为y -y 1=y 1-y 0x 1+x 0(x -x 1), 令x =0,得y =x 1y 0+x 0y 1x 1+x 0,故M ⎝⎛⎭⎪⎫0,x 1y 0+x 0y 1x 1+x 0.同理可得N ⎝ ⎛⎭⎪⎫0,x 1y 0-x 0y 1x 1-x 0.所以F 1M ―→=⎝ ⎛⎭⎪⎫22,x 1y 0+x 0y 1x 1+x 0,F 2N ―→=⎝ ⎛⎭⎪⎫-22,x 1y 0-x 0y 1x 1-x 0,所以F 1M ―→·F 2N ―→=⎝ ⎛⎭⎪⎫22,x 1y 0+x 0y 1x 1+x 0·⎝ ⎛⎭⎪⎫-22,x 1y 0-x 0y 1x 1-x 0 =-8+x 21y 20-x 20y 21x 21-x 20=-8+x 21×8⎝ ⎛⎭⎪⎫1-x 2016-x 20×8⎝ ⎛⎭⎪⎫1-x 2116x 21-x 2=-8+8=0,所以F 1M ⊥F 2N ,所以直线MF 1与直线NF 2的交点G 在以F 1F 2为直径的圆上. 5.已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,它的一个焦点恰好与抛物线y 2=4x 的焦点重合.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否恒过一定点?若经过,求出该定点坐标;若不经过,请说明理由. 解:(1)由题意知椭圆的一个焦点为F (1,0),则c =1.由e =c a =22得a =2,∴b =1,∴椭圆C 的方程为x 22+y 2=1.(2)由(1)知A (0,1),当直线BC 的斜率不存在时, 设BC :x =x 0,设B (x 0,y 0),则C (x 0,-y 0), k AB ·k AC =y 0-1x 0·-y 0-1x 0=1-y 20x 20=12x 20x 20=12≠14,不合题意.故直线BC 的斜率存在.设直线BC 的方程为:y =kx +m (m ≠1),并代入椭圆方程,得:(1+2k 2)x 2+4kmx +2(m 2-1)=0, ①由Δ=(4km )2-8(1+2k 2)(m 2-1)>0, 得2k 2-m 2+1>0.②设B (x 1,y 1),C (x 2,y 2),则x 1,x 2是方程①的两根, 由根与系数的关系得,x 1+x 2=-4km 1+2k 2,x 1x 2=m 2-1+2k 2, 由k AB ·k AC =y 1-1x 1·y 2-1x 2=14得: 4y 1y 2-4(y 1+y 2)+4=x 1x 2,即(4k 2-1)x 1x 2+4k (m -1)(x 1+x 2)+4(m -1)2=0, 整理得(m -1)(m -3)=0,又因为m ≠1,所以m =3, 此时直线BC 的方程为y =kx +3. 所以直线BC 恒过一定点(0,3).。

相关文档
最新文档