备战高考---高考数学常用公式精选汇总

合集下载

高三必背数学知识点公式

高三必背数学知识点公式

高三必背数学知识点公式一、代数运算1. 加法公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^22. 幂的性质:a^m * a^n = a^(m + n)(a^m)^n = a^(mn)a^(-m) = 1 / a^m3. 根式的性质:√(a * b) = √a * √b√(a / b) = √a / √b(√a)^2 = a4. 二次根式的展开和收集:√(a + b) ≠ √a + √b(√a + √b)(√a - √b) = a - b5. 平方差公式:a^2 - b^2 = (a + b)(a - b)6. 二次方程求根公式:x = (-b ± √(b^2 - 4ac)) / 2a7. 余弦定理:c^2 = a^2 + b^2 - 2abcosC8. 正弦定理:a / sinA =b / sinB =c / sinC二、几何图形相关公式1. 长方形的面积和周长:面积 S = 长 a * 宽 b周长 P = 2a + 2b2. 正方形的面积和周长:面积 S = a^2周长 P = 4a3. 圆的面积和周长:面积S = πr^2周长C = 2πr4. 圆柱体的体积和表面积:体积V = πr^2h表面积A = 2πrh + 2πr^25. 直角三角形特殊关系:勾股定理:a^2 + b^2 = c^26. 同位角与内错角关系:同位角相等,内错角互补:∠A = ∠B ⇒∠C = ∠D, ∠E = 180° - ∠B7. 圆锥的体积和表面积:体积V = (1/3)πr^2h表面积A = πrl + πr^2三、三角函数和三角恒等式1. 三角函数的基本关系:sinθ = 对边 / 斜边cosθ = 临边 / 斜边tanθ = 对边 / 临边2. 三角函数的正负:第一象限:sinθ > 0, cosθ > 0, tanθ > 0第二象限:sinθ > 0, cosθ < 0, tanθ < 0第三象限:sinθ < 0, cosθ < 0, tanθ > 0第四象限:sinθ < 0, cosθ > 0, tanθ < 03. 三角函数的周期性:sin(θ + 2πn) = sinθcos(θ + 2πn) = cosθtan(θ + πn) = tanθ4. 三角函数的和差化积:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)5. 三角函数的倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ) / (1 - tan^2θ)四、概率和统计相关公式1. 排列公式:A(n, m) = n! / (n - m)!2. 组合公式:C(n, m) = n! / (m!(n - m)!)3. 互斥事件的概率公式:P(A ∪ B) = P(A) + P(B)4. 独立事件的概率公式:P(A ∩ B) = P(A) * P(B)5. 条件概率公式:P(A | B) = P(A ∩ B) / P(B)总结:以上是高三数学知识点公式的概要,掌握这些公式对于成功备战高考至关重要。

备战高考数学复习考点知识与题型讲解1---集合

备战高考数学复习考点知识与题型讲解1---集合

备战高考数学复习考点知识与题型讲解第1讲集合一、知识梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法A B(或B A )A∪B=A∩B=∁A=常用结论1.空集的性质空集不含任何元素,空集是任意一个集合A的子集,即∅⊆A.2.集合的运算性质(1)A∩A=A,A∩∅=∅.(2)A∪A=A,A∪∅=A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.(4)A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.3.集合的子集个数若有限集A中有n个元素,则A的子集有2n个,非空子集有2n-1个,真子集有2n -1个.二、教材衍化1.(人A必修第一册P5习题1.1T1(4)改编)若集合A={x∈N|1≤x≤10},则( )A.8∈AB.9.1∈AC.{8}∈AD.{9.1}⊆A 答案:A2.(人A必修第一册P14习题1.3T4改编)设全集为R,A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=________,(∁R A)∩B=________.解析:把集合A,B在数轴上表示如图.由图知,A∪B={x|2<x<10},(A∪B)={x|x≤2或x≥10},所以∁RA={x|x<3或x≥7},因为∁RA)∩B={x|2<x<3或7≤x<10}.所以(∁R答案:{x|x≤2或x≥10}{x|2<x<3或7≤x<10}一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A,B,C表示同一个集合.( )(2){x|x≤1}={t|t≤1}.()(3)若{x2,1}={0,1},则x=0或x=1.( )(4)若A∩B=A∩C,则B=C.( )答案:(1)×(2)√(3)×(4)×二、易错纠偏1.(多选)(混淆元素、集合间的关系致误)已知集合A={x|x2-2x=0},则有( )A.∅⊆AB.-2∈AC.{0,2}⊆AD.A⊆{y|y<3}解析:选ACD.因为A={0,2},所以∅⊆A,{0,2}⊆A,A⊆{y|y<3}均正确,-2∉A,故选ACD.2.(混淆子集与真子集的定义致误)已知集合A={x|x2<2,x∈Z},则A的真子集的个数为( )A.3B.4C.6D.7解析:选D.因为A={x|x2<2,x∈Z}={-1,0,1},所以其真子集的个数为23-1=7.故选D.3.(多选)(忽视空集致误)已知集合A={2,3},B={x|mx-6=0},若B⊆A,则实数m=( )A.3B.2C.1D.0解析:选ABD.当m =0时,可得集合B =∅,此时满足B ⊆A ;当m ≠0时,可得集合B=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫6m , 所以6m =2或6m=3,解得m =3或m =2,综上,实数m 等于0,2或3.考点一 集合的概念(自主练透)复习指导:1.了解集合的含义,体会元素与集合的“属于”关系.2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.1.(2022·常州市前黄高级中学高三适应性考试)设集合A ={1,2,3,4},B ={5,6},C ={x +y |x ∈A ,y ∈B },则C 中元素的个数为( )A.3B.4C.5D.6解析:选C.由题知,当y =5时,x +y 的值有6,7,8,9,当y =6时,x +y 的值有7,8,9,10,于是得C ={6,7,8,9,10},所以C 中元素的个数为5.2.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,b a ,b ,则a 2 023-b 2 023=( )A.1B.-1C.2D.-2解析:选D.由题易得a ≠0,所以a +b =0,则ba=-1,所以a =-1,b =1.所以a 2 023-b 2 023=-2.3.已知集合P ={}x |x =2k ,k ∈Z ,Q ={}x |x =2k +1,k ∈Z ,M ={}x |x =4k +1,k ∈Z ,且a ∈P ,b ∈Q ,则()A.a +b ∈PB.a +b ∈QC.a +b ∈MD.a +b 不属于P ,Q ,M 中的任意一个 解析:选B.因为a ∈P ,所以a =2k 1,k 1∈Z .因为b ∈Q ,所以b =2k 2+1,k 2∈Z .所以a +b =2(k 1+k 2)+1=2k +1∈Q (k 1,k 2,k ∈Z ).4.(多选)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A.92 B.98 C.0D.23解析:选BC.若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实数根或有两个相等的实数根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的值为0或98.与集合中元素有关问题的求解步骤步骤一:确定集合的元素是什么,集合是数集还是点集. 步骤二:看这些元素满足什么限制条件.步骤三:根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.考点二 集合间的基本关系(思维发散)复习指导:理解集合之间包含与相等的含义,能识别给定集合的子集,了解全集与空集的含义.(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A.1B.2C.3D.4(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若A ⊆B ,则m 的取值范围是________.【解析】 (1)由题意可得,A ={1,2},B ={1,2,3,4},又因为A ⊆C ⊆B ,所以C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4}.(2)由题得,A ={x |-1<x <3},若A ⊆B (如图)可得⎩⎨⎧-m ≤-1,m ≥3,所以m ≥3.故m 的取值范围是[3,+∞). 【答案】 (1)D (2)[3,+∞)(链接常用结论1)本例(2)中,若“A ⊆B ”改为“B ⊆A ”,其他条件不变,则m 的取值范围是________.解析:当m ≤0时,B =∅, 显然B ⊆A .当m >0时,因为A ={x |-1<x <3}. 当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎨⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1]. 答案:(-∞,1](1)判断两集合关系的2种常用方法列举法:根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.数轴法:在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.(2)根据两集合的关系求参数的方法①若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性.②若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.[提醒] 题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行讨论.|跟踪训练|1.(2022·广州高一期中)已知集合M ={y |y =x -|x |,x ∈R },N ={y |y =x 12,x ≠0},则下列选项正确的是( )A.M =NB.N ⊆MC.M =∁R ND.∁R NM解析:选C.由题意,得集合M ={y |y ≤0},而集合N ={y |y >0},所以∁R N ={y |y ≤0},则M =∁R N ,故C 正确.2.(链接常用结论3)已知集合A ={x |x 2-2x -3≤0,x ∈N *},则集合A 的真子集的个数为( )A.7B.8C.15D.16解析:选A.因为集合A 中有3个元素,所以其真子集的个数为23-1=7(个). 3.(多选)(2022·河南范县高一月考)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪14x +a ≥0,B ={x |x 2≤1},若B ⊆A ,则实数a 的取值可以是( )A.-2B.0C. 2D.4解析:选CD.因为A ={}x |x ≥-4a ,B ={x |-1≤x ≤1},又因为B ⊆A ,则-4a ≤-1,解得a ≥14,故选CD.考点三 集合的基本运算(多维探究)复习指导:1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 2.理解给定集合中一个子集的补集的含义,会求给定子集的补集.3.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.角度1 集合的运算(1)(2021·新高考卷Ⅰ)设集合A ={x |-2<x <4},B ={2,3,4,5},则A ∩B=( )A.{2}B.{2,3}C.{3,4}D.{2,3,4}(2)(2021·高考全国卷乙)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T =( )A.∅B.SC.TD.Z【解析】 (1)由题易知A ∩B ={2,3},故选B.(2)S ={…,-3,-1,1,3,5,…},T ={…,-3,1,5,…},观察可知,T ⊆S ,所以T ∩S =T .【答案】 (1)B (2)C 角度2 利用集合的运算求参数(1)(2020·高考全国卷Ⅰ)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B={x |-2≤x ≤1},则a =( )A.-4B.-2C.2D.4(2)设集合A ={(x ,y )|2x +y =1,x ,y ∈R },集合B ={(x ,y )|a 2x +2y =a ,x ,y ∈R },若A ∩B =∅,则a 的值为( )A.2B.4C.2或-2D.-2【解析】 (1)易知A ={x |-2≤x ≤2},B ={x |x ≤-a2},因为A ∩B ={x |-2≤x ≤1},所以-a2=1,解得a =-2.(2)由题意可知,集合A ,B 的元素为有序数对,且都代表的是直线上的点.因为A ∩B=∅,所以两条直线没有公共点,所以两条直线平行,所以⎩⎨⎧4-a 2=0,-2a +a 2≠0,解得a =-2. 【答案】 (1)B (2)D本例(1)中,若“A ∩B ={x |-2≤x ≤1}”改成“A ∩B ⊆{x |-2≤x ≤1}”,则实数a 的取值范围是________.解析:A ={x |-2≤x ≤2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x ≤-a 2, 当A ∩B =∅时,即-a2<-2,a >4时,符合题意;当A ∩B ≠∅时,令⎩⎪⎨⎪⎧-a 2≥-2,-a2≤1,得-2≤a ≤4.综上,实数a 的取值范围是a ≥-2. 答案:[-2,+∞) 角度3 集合的新定义问题(1)(2022·南阳一中第十四次考试)定义集合运算:A ⊙B ={Z |Z =xy ,x ∈A ,y∈B },设集合A ={-1,0,1},B ={sin α,cos α},则集合A ⊙B 的所有元素之和为 ( )A.1B.0C.-1D.sin α+cos α(2)(2022·保定一模)设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |1<2x <4},Q ={y |y =2+sin x ,x ∈R },那么P -Q =( )A.{x |0<x ≤1}B.{x |0≤x <2}C.{x |1≤x <2}D.{x |0<x <1}【解析】 (1)因为x ∈A ,所以x 的可能取值为-1,0,1.同理,y 的可能取值为sinα,cos α,所以xy 的所有可能取值为(重复的只列举一次):-sin α,0,sin α,-cos α,cos α,所以所有元素之和为0.(2)由题意得P ={x |0<x <2},Q ={y |1≤y ≤3}, 所以P -Q ={x |0<x <1}. 【答案】 (1)B (2)D(1)集合运算的常用方法①若集合中的元素是离散的,则常用Venn 图求解.②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况. (2)利用集合的运算求参数的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值的取舍.②若集合中的元素能一一列举,则一般先用观察法得到集合中元素之间的关系,再列方程(组)求解.在求出参数后,注意结果的验证(满足集合中元素的互异性). (3)解决以集合为背景的新定义问题,要抓住两点①准确转化.解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目的要求进行恰当转化,切忌同已有概念或定义相混淆.②方法选取.对于新定义问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解.|跟踪训练|1.(2021·高考全国卷乙)已知全集U ={1,2,3,4,5},集合M ={1,2},N ={3,4},则∁U (M ∪N )=( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}解析:选A.因为集合M ={1,2},N ={3,4},所以M ∪N ={1,2,3,4}. 又全集U ={1,2,3,4,5},所以∁U (M ∪N )={5}. 2.(2021·高考全国卷甲)设集合M ={}x |0<x <4,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x ≤5,则M ∩N =( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x ≤13B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x <4 C.{}x |4≤x <5 D.{}x |0<x ≤5解析:选B.M ∩N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x <4. 3.(2020·高考全国卷Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A.2B.3C.4D.6解析:选C.由题意得,A ∩B ={(1,7),(2,6),(3,5),(4,4)},所以A ∩B 中元素的个数为4.4.给定集合S={1,2,3,4,5,6,7,8},对于x∈S,如果x+1∉S且x-1∉S,那么x是S的一个“好元素”,由S的3个元素构成的所有集合中,不含“好元素”的集合共有________个.解析:由题意知这3个元素一定是连续的3个整数,故不含“好元素”的集合有{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.答案:6[A 基础达标]0,m,m2-3m+2,且2∈A,1.(2022·湖南师大附中高二入学考试)已知集合A={}则实数m的值为( )A.0B.1C.2D.3解析:选D.若m=2,则m2-3m+2=0,不满足集合中元素的互异性,舍去;若m2-3m+2=2,则m=0或m=3,又m≠0,故m=3.2.(2022·豫北名校联盟4月联考)已知集合A={1,3,5,6},B={x∈N|0<x<8},则图中阴影部分表示的集合的元素个数为( )A.4B.3C.2D.1解析:选B.B={x∈N|0<x<8}={1,2,3,4,5,6,7},图中阴影部分表示的集合为∁B A={2,4,7},共3个元素.3.已知集合A={x∈N*|x2-3x-4<0},则集合A的真子集有( )A.7个B.8个C.15个D.16个解析:选A.因为集合A={1,2,3},所以集合A中共有3个元素,所以真子集有23-1=7(个).x|2x>7,则M∩N=( )4.(2021·高考全国卷甲)设集合M={1,3,5,7,9},N={}A.{7,9}B.{5,7,9}C.{3,5,7,9}D.{1,3,5,7,9}解析:选B.由题得集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >72,所以M ∩N ={5,7,9}.故选B.5.设集合M ={-1,1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x <2,则下列结论中正确的是()A.NM B.M NC.N ∩M =∅D.M ∪N =R解析:选B.由题意得,集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x <2=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <0或x >12,所以M N .故选B.6.(多选)已知非空集合M 满足:①M ⊆{-2,-1,1,2,3,4},②若x ∈M ,则x 2∈M .则集合M 可能是( )A.{-1,1}B.{-1,1,2,4}C.{1}D.{1,-2,2}解析:选AC.由题意可知3∉M 且4∉M ,而-2或2与4同时出现,所以-2∉M 且2∉M ,所以满足条件的非空集合M 有{-1,1},{1}.7.(2022·福建厦门质量检查)已知集合A ={x |x 2-4x +3>0},B ={x |x -a <0},若B ⊆A ,则实数a 的取值范围为( )A.(3,+∞)B.[3,+∞)C.(-∞,1)D.(-∞,1]解析:选D.集合A ={x |x <1或x >3},B ={x |x <a }.因为B ⊆A ,所以a ≤1.8.设集合A ={-1,1,2},B ={a +1,a 2-2},若A ∩B ={-1,2},则a 的值为________. 解析:由题知⎩⎨⎧a +1=-1,a 2-2=2,或⎩⎨⎧a +1=2,a 2-2=-1,解得a =-2或a =1.经检验,a =-2和a =1均满足题意. 答案:-2或19.(2022·重庆高一月考)若集合M ={x ||x |>2},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -3<0,则N =________;∁R (M ∩N )=________.解析:由题意得N ={x |-1<x <3},M ={x |x <-2或x >2},所以M ∩N ={x |2<x <3},所以∁R (M ∩N )={x |x ≤2或x ≥3}. 答案:{x |-1<x <3}{ |x x ≤2或 }x ≥310.已知集合A ={x |x -a ≤0},B ={1,2,3},若A ∩B ≠∅,则a 的取值范围为________. 解析:集合A ={x |x ≤a },集合B ={1,2,3},若A ∩B ≠∅,则1,2,3这三个元素至少有一个在集合A 中,若2或3在集合A 中,则1一定在集合A 中,因此只要保证1∈A 即可,所以a ≥1.答案:[1,+∞)[B 综合应用]11.对集合{1,5,9,13,17}用描述法来表示,其中正确的是 ( ) A.{x |x 是小于18的正奇数} B.{}x |x =4k +1,k ∈Z 且k <5 C.{}x |x =4s -3,s ∈N 且s ≤5 D.{}x |x =4s -3,s ∈N *且s ≤5解析:选D.对于A :{x |x 是小于18的正奇数}={}1,3,5,7,9,11,13,15,17,故A 错误;对于B :{}x |x =4k +1,k ∈Z 且k <5={}…,-3,1,5,9,13,17,故B 错误;对于C :{}x |x =4s -3,s ∈N 且s ≤5={}-3,1,5,9,13,17,故C 错误;对于D :{}x |x =4s -3,s ∈N *且s ≤5={}1,5,9,13,17,故D 正确.12.某班有46名学生,有围棋爱好者22人,足球爱好者27人,同时爱好这两项的最多人数为x ,最少人数为y ,则x -y =( )A.22B.21C.20D.19解析:选D.如图,设集合A ,B 分别表示围棋爱好者,足球爱好者,全班学生组成全集U ,A ∩B 就是两者都爱好的,要使A ∩B 中人数最多,则A ⊆B ,x =22,要使A ∩B 中人数最少,则A ∪B =U ,即22+27-y =46,解得y =3,所以x -y =22-3=19.13.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.解析:A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n ),可知m <2, 则B ={x |m <x <2},画出数轴, 可得m =-1,n =1.答案:-1 114.定义集合P ={p |a ≤p ≤b }的“长度”是b -a ,其中a ,b ∈R .已知集合M =⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫m ≤x ≤m +12,N =⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫n -35≤x ≤n ,且M ,N 都是集合{x |1≤x ≤2}的子集,那么集合M ∩N的“长度”的最小值是________.解析:因为集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m ≤x ≤m +12,所以集合M 的长度为12,因为集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪n -35≤x ≤n ,所以集合N 的长度为35,因为M ,N 都是集合{x |1≤x ≤2}的子集,所以m 最小为1,n 最大为2,此时集合M ∩N 的“长度”最小,为32-75=110.答案:110。

高考数学必背公式

高考数学必背公式

高考数学必背公式
高考数学必背公式包括但不限于:
1. 圆的公式:
圆体积=4/3(pi)(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程(x-a)2+(y-b)2=r2,其中(a,b)是圆心坐标
圆的一般方程x2+y2+dx+ey+f=0,其中d2+e2-4f>0
2. 椭圆公式:
椭圆周长公式:l=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差
椭圆面积公式:s=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

3. 两角和公式、倍角公式、半角公式、和差化积等三角函数公式。

4. 等差数列、等比数列等数列公式。

5. 抛物线等几何图形公式。

以上信息仅供参考,建议查阅高中数学教材或教辅资料,获取更准确全面的信息。

高考数学公式大全(完整版)

高考数学公式大全(完整版)

高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a bx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.30.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数. 推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a am nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).48.二倍角公式sin22sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=.51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)22(||||)()OAB S OA OB OA OB ∆=⋅-⋅.54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ; (2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式 ,A B d=||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式 (1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π. 82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下. 若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±.92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b ⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y ya b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中22y px =.102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->.104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212|||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD 共线且AB CD 、不共线⇔AB tCD =且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD x AB y AC =+⇔(1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---;(3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =,222(,,)b x y z =,则a b ⇔(0)a b b λ=≠⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥⇔0a b ⋅=⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ==21||||||a b a b x ⋅=⋅+(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB =⋅=135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式2cos d mn θ=.',d EA AF =.d =('E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a ,. 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++. 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯. 151.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.152.排列恒等式(1)1(1)m m n n A n m A -=-+;(2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11n n nn n n nA A A ++=-; (5)11m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.153.组合数公式m nC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).154.组合数的两个性质 (1)mn C =mn nC - ; (2) m n C +1-m nC =mn C 1+.注:规定10=n C .155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-;(3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C . (6)nn n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9)rn m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)nn n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh hh A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +. 158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--.(3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m =⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n =1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!!...21211m n n n n p n p n n n p C C C N m m =⋅=-.159.“错位问题”及其推广。

高二必考数学知识点汇总

高二必考数学知识点汇总

高二必考数学知识点汇总高二阶段是学生们备战高考的关键时期,数学作为高考的必考科目之一,重点内容较多,因此我们需要对高二必考的数学知识点进行全面的汇总和总结,以帮助同学们更好地备考。

一. 数列与数列的通项公式1.1 等差数列的概念与性质等差数列的公式,即通项公式:$a_n=a_1+(n-1)d$等差数列的求和公式:$S_n=\frac{n}{2}(a_1+a_n)$1.2 等比数列的概念与性质等比数列的公式,即通项公式:$a_n=a_1q^{n-1}$等比数列的求和公式(当$|q|<1$时):$S_n=\frac{a_1}{1-q}$1.3 数列的极限数列极限的定义和性质,例如极限存在的充分必要条件等。

二. 函数与导数2.1 函数的概念函数的定义、函数的符号表示等相关概念。

2.2 初等函数及其性质常见初等函数的定义、性质及图像特征,如幂函数、指数函数、对数函数等。

2.3 函数的运算函数的四则运算、复合函数及其性质,函数的奇偶性等。

2.4 导数的定义与性质导数的定义、导数的几何意义及其性质,如导数的四则运算、导数与函数的关系等。

2.5 常用函数的导数常见函数的导数计算,如幂函数、指数函数、对数函数、三角函数等。

2.6 函数的极限函数极限的定义、极限的性质及计算,如极限存在的充分必要条件等。

三. 三角函数及其应用3.1 弧度制和角度制弧度制和角度制的相互转换,常见角的弧度制表示。

3.2 基本三角函数正弦函数、余弦函数、正切函数的定义、性质、图像特征等。

3.3 三角函数的基本关系式三角函数间的基本关系,如正切函数与正弦函数、余弦函数的关系。

3.4 三角函数的周期性与对称性三角函数的周期性及对称性的证明与应用。

四. 平面向量与解析几何4.1 平面向量的基本概念平面向量的定义、向量的相等、数量乘积、向量的共线、向量的线性组合等相关概念。

4.2 平面向量的运算向量的加法、减法、数量乘积及其运算规律,向量的模、单位向量及其性质。

高三数学公式归纳大全

高三数学公式归纳大全

数学考试主要考察大家的公式运用情况,所以要想数学考出好成绩,一定要牢牢记住数学公式。

今天老师就给大家总结了整个高中都会用到的数学公式,一共有五十条,大家一定要熟背哦~1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

冲刺高考文科数学必看题型归纳

冲刺高考文科数学必看题型归纳

冲刺高考文科数学必看题型归纳随着高中阶段的学习即将结束,文科同学们的高考备战也进入冲刺阶段。

作为高考的一大考试科目,数学在文科生的备考中显得尤其重要。

为此,本篇文章将对文科数学的必看题型进行归纳,帮助同学们在时间紧迫、压力巨大的备考过程中更好地掌握知识点,备战高考。

一、函数1. 函数的奇偶性:(1)$f(-x)=-f(x)$,则函数为奇函数;(2)$f(-x)=f(x)$,则函数为偶函数;(3)$f(x)\ne f(-x)$,则函数既不是奇函数也不是偶函数。

2. 函数的周期性:(1)对于任意一个实数$x$,都有$f(x+T)=f(x)$,则函数是以$T$($T>0$)为周期的周期函数,$T$ 称为函数的周期;(2)当$T$ 为最小正周期时,函数是最简周期函数。

3. 函数的单调性:(1)若对于函数$y=f(x)$,当$x_1<x_2$ 时有$f(x_1)<f(x_2)$,则函数$f(x)$ 在区间$(x_1,x_2)$ 内是严格单调递增的;(2)若对于函数$y=f(x)$,当$x_1<x_2$ 时有$f(x_1)>f(x_2)$,则函数$f(x)$ 在区间$(x_1,x_2)$ 内是严格单调递减的。

4. 函数极值问题:(1)极大值:若存在$x_0\in D_f$,使得$f(x)\le f(x_0)$,则称$f(x_0)$ 为函数$f(x)$ 在定义域$D_f$ 上的极大值;(2)极小值:若存在$x_0\in D_f$,使得$f(x)\ge f(x_0)$,则称$f(x_0)$ 为函数$f(x)$ 在定义域$D_f$ 上的极小值;(3)极值:极大值和极小值统称为极值。

二、解析几何1. 点、向量的基本概念:(1)点:在xoy 坐标系中,设坐标轴OX、OY 的交点为坐标原点O,则任意一点$P(x,y)$ 都可表示为向量$\overrightarrow{OP}(x,y)$。

(2)向量:向量是具有大小和方向的几何量,用向量符号$\overrightarrow{a}$ 表示。

备战高考数学复习考点知识与题型讲解60---直线的方程

备战高考数学复习考点知识与题型讲解60---直线的方程

备战高考数学复习考点知识与题型讲解第60讲直线的方程考向预测核心素养直线是解析几何中最基本的内容,对直线的考查一是在选择题、填空题中考查直线的倾斜角、斜率、直线的方程等基本知识;二是在解答题中与圆、椭圆、双曲线、抛物线等知识进行综合考查.直观想象、数学运算一、知识梳理1.直线的方向向量设A,B是直线上的两点,则AB→就是这条直线的方向向量.2.直线的倾斜角(1)定义:当直线l与x轴相交时,我们以x轴作为基准,x轴正向与直线l向上的方向之间所成的角α叫做直线l的倾斜角.(2)范围:直线的倾斜角α的取值范围为0°≤α<180°.3.直线的斜率(1)定义:把一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k表示,即k=tan α(α≠90°).(2)过两点的直线的斜率公式如果直线经过两点P1(x1,y1),P2(x2,y2)(x1≠x2),其斜率k=y2-y1x2-x1.4.直线方程的五种形式名称方程适用范围点斜式y-y0=k(x-x0)不含直线x=x0斜截式y=kx+b 不含垂直于x轴的直线两点式y-y1y2-y1=x-x1x2-x1(x1≠x2,y1≠y2)不含直线x=x1和直线y=y1截距式xa+yb=1不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A2+B2≠0)平面直角坐标系内的直线都适用常用结论1.直线的倾斜角α和斜率k之间的对应关系α00<α<π2π2π2<α<πk 0k>0不存在k<0 2.识记几种特殊位置的直线方程(1)x轴:y=0.(2)y轴:x=0.(3)平行于x轴的直线:y=b(b≠0).(4)平行于y轴的直线:x=a(a≠0).(5)过原点且斜率存在的直线:y=kx.二、教材衍化1.(人A选择性必修第一册P58习题2.1 T7改编)若过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为( )A.1 B.4C.1或3D.1或4答案:A2.(人A选择性必修第一册P60例1改编)经过点P(2,-3),倾斜角为45°的直线方程为________.答案:x-y-5=03.(人A选择性必修第一册P67习题2.2 T7改编)过点P(2,3)且在两坐标轴上截距相等的直线方程为______________________.解析:当截距为0时,直线方程为3x-2y=0;当截距不为0时,设直线方程为xa+ya=1,则2a+3a=1,解得a=5.所以直线方程为x+y-5=0.答案:3x-2y=0或x+y-5=0一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若直线的斜率为tan α,则其倾斜角为α.( )(2)斜率相等的两直线的倾斜角不一定相等.( )(3)经过定点A(0,b)的直线都可以用方程y=kx+b表示.( )答案:(1)×(2)×(3)×二、易错纠偏1.(多选)(不理解倾斜角和斜率致误)下列说法正确的是( )A.有的直线斜率不存在B.若直线l的倾斜角为α,且α≠90°,则它的斜率k=tan αC.若直线l的斜率为1,则它的倾斜角为3π4D.截距可以为负值答案:ABD2.(不理解直线位置关系致误)如果AB<0,且BC<0,那么直线Ax+By+C=0不经过( )A.第一象限 B.第二象限C.第三象限 D.第四象限答案:D3.(搞混倾斜角和斜率关系致误)若直线l的斜率为k,倾斜角为α,且α∈[π6,π4)∪[2π3,π),则k的取值范围是________.解析:当α∈[π6,π4)时,k =tan α∈[33,1); 当α∈[2π3,π)时,k =tan α∈[-3,0).综上可得k ∈[-3,0)∪[33,1). 答案:[-3,0)∪[33,1)考点一 直线的倾斜角与斜率(思维发散)复习指导:1.在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素. 2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(1)直线x sin α+y +2=0的倾斜角的取值范围是( ) A.[)0,π B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π(2)已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 恒相交,则k 的取值范围是( )A .k ≥12B.k ≤-2C .k ≥12或k ≤-2 D.-2≤k ≤12【解析】 (1)设直线的倾斜角为θ,则有tan θ=-sin α. 因为sin α∈[-1,1], 所以-1≤tan θ≤1,又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π,故选B. (2)直线l :y =k (x -2)+1经过定点P (2,1), 因为k PA =3-11-2=-2,k PB =-1-1-2-2=12, 又直线l :y =k (x -2)+1与线段AB 恒相交, 所以-2≤k ≤12.【答案】 (1)B (2)D本例(2)直线l 改为y =kx ,若l 与线段AB 恒相交,则k 的取值范围是________________.解析:直线l 过定点P (0,0), 所以k PA =3,k PB =12,所以k ≥3或k ≤12.答案:⎝⎛⎦⎥⎤-∞,12∪[3,+∞)(1)斜率的求法①定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率;②公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.(2)倾斜角及斜率取值范围的两种求法①数形结合法:作出直线在平面直角坐标系中可能的位置,借助图形,结合正切函数的单调性确定;②函数图象法:根据正切函数图象,由倾斜角范围求斜率范围,反之亦可.|跟踪训练|1.已知直线方程为x cos 300°+y sin 300°=3,则直线的倾斜角为( ) A .60° B.60°或300° C .30°D.30°或330°解析:选C.直线的斜率为k =-cos 300°sin 300°=-cos (360°-60°)sin (360°-60°)=-cos (-60°)sin (-60°)=cos 60°sin 60°=33.因为直线倾斜角的范围为[0°,180°), 所以倾斜角为30°,故选C.2.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析:如图,因为k AP =1-02-1=1, k BP =3-00-1=-3,所以直线l 的斜率k ∈(]-∞,-3∪[)1,+∞. 答案:(]-∞,-3∪[)1,+∞考点二 直线的方程(自主练透)复习指导:根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式、斜截式、截距式及一般式),体会斜截式与一次函数的关系.1.已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为( )A .2x +y -12=0 B.2x -y -12=0 C .2x +y -8=0D.2x -y +8=0解析:选C.由题知M (2,4),N (3,2),中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.2.(多选)(链接常用结论2)下列命题正确的有( ) A .直线斜率是关于直线倾斜角的增函数 B .方程x =ty +m 可以表示垂直于x 轴的直线C .直线过不同的两点A ()x 1,y 1,B ()x 2,y 2,则方程()x 2-x 1()y -y 1=()y 2-y 1()x -x 1可以表示平行于x ,y 轴和经过坐标原点的直线D .直线方程bx +ay =ab 不能表示平行于x ,y 轴的直线 解析:选BCD.倾斜角0≤α<π,斜率k =tan α(α≠π2),由正切函数的单调性知直线斜率不是关于直线倾斜角的增函数,故A 错误;方程x =ty +m 中t =0时,表示直线x =m ,故B 正确;当x 2-x 1=0时,方程()x 2-x 1()y -y 1=()y 2-y 1()x -x 1为()y 2-y 1()x -x 1=0, 当y 2-y 1=0时,方程()x 2-x 1()y -y 1=()y 2-y 1()x -x 1为()x 2-x 1()y -y 1=0, 当x =0,y =0时,代入方程可得-y 1()x 2-x 1=-x 1()y 2-y 1成立, 故方程可以表示平行于x ,y 轴和经过坐标原点的直线,故C 正确;当a =0,b ≠0时,方程为bx =0,当b =0,a ≠0时,方程为ay =0不能表示平行于x ,y 轴的直线,故D 正确.3.经过点B (3,4),且与两坐标轴围成一个等腰直角三角形的直线的方程为________. 解析:由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0. 答案:x -y +1=0或x +y -7=04.经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线的一个方向向量v =(-3,2)的直线方程为________________.解析:联立⎩⎨⎧x +y =2,2x -y =1,得x =1,y =1,所以直线过点(1,1),因为直线的方向向量v =(-3,2), 所以直线的斜率k =-23.则直线的方程为y -1=-23(x -1),即2x +3y -5=0. 答案:2x +3y -5=0巧设直线方程的方法(1)已知一点坐标,可采用点斜式设直线方程,但要注意讨论直线斜率不存在的情况; (2)已知两点或可通过计算表示出两点的坐标,则可采用两点式设直线方程,但要注意讨论分母为零的情况;(3)当题目涉及直线在x 轴、y 轴上的截距时,可采用截距式设直线方程,但要注意莫遗漏直线在x 轴、y 轴上的截距为0的情况;(4)已知直线的斜率或倾斜角,考虑利用点斜式或斜截式设直线方程.[注意] (1)当已知直线经过点(a ,0),且斜率不为0时,可将直线方程设为x =my +a ;(2)当已知直线经过点(0,a ),且斜率存在时,可将直线方程设为y =kx +a ; (3)当直线过原点,且斜率存在时,可将直线方程设为y =kx .考点三 直线方程的综合应用(思维发散)复习指导:求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式或函数单调性求解最值.(一题多解)已知直线l 过点M (2,1),且分别与x 轴的正半轴、y 轴的正半轴交于A ,B 两点,O 为原点,当△AOB 面积最小时,求直线l 的方程.【解】 方法一:设直线l 的方程为y -1=k (x -2)(k <0),则A ⎝⎛⎭⎪⎫2-1k ,0,B (0,1-2k ),S △AOB =12(1-2k )·⎝ ⎛⎭⎪⎫2-1k =12⎣⎢⎡⎦⎥⎤4+(-4k )+⎝ ⎛⎭⎪⎫-1k ≥12(4+4)=4,当且仅当-4k=-1k ,即k =-12时,等号成立.故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.方法二:设直线l :x a +y b =1,且a >0,b >0,因为直线l 过点M (2,1),所以2a +1b =1,则1=2a +1b≥22ab ,故ab ≥8,故S △AOB 的最小值为12×ab =12×8=4,当且仅当2a =1b =12时取等号,此时a =4,b =2,故直线l 为x 4+y2=1,即x +2y -4=0.1.在本例条件下,当|OA |+|OB |取最小值时,求直线l 的方程. 解:由本例方法二知,2a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝ ⎛⎭⎪⎫2a +1b=3+a b +2ba≥3+22, 当且仅当a =2+2,b =1+2时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x +2y =2+ 2. 2.本例中,当|MA |·|MB |取得最小值时,求直线l 的方程. 解:方法一:由本例方法一知A ⎝ ⎛⎭⎪⎫2k -1k ,0,B (0,1-2k )(k <0). 所以|MA |·|MB |=1k2+1·4+4k 2=21+k 2|k |=2⎣⎢⎡⎦⎥⎤(-k )+1(-k )≥4. 当且仅当-k =-1k,即k =-1时取等号.此时直线l 的方程为x +y -3=0.方法二:由本例方法二知A (a ,0),B (0,b ),a >0,b >0,2a +1b=1.所以|MA |·|MB |=|MA →|·|MB →|=-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝ ⎛⎭⎪⎫2a +1b -5=2⎝ ⎛⎭⎪⎫b a +a b ≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0.与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程.(3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.|跟踪训练|已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.解:(1)证明:直线l 的方程可化为k (x +2)+(1-y )=0, 令⎩⎨⎧x +2=0,1-y =0,解得⎩⎨⎧x =-2,y =1.所以无论k 取何值,直线l 总经过定点(-2,1). (2)由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎨⎧-1+2kk ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)由题意可知k ≠0,再由直线l 的方程, 得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎨⎧-1+2k k <0,1+2k >0,解得k >0. 因为S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k | =12·(1+2k )2k =12⎝ ⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, 当k >0且4k =1k ,即k =12时等号成立,所以S min =4,此时直线l 的方程为x -2y +4=0.[A 基础达标]1.(2022·北京市昌平区期中)已知点A ()2,-3,B ()-3,-2,直线l :mx +y -m -1=0与线段AB 相交,则实数m 的取值范围是( )A .m ≤-4或m ≥34B.m ≤-34或m ≥4C .-4≤m ≤34D.-34≤m ≤4解析:选B.直线l :mx +y -m -1=0过定点P ()1,1, 由mx +y -m -1=0可得y =-m ()x -1+1, 作出图象如图所示:k PA =-3-12-1=-4,k PB =-2-1-3-1=34, 若直线l 与线段AB 相交,则-m ≥34或-m ≤-4,解得m ≤-34或m ≥4,所以实数m 的取值范围是m ≤-34或m ≥4.2.若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =( ) A .1±2或0 B.2-52或0 C.2±52D.2+52或0 解析:选A.由题意知k AB =k AC ,即a 2+a 2-1=a 3+a 3-1,即a (a 2-2a -1)=0,解得a =0或a=1± 2.3.(2022·江西省抚州检测)已知k +b =0,k ≠0,则直线y =kx +b 的位置可能是( )解析:选B.因为直线方程为y =kx +b ,且k ≠0,k +b =0,即b =-k ,所以y =kx -k =k (x -1),令y =0,得x =1,所以直线与x 轴的交点坐标为(1,0).只有选项B 中的图象符合要求.4.直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C.令x =0,得y =b2,令y =0,得x =-b ,所以所求三角形的面积为12·⎪⎪⎪⎪⎪⎪b 2·|-b |=14b 2,且b ≠0,14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].5.(多选)(2022·昌平一中期中考试改编)直线l 过点P (2,-1)且在两坐标轴上的截距之和为0,则直线l 的方程为( )A .x -y -3=0 B.2x +y -3=0 C .x +2y =0D.x +y -1=0解析:选AC.当直线l 过原点时,直线l 的方程为y =-12x ⇒x +2y =0符合题意. 当直线l 不过原点时,设直线l 的方程为x a +y-a=1,将P 点坐标代入得2a +1a =1⇒a =3,x 3-y3=1⇒x -y -3=0.所以直线l 的方程为x +2y =0或x -y -3=0.6.把直线x -y +3-1=0绕点(1,3)逆时针旋转15°后,所得直线l 的方程是________.解析:已知直线的斜率为1,则其倾斜角为45°,绕点(1,3)逆时针旋转15°后,得到的直线l 的倾斜角α=45°+15°=60°,直线l 的斜率为tan α=tan 60°=3,所以直线l 的方程为y -3=3(x -1),即y =3x .答案:y =3x7.在平面直角坐标系中,已知矩形OABC ,O ()0,0,A ()2,0,C ()0,1,将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围是________.解析:如图,要想使折叠后O 点落在线段BC 上,可取BC 上任意一点D , 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合, 因为k OD ≥k OB =12,所以k =-1k OD≥-2,且k <0.又当折叠后O 与C 重合时,k =0, 所以-2≤k ≤0,所以k 的取值范围是[]-2,0. 答案:[-2,0]8.设直线l 的方程为2x +(k -3)y -2k +6=0(k ≠3),若直线l 的斜率为-1,则k =________;若直线l 在x 轴、y 轴上的截距之和等于0,则k =________.解析:因为直线l 的斜率存在,所以直线l 的方程可化为y =-2k -3x +2,由题意得-2k -3=-1,解得k =5. 直线l 的方程可化为x k -3+y2=1,由题意得k -3+2=0,解得k =1. 答案:5 19.已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点.(1)求直线l 的斜率k 的取值范围; (2)求直线l 的倾斜角α的取值范围. 解:如图,由题意,知k PA =4-0-3-1=-1,k PB =2-03-1=1.(1)要使直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是k ≤-1或k ≥1. (2)由题意可知,直线l 的倾斜角介于直线PB 与PA 的倾斜角之间,又直线PB 的倾斜角是45°,直线PA 的倾斜角是135°,所以α的取值范围是45°≤α≤135°.10.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程; (2)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点, 所以BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2.因为BC 边的垂直平分线DE 经过BC 的中点(0,2), 所以所求直线方程为y -2=2(x -0), 即2x -y +2=0.[B 综合应用]11.(多选)下列说法正确的是( )A .截距相等的直线都可以用方程x a +y a=1表示 B .方程x +my -2=0(m ∈R )能表示平行于y 轴的直线C .经过点P (1,1),倾斜角为θ的直线方程为y -1=tan θ(x -1)D .经过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线方程为(y 2-y 1)(x -x 1)-(x 2-x 1)(y -y 1)=0解析:选BD.对于A ,若直线过原点,横纵截距都为0,则不能用方程x a +y a=1表示,所以A 不正确;对于B ,当m =0时,平行于y 轴的直线方程为x =2,所以B 正确;对于C ,若直线的倾斜角为90°,则该直线的斜率不存在,不能用y -1=tan θ(x -1)表示,所以C 不正确;对于D ,设点P (x ,y )是经过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线上的任意一点,则根据P 1P 2→∥P 1P →可得(y 2-y 1)(x -x 1)-(x 2-x 1)(y -y 1)=0,所以D 正确,故选BD.12.(2022·东北三省三校调研)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为[0,π4],则点P 横坐标的取值范围为( )A .[-1,-12]B.[-1,0] C .[0,1]D.[12,1] 解析:选A.由题意知,y ′=2x +2,设P (x 0,y 0),则在点P 处的切线的斜率k =2x 0+2. 因为曲线C 在点P 处的切线倾斜角的取值范围为[0,π4],则0≤k ≤1,即0≤2x 0+2≤1,解得-1≤x 0≤-12.13.(2022·江西九江模拟)在△ABC 中,已知A (5,-2),B (7,3),且AC 的中点M 在y 轴上,BC 的中点N 在x 轴上,则直线MN 的方程为_______________________________________________________.解析:设C (x 0,y 0), 则M (5+x 02,y 0-22),N (7+x 02,3+y 02).因为点M 在y 轴上,所以5+x 02=0,所以x 0=-5. 因为点N 在x 轴上,所以y 0+32=0,所以y 0=-3,即C (-5,-3),所以M (0,-52),N (1,0),所以直线MN 的方程为x1+y -52=1,即5x -2y -5=0.答案:5x -2y -5=014.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当a =________时,四边形的面积最小,最小值为________.解析:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝⎛⎭⎪⎫a -122+154,故当a =12时,四边形的面积最小,最小值为154.答案:12154[C 素养提升]15.在△ABC 中,∠ACB =90°,BC =3,AC =4,P 是线段AB 上的点,则P 到AC ,BC 的距离的乘积的最大值为________.解析:以C 为坐标原点,CB 所在直线为x 轴建立直角坐标系(如图所示),则A (0,4),B (3,0),直线AB 的方程为x 3+y4=1.设P (x ,y )(0≤x ≤3),所以P 到AC ,BC 的距离的乘积为xy ,因为x 3+y 4≥2x 3·y 4, 当且仅当x 3=y 4=12时取等号,所以xy ≤3,所以xy 的最大值为3. 答案:3 16.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33,所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎨⎧m +n 2=12·m -3n 2,(m -0)·(-3n -1)=(n -0)·(m -1),解得m=3,所以A(3,3).又P(1,0),所以k AB=k AP=33-1=3+32,所以l AB:y=3+32(x-1),即直线AB的方程为(3+3)x-2y-3-3=0.。

实用高考数学知识点总结经验分享

实用高考数学知识点总结经验分享

实用高考数学知识点总结经验分享作为高考必考科目之一,数学占据了高考总分的三分之一。

因此,在备战高考的过程中,掌握实用的数学知识点显得尤为重要。

本文就实用高考数学知识点进行总结,希望能对广大考生有所帮助。

一、一元二次方程和函数的应用一元二次方程和函数的应用广泛,不仅考查频率高,而且与实际生活密切相关。

掌握此类知识点,能够在考试中快速解题,提高分数。

1. 一元二次方程求解一元二次方程的解法有多种,如公式法、配方法、因式分解法等。

实际上,在高考中,选择合适的解法、勾画出解题思路也非常重要。

例如:(1)已知一元二次方程$ax^2+bx+c=0$,其中$a,b,c$ 都是实数,如果$a<0$,则该方程的解为$x=\frac{-b+\sqrt{b^2-4ac}}{2a},\frac{-b-\sqrt{b^2-4ac}}{2a}$。

(2)已知一元二次方程的两个根为$x_1$ 和$x_2$,则该方程的表达式为$x^2-(x_1+x_2)x+x_1x_2=0$。

(3)已知一元二次方程的两根为$x_1$ 和$x_2$,则该方程的基本式为$y=a(x-x_1)(x-x_2)$。

2. 函数的应用函数是数学中一个重要的概念,包括常见的二次函数、指数函数、对数函数等。

在应用中,函数可以用于求解最优值、拟合曲线等方面。

例如:(1)已知函数$y=2x^2-6x+5$,则该函数的最小值为$-\frac{1}{2}$。

(2)已知二次函数的开口方向和顶点坐标,则可以画出函数的图像并推断出函数的性质。

(3)已知指数函数$y=a^x$ 和经过两点$(1,2)$ 和$(3,8)$ 的直线,则可以求出$a$ 的值并确定函数的表达式。

二、平面向量的性质和应用平面向量的性质和应用是数学中一个重要的知识点,能够用于求解几何问题。

掌握平面向量的相关知识,能够帮助考生更好地理解和解决空间图形问题。

例如:1. 向量的运算向量的加法、减法、数量积和向量积等运算十分重要。

高考数学知识点全总结

高考数学知识点全总结

高考数学知识点全总结1. 函数与方程•函数基本概念:函数定义、函数图像、函数性质•一次函数与二次函数:一次函数的性质、二次函数的性质、解一次方程与二次方程•指数与对数:指数函数、对数函数、指数与对数方程•三角函数:三角函数的概念与性质、三角函数的图像、三角函数的诱导公式•函数的运算:函数的四则运算、复合函数、反函数•不等式:一元一次不等式、一元二次不等式、绝对值不等式2. 三角函数与解三角形•三角函数的定义:弧度与角度、常用三角函数的单位圆定义、三角函数的周期与图像•三角函数的基本关系:和差化积、积化和差、倍角公式、半角公式、诱导公式•解直角三角形:正弦定理、余弦定理、正弦定理的推论、余弦定理的推论、解三角形的一般步骤3. 三角恒等变换•三角恒等式的等式变换:同角三角函数的化简、平方公式与倍角公式、半角公式与二倍角公式、诱导公式与三倍角公式•三角恒等式的实际应用:证明与计算、几何证明与构造、等差数列的求和、排列组合与二项式定理•复数与指数形式:复数的概念与运算、复数的代数表示与三角形式、指数函数与三角函数的关系、欧拉公式4. 一元函数微分学•导数的概念:函数的变化率与导数的定义、导数的几何意义、导数的运算法则•函数的求导法则:常用初等函数的导数、复合函数的求导、反函数的求导、隐函数的求导•求函数的极值与最值:极值与最值的概念、可导函数的极值与最值、非可导函数的极值与最值•函数的应用问题:函数的变化率问题、图像与导数的关系、函数导数的应用、微分与线性近似5. 一元函数积分学•不定积分的概念:原函数与不定积分的关系、基本积分公式、分部积分法、换元积分法•定积分的概念:定积分的定义与性质、定积分的计算方法、变上限积分、变下限积分•函数积分的应用:定积分与面积计算、定积分与物理问题、定积分与几何问题、定积分与平均值问题6. 二元函数与微分学•二元函数的基本概念:二元函数的定义与性质、二元函数的图像与曲面、二元函数的极值与最值•偏导数与全微分:偏导数的定义与计算、全微分的概念与计算、一阶偏导数的几何意义•隐函数与参数方程:隐函数的概念与求导、参数方程的概念与求导、多元函数微分与微分法、二元函数的应用问题7. 二元函数与积分学•二重积分的概念:二重积分的定义与性质、二重积分的计算方法、变量替换法、极坐标法•三重积分的概念:三重积分的定义与性质、三重积分的计算方法、柱坐标法、球坐标法•二重积分的应用:计算几何体的体积、求平面区域的面积、质量、质心、惯性矩•三重积分的应用:计算物体的体积、计算质量、质心、转动惯量、力矩8. 统计与概率•随机事件与概率:随机事件与样本空间、概率的定义与性质、概率计算方法、互斥事件与对立事件•条件概率与独立性:条件概率的定义与性质、乘法定理与全概率定理、独立事件与互不独立事件•随机变量与期望值:随机变量的概念与常用分布、离散型随机变量与连续型随机变量、期望值与方差的计算•统计基本概念与抽样分布:总体与样本、抽样分布与中心极限定理、样本统计量的分布与点估计以上是高考数学的主要知识点总结,包括函数与方程、三角函数与解三角形、三角恒等变换、一元函数微分学、一元函数积分学、二元函数与微分学、二元函数与积分学、统计与概率等内容。

备战高考数学复习考点知识与题型讲解18---函数模型的应用

备战高考数学复习考点知识与题型讲解18---函数模型的应用

备战高考数学复习考点知识与题型讲解第18讲函数模型的应用考向预测核心素养考查根据实际问题建立函数模型解决问题的能力,常与函数图象、单调性、最值及方程、不等式交汇命题,各种题型均有可能,中档难度.数学建模一、知识梳理1.六种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数模型f(x)=b logax+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)“对勾”函数模型y=x+ax(a为常数,a>0)2.三种函数模型性质比较y=a x(a>1)y=logax(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同3.用函数建立数学模型解决实际问题的基本过程常用结论1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.2.“对勾”函数f (x )=x +a x(a >0)在(0,+∞)上的性质:在(0,a ]上单调递减,在[a ,+∞)上单调递增,当x =a 时f (x )取最小值2a .二、教材衍化1.(人A 必修第一册P 152例6改编)某校拟用一种喷雾剂对宿舍进行消毒,需对喷雾完毕后空气中每立方米药物残留量y (单位:毫克)与时间x (单位:时)的关系进行研究,为此收集部分数据并做了初步处理,得到如图散点图.现拟从下列四个函数模型中选择一个估计y 与x 的关系,则应选用的函数模型是( )A .y =ax +bB.y =a ·⎝ ⎛⎭⎪⎫14x+b (a >0)C .y =x a +b (a >0) D.y =ax +b x(a >0,b >0)解析:选 B.由散点图可知,函数在(0,+∞)上单调递减,且散点分布在一条曲线附近,函数y =a ·⎝ ⎛⎭⎪⎫14x+b 的图象为一条曲线,且当a >0时,该函数单调递减,符合题意,故选B.2.(多选)(人A 必修第一册P 155习题4.5T 9改编)如图,某池塘里浮萍的面积y (单位:m 2)与时间t (单位:月)的关系为y =a t .关于下列说法中正确的是( )A .浮萍每月的增长率为1B .第5个月时,浮萍面积就会超过30 m 2C .浮萍每月增加的面积都相等D .若浮萍蔓延到2 m 2,3 m 2,6 m 2所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3 解析:选ABD.把(1,2)代入y =a t ,可得函数解析式为y =2t , 因为2t +1-2t2t =1,所以每月增长率为1,A 对;当t =5时,y =32>30,所以B 对;第2个月增加2 m 2,第3个月增加4 m 2,C 错; 由2t 1=2,2t 2=3,2t 3=6,所以2t 1·2t 2=2t 3,故t 1+t 2=t 3,D 对.3.(人A 必修第一册P 96习题3.4T 5改编)下表是弹簧伸长长度x (单位:cm)与拉力F (单位:N)的相关数据:x 14.2 28.8 41.3 57.5 70.2 F12345写出能反映这一变化现象的函数为________.(不唯一)解析:根据点的分布特征,可以考虑用函数x =kF +b (k ≠0)作为刻画弹簧伸长长度与拉力关系的函数模型.取两组数据(1,14.2),(4,57.5),则⎩⎨⎧k +b =14.2,4k +b =57.5,解得⎩⎨⎧k ≈14.4,b ≈-0.2,所以x =14.4F -0.2.将已知数据代入上述解析式,或作出函数图象,可以发现,这个函数模型与已知数据拟合程度较好.答案:x =14.4F -0.2一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( )(2)函数y =2x的函数值比y =x 2的函数值大.( ) (3)不存在x 0,使ax 0<x n 0<log a x 0.( )(4)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( )答案:(1)× (2)× (3)× (4)× 二、易错纠偏1.(函数模型选择易误)某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100x B.y =50x 2-50x +100 C .y =50×2xD.y =100log 2x +100解析:选C.根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证可知选C.2.(指数函数、对数函数性质不明致误)下面对函数f (x )=log 12x 与g (x )=⎝ ⎛⎭⎪⎫12x 在区间(0,+∞)上的衰减情况的说法中正确的为( )A .f (x )的衰减速度越来越慢,g (x )的衰减速度越来越快B .f (x )的衰减速度越来越快,g (x )的衰减速度越来越慢C .f (x )的衰减速度越来越慢,g (x )的衰减速度越来越慢D.f(x)的衰减速度越来越快,g(x)的衰减速度越来越快解析:选C.在同一平面直角坐标系中画出f(x)与g(x)的图象如图所示,由图象可判断出衰减情况为:f(x)衰减速度越来越慢;g(x)衰减速度越来越慢,故选C.3.(平均增长率概念不清致误)某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为________.解析:设年平均增长率为x,则(1+x)2=(1+p)(1+q),所以x=(1+p)(1+q)-1.答案:(1+p)(1+q)-1考点一用函数图象刻画变化过程(自主练透)复习指导:能将实际问题转化为数学问题,会应用函数图象对实际问题进行描述.1.一种叫万年松的树的生长时间t(年)与树高y(m)之间的散点图如图所示.请你据此判断,拟合这种树生长的年数与树高的关系式,选择的函数模型最好的是( ) A.y=2t B.y=log2tC.y=t3D.y=2t2解析:选B.由图知,函数的增长速度越来越慢,排除A,C,D.选B.2.(2022·广州市综合检测(一))如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T. 若鱼缸水深为h时,水流出所用时间为t,则函数h =f(t)的图象大致是( )解析:选B.水位由高变低,排除C,D.半缸前下降速度先快后慢,半缸后下降速度先慢后快,故选B.3.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为( )解析:选D.y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.4.(多选)(2022·福建厦门高三质检)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y(单位:微克)与时间t(单位:小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则( )A.a=3B.注射一次治疗该病的有效时间长度为6小时C.注射该药物18小时后每毫升血液中的含药量为0.4微克D.注射一次治疗该病的有效时间长度为53132小时解析:选AD.当t =1时,y =4,即⎝ ⎛⎭⎪⎫121-a=4,解得a =3,所以y =⎩⎨⎧4t ,0≤t <1,⎝ ⎛⎭⎪⎫12t -3,t ≥1,故A 正确,药物刚好起效的时间,当4t =0.125,即t =132, 药物刚好失效的时间⎝ ⎛⎭⎪⎫12t -3=0.125,解得t =6,故药物有效时长为6-132=53132小时, 药物的有效时间不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为4×18=0.5微克,故C 错误.判断函数图象与实际问题变化过程相吻合的方法:(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考点二 已知或选择函数模型解决实际问题(综合研析)复习指导:1.已知函数模型,用待定系数法确定解析式; 2.根据几种常见函数的增长差异选择函数模型.(1)(2022·江西高三月考)果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知在一定时间内,某种水果失去的新鲜度y 与其采摘后时间t (小时)近似满足的函数关系式为y =k ·m t (k ,m 为非零常数),若采摘后20小时,这种水果失去的新鲜度为20%,采摘后30小时,这种水果失去的新鲜度为40%.那么采摘下来的这种水果大约经过多长时间后失去50%新鲜度(参考数据:lg 2≈0.3,结果取整数)( )A .33小时 B.23小时 C .35小时D.36小时(2)某地西红柿上市后,通过市场调查,得到西红柿的种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:时间t60100 180 种植成本Q 11684116根据上表数据,从下列函数中选取一个函数描述西红柿的种植成本Q 与上市时间t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,则①西红柿种植成本最低时的上市天数是________; ②最低种植成本是________元/100 kg. 【解析】 (1)由题意⎩⎨⎧k ·m 20=20%k ·m 30=40%,两式相除得m 10=2,m =2110,代入得k =5%,所以y =5%·2t10,由50%=5%·2t 10得2t10=10,取对数得t 10lg 2=1,t =10lg 2≈100.3≈33(小时). (2)由题意知,种植成本与上市时间的变化关系应该用二次函数Q =at 2+bt +c ,即Q =a (t -120)2+m 描述,将表中数据代入可得⎩⎨⎧a (60-120)2+m =116,a (100-120)2+m =84,解得⎩⎨⎧a =0.01,m =80, 所以Q =0.01(t -120)2+80,故当上市天数为120时,种植成本取到最低值80元/100 kg.【答案】 (1)A (2)①120 ②80已知或选择函数模型解决实际问题的注意点(1)已知模型的实际问题,根据待定系数法确定模型,再利用模型求解实际问题.(2)选择模型的问题可结合函数图象,函数值的增长特点(增减、增长快慢)等选用合适的函数模型.|跟踪训练|(多选)纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国城市中有超过23的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正在逐年攀升,有关数据显示,某城市从2018年到2021年产生的包装垃圾量如下表:有下列函数模型:①y =a ·b x -2 018;②y =a sin πx2 018+b (参考数据:lg 2=0.301 0,lg 3=0.477 1),则( )A .选择模型①,函数模型解析式y =4·⎝ ⎛⎭⎪⎫32x -2 018,近似反映该城市近几年产生的包装垃圾y (万吨)与年份x 的函数关系B .选择模型②,函数模型解析式y =4sin πx2 018+2 018,近似反映该城市近几年产生的包装垃圾y (万吨)与年份x 的函数关系C .若不加以控制,任由包装垃圾如此增长下去,从2023年开始,该城市的包装垃圾将超过40万吨D .若不加以控制,任由包装垃圾如此增长下去,从2024年开始,该城市的包装垃圾将超过40万吨解析:选AD.若选y =4·⎝ ⎛⎭⎪⎫32x -2 018,计算可得对应数据近似为4,6,9,13.5,若选y =4sin πx2 018+2 018,计算可得对应数据近似值都大于2 014,显然A 正确,B 错误;按照选择函数模型y =4·⎝ ⎛⎭⎪⎫32x -2 018,令y >40,即4×⎝ ⎛⎭⎪⎫32x -2 018>40,所以⎝ ⎛⎭⎪⎫32x -2 018>10,所以x -2 018>log 3210,所以x -2 018>lg 10lg 32=1lg 3-lg 2≈5.678 6,所以x >2 023.678 6,即从2024年开始,该城市的包装垃圾将超过40万吨,故C 错误,D 正确.考点三 构建函数模型解决实际问题(多维探究)复习指导:1.分析题意,寻找实际问题中起决定作用的两个变量. 2.确定两个变量间的关系,选择合适的函数模型. 角度1 构建二次函数、分段函数、“对勾”函数模型(链接常用结论2)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W (x )万元,在年产量不足8万件时,W (x )=13x 2+x (万元).在年产量不小于8万件时,W (x )=6x +100x-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?【解】 (1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得,当0<x <8时,L (x )=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3;当x ≥8时,L (x )=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x . 所以L (x )=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x <8,35-⎝ ⎛⎭⎪⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值,为9万元. 当x ≥8时,L (x )=35-⎝ ⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15,当且仅当x =100x时等号成立,即x =10时,L (x )取得最大值,为15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.角度2 构建指数函数、对数函数模型(1)(2022·长春高三摸底考试)2018年5月至2019年春,在阿拉伯半岛和伊朗西南部,沙漠蝗虫迅速繁衍,呈现几何式的爆发,仅仅几个月,蝗虫数量增长了8 000倍,引发了蝗灾,到2020年春季蝗灾已波及印度和巴基斯坦,假设蝗虫的日增长率为5%,最初有N 0只,则达到最初的16 000倍只需经过(参考数据:ln 1.05≈0.048 8,ln 16 000≈9.680 3)( )A .191天 B.195天 C.199天D.203天(2)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.【解析】(1)设过x天能达到最初的16 000倍,由已知可得,N0(1+0.05)x=16 000N0,所以x=ln 16 000ln 1.05≈198.4,又x∈N,故经过199天能达到最初的16 000倍.(2)M=lg 1 000-lg 0.001=3-(-3)=6.设9级地震的最大振幅和5级地震的最大振幅分别为A1,A2,则9=lg A1-lg A0=lg A1A,则A1A=109,5=lg A2-lg A0=lgA2A,则A2A=105,所以A1A2=104.即9级地震的最大振幅是5级地震最大振幅的10 000倍.【答案】(1)C (2)6 10 000(1)建模解决实际问题的三个步骤①建模:抽象出实际问题的数学模型.②推理、演算:对数学模型进行逻辑推理或数学演算,得到问题在数学意义上的解.③评价、解释:对求得的数学结果进行深入的讨论,作出评价、解释,返回到原来的实际问题中去,得到实际问题的解.(2)构建函数模型解决实际问题,充分体现了数学建模的核心素养.[提醒] (1)构建函数模型时不要忘记考虑函数的定义域.(2)利用模型f(x)=ax+bx求解最值时,注意取得最值时等号成立的条件.|跟踪训练|1.(多选)某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5 000册.要使该杂志销售收入不少于22.4万元,每册杂志可以定价为( )A .2.5元 B.3元 C.3.2元D.3.5元解析:选BC.依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,设每册杂志定价为x (x >2)元,则发行量为⎝ ⎛⎭⎪⎫10-x -20.2×0.5万册, 则该杂志销售收入为⎝ ⎛⎭⎪⎫10-x -20.2×0.5x 万元, 所以⎝ ⎛⎭⎪⎫10-x -20.2×0.5x ≥22.4,化简得x 2-6x +8.96≤0,解得2.8≤x ≤3.2,故选BC.2.某种茶水用100 ℃的水泡制,再等到60 ℃时饮用可产生最佳口感.已知茶水温度y (单位:℃)与经过时间t (单位:min)的函数关系是:y =ka t +y 0,其中a 为衰减比例,y 0是室温,t =0时,y 为茶水初始温度,若室温为20 ℃,a =⎝ ⎛⎭⎪⎫1218,茶水初始温度为100 ℃,则k =________,产生最佳口感所需时间是________min.解析:由题意,y =ka t +20,当t =0时,有y =ka t +20=k +20=100,k =80, 则y =80a t +20,当y =60时,即80a t +20=60,所以80a t =40,所以a t =12,即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1218t =12,所以t =8.答案:80 8[A 基础达标]1.某种细菌在培养过程中,每15 min 分裂一次(由1个分裂成2个),这种细菌由1个分裂成4 096个需经过的时间是( )A .12 h B.4 h C.3 hD.2 h解析:选C.设这种细菌由1个分裂成4 096个需经过x次分裂,则4 096=2x,解得x=12,故所需时间t=12×1560=3 h.2.“龟兔赛跑”讲述了这样的故事:兔子和乌龟赛跑,领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.S1,S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是( )解析:选B.选项A表示龟兔同时到达;选项C表示兔子没有追赶乌龟;选项D表示兔子先到达终点.3.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A.略有盈利 B.略有亏损C.没有盈利也没有亏损 D.无法判断盈亏情况解析:选B.设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.4.在固定电压差(电压为常数)的前提下,当电流通过圆柱形的电线时,其电流强度I与电线半径r的三次方成正比,若已知电流通过半径4毫米的电线时,电流强度为320安,则电流通过半径为3毫米的电线时,电流强度为( )A.60安 B.240安C.75安D.135安解析:选D.由已知,设比例常数为k,则I=k·r3.由题意,当r=4时,I=320,故有320=k×43,解得k=32064=5,所以I=5r3.故当r=3时,I=5×33=135(安).故选D.5.(2022·皖南八校联考)某购物网站在2021年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为________.解析:为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额不少于500元.由于每件原价48元,因此每张订单至少11件,又42=11×3+9,所以最少需要下的订单张数为3.答案:36.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为________升.解析:因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35 600-35 000=600(千米),故每100千米平均耗油量为48÷6=8(升).答案:87.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=a e-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.解析:当t=0时,y=a;当t=8时,y=a e-8b=12a,故e-8b=12.当容器中的沙子只有开始时的八分之一时,即y=a e-bt=18a,e-bt=18=(e-8b)3=e-24b,则t=24,所以再经过16 min容器中的沙子只有开始时的八分之一.答案:168.某工厂因排污比较严重,决定着手整治,第一个月污染度为60,整治后前四个月的污染度如下表:污染度为0后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:f (x )=20|x -4|(x ≥1),g (x )=203(x -4)2(x ≥1),h (x )=30|log 2x -2|(x ≥1),其中x 表示月数,f (x ),g (x ),h (x )分别表示污染度.(1)试问选用哪个函数模拟比较合理,并说明理由;(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过60? 解:(1)用h (x )模拟比较合理,理由如下: 因为f (2)=40,g (2)≈26.7,h (2)=30;f (3)=20,g (3)≈6.7,h (3)≈12.5.由此可得h (x )更接近实际值,所以用h (x )模拟比较合理.(2)因为h (x )=30|log 2x -2|在x ≥4时是增函数,h (16)=60,所以整治后有16个月的污染度不超过60.9.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元,0.5万元.(1)分别写出两类产品的收益与投资额的函数关系;(2)若该家庭有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益是多少万元?解:(1)设两类产品的收益与投资额的函数关系分别为f (x )=k 1x ,g (x )=k 2x . 由已知得f (1)=18=k 1,g (1)=12=k 2,所以f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资股票类产品为x 万元, 则投资债券类产品为(20-x )万元.依题意得y =f (20-x )+g (x )=20-x 8+12x =-x +4x +208(0≤x ≤20). 所以当x =2,即x =4时,收益最大,y max =3万元.故投资债券类产品16万元,投资股票类产品4万元时获得最大收益,为3万元.[B 综合应用]10.在标准温度和大气压下,人体血液中氢离子物质的量的浓度(单位:mol/L ,记作[H +])和氢氧根离子物质的量的浓度(单位:mol/L ,记作[OH -])的乘积等于常数10-14.已知pH 值的定义为pH =-lg[H +],健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的[H +][OH -]可以为(参考数据:lg 2≈0.30,lg 3≈0.48)( )A.12B.13C.16D.110解析:选C.因为[H +]·[OH -]=10-14,所以[H +][OH -]=[H +]2×1014,因为7.35<-lg[H+]<7.45,所以10-7.45<[H +]<10-7.35,所以10-0.9<[H +][OH -]=1014·[H +]2<10-0.7,10-0.9=1100.9>110,lg 100.7=0.7>lg 3>lg 2,所以100.7>3>2,10-0.7<13<12,所以110<[H +][OH -]<13.故选C.11.(2022·焦作温县一中10月月考)搭载神舟十二号载人飞船的长征二号F 遥十二运载火箭,在酒泉卫星发射中心点火发射成功.此次航天飞行任务中,火箭起到了非常重要的作用.在不考虑空气动力和地球引力的理想情况下,火箭在发动机工作期间获得速度增量v (单位:千米/秒)可以用齐奥尔科夫斯基公式v =ωln ⎝ ⎛⎭⎪⎫1+m M 来表示,其中,ω(单位:千米/秒)表示它的发动机的喷射速度,m (单位:吨)表示它装载的燃料质量,M (单位:吨)表示它自身(除燃料外)的质量.若某型号的火箭发动机的喷射速度为5千米/秒,要使得该火箭获得的最大速度v 达到第一宇宙速度(7.9千米/秒),则火箭的燃料质量m 与火箭自身质量M 之比mM约为( )A .e 1.58 B.e 0.58 C .e 1.58-1D.e 0.58-1解析:选C.由题设,5ln ⎝ ⎛⎭⎪⎫1+m M =7.9,则m M =e 7.95-1=e 1.58-1.12.(多选)小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f (x )与时间x (天)之间的函数关系f (x )=⎩⎨⎧-720x +1,0<x ≤1,15+920x -12,1<x ≤30.则下列说法正确的是( )A .随着时间的增加,小菲的单词记忆保持量降低B .第一天小菲的单词记忆保持量下降最多C .9天后,小菲的单词记忆保持量低于40%D .26天后,小菲的单词记忆保持量不足20%解析:选ABC.由函数解析式可知f (x )随着x 的增加而减少,故A 正确;由图象可得B 正确;当1<x ≤30时,f (x )=15+920x -12,则f (9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故C 正确;f (26)=15+920×26-12>15,故D 错误.13.燕子每年秋天都要从北方飞往南方过冬,研究燕子的科学家发现,两岁的燕子的飞行速度可以表示为函数v =5log 2Q 10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)燕子静止时的耗氧量是________个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是________.解析:(1)由题意知,当燕子静止时,它的速度为0,代入v =5log 2Q 10中可得0=5log 2Q10,解得Q =10.(2)将耗氧量Q =80代入v =5log 2Q 10中,得v =5log 28010=5log 28=15 (m/s). 答案:(1)10 (2)15 m/s14.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +(b -a )x .这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x =________.解析:由题意得x =c -ab -a ,(c -a )2=(b -c )(b -a ),因为b -c =(b -a )-(c -a ),所以(c -a )2=(b -a )2-(b -a )(c -a ), 两边同除以(b -a )2,得x 2+x -1=0, 解得x =-1±52.因为0<x <1,所以x =5-12. 答案:5-12[C 素养提升]15.某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系t (x )=⎩⎨⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃的保鲜时间是16小时. (1)该食品在8 ℃的保鲜时间是________小时;(2)已知甲在某日上午10时购买了该食品,并将其遗放在室外,且当日的室外温度随时间变化如图所示,那么到了当日13时,甲所购买的食品________保鲜时间.(填“过了”或“没过”)解析:(1)因为食品在4 ℃的保鲜时间是16小时,所以24k +6=16,解得k =-12.所以t (8)=2-4+6=4.(2)由图象可知在11时之前,温度已经超过了10 ℃,此时该食品的保鲜期少于21=2小时.而食品在11时之前已放了一段时间,所以到13时,该食品已过保鲜期.答案:(1)4 (2)过了16.(2022·上海高三月考)我国西部某省4A 级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好民俗文化基础设施后任何一个月内(每月按30天计算)每天的旅游人数f (x )与第x 天近似地满足f (x )=8+8x(千人),且参观民俗文化村的游客人均消费g (x )近似地满足g (x )=143-|x -22|(元).(1)求该村的第x 天的旅游收入p (x )(单位:千元,1≤x ≤30,x ∈N *);(2)若以最低日收入的20%作为每一天纯收入的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?(一年以365天计算)解:(1)依据题意,有p (x )=f (x )·g (x )=⎝ ⎛⎭⎪⎫8+8x ·(143-|x -22|)(1≤x ≤30,x∈N *)=⎩⎪⎨⎪⎧8x +968x +976(1≤x ≤22,x ∈N *),-8x +1 320x +1 312(22<x ≤30,x ∈N *).(2)①当1≤x ≤22,x ∈N *时,p (x )=8x +968x+976≥28x ·968x+976=1 152(当且仅当x =11时,等号成立),因此,p (x )min =p (11)=1 152(千元).②当22<x≤30,x∈N*时,p(x)=-8x+1 320x+1 312.求导可得p′(x)=-8-1 320x2<0,所以p(x)=-8x+错误!+1 312在(22,30]上单调递减,于是p(x)min=p(30)=1 116(千元).又1 152>1 116,所以日最低收入为1 116千元.该村两年可收回的投资资金为 1 116×20%×5%×365×2=8 146.8(千元)=814.68(万元),因为814.68万元>800万元,所以,该村在两年内能收回全部投资成本.21 / 21。

高考必备数学公式大全

高考必备数学公式大全

高考必备数学公式大全一、集合。

1. 集合的基本运算。

- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_UA={xx∈ U且x∉ A}(U为全集)2. 集合元素个数公式。

- n(A∪ B)=n(A)+n(B)-n(A∩ B)二、函数。

1. 函数的定义域。

- 分式函数y = (f(x))/(g(x)),定义域为g(x)≠0的x的取值范围。

- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),定义域为f(x)≥slant0的x的取值范围。

2. 函数的单调性。

- 设x_1,x_2∈[a,b]且x_1,对于函数y = f(x)- 若f(x_1),则y = f(x)在[a,b]上是增函数,f^′(x)≥slant0(可导函数时)。

- 若f(x_1)>f(x_2),则y = f(x)在[a,b]上是减函数,f^′(x)≤slant0(可导函数时)。

3. 函数的奇偶性。

- 对于函数y = f(x),定义域关于原点对称。

- 若f(-x)=f(x),则y = f(x)是偶函数,其图象关于y轴对称。

- 若f(-x)= - f(x),则y = f(x)是奇函数,其图象关于原点对称。

4. 一次函数y=kx + b(k≠0)- 斜率k=frac{y_2-y_1}{x_2-x_1},截距为b。

5. 二次函数y = ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)。

- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。

- 当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a<0时,函数开口向下,在x =-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。

6. 指数函数y = a^x(a>0,a≠1)- 性质:当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。

大学数学公式高考知识点

大学数学公式高考知识点

大学数学公式高考知识点在高考数学中,我们经常会遇到各种各样的数学公式,这些公式是我们解题的基础,也是我们发挥数学能力的工具。

在本文中,我将带你回顾一些大学数学公式的高考知识点,帮助你在考试中更加游刃有余。

一、立体几何的公式立体几何是数学中的一个重要分支,它研究的是空间中的物体。

在高考数学中,我们经常会遇到一些与立体几何有关的题目。

下面是一些常用的立体几何公式:1. 体积的计算公式:例如,正方体的体积=边长³,圆柱的体积=底面积×高。

2. 表面积的计算公式:例如,正方体的表面积=6×边长²,圆柱的表面积=侧面积+2×底面积。

二、平面几何的公式平面几何是数学中的另一个重要分支,它主要研究平面内的图形和性质。

在高考数学中,我们也会遇到一些与平面几何有关的题目。

下面是一些常用的平面几何公式:1. 长方形的周长和面积公式:例如,长方形的周长=2×(长+宽),面积=长×宽。

2. 圆的周长和面积的计算公式:例如,圆的周长=2πr,面积=πr²(其中,r为圆的半径)。

三、概率论的公式概率论是数学中一门研究随机事件的学科,它在高考数学中也是一个重要的知识点。

下面是一些常用的概率公式:1. 事件的概率计算公式:例如,事件A发生的概率P(A)=发生A的次数/总次数。

2. 事件的复合概率计算公式:例如,事件A和事件B同时发生的概率P(A∩B)=P(A)×P(B|A)(其中,P(B|A)表示在事件A发生的条件下事件B发生的概率)。

四、微积分的公式微积分是数学的一门重要分支,它研究的是变化和速率。

在高考数学中,微积分也是一个重要的考点。

下面是一些常用的微积分公式:1. 函数导数的计算公式:例如,对于函数y=f(x),其导数f'(x)表示函数在点x处的变化率。

2. 定积分的计算公式:例如,∫[a,b] f(x)dx表示函数f(x)在区间[a,b]的面积。

高考数学公式总结大全

高考数学公式总结大全

高考数学公式总结大全数学在高考中占据着非常重要的地位,而数学公式更是考试中必不可少的部分。

掌握好数学公式,对于高考取得好成绩至关重要。

因此,我将在这里为大家总结一些高考数学中常用的公式,希望能够帮助大家更好地备战高考。

一、代数部分。

1. 二次函数的顶点坐标公式:对于二次函数y=ax^2+bx+c,其顶点坐标为,(-b/2a, -Δ/4a),其中Δ=b^2-4ac。

2. 二次方程求根公式:对于一元二次方程ax^2+bx+c=0,其根的公式为,x1,2=(-b±√Δ)/2a,其中Δ=b^2-4ac。

3. 等差数列前n项和公式:对于等差数列an=a1+(n-1)d,其前n项和Sn=(a1+an)n/2。

4. 等比数列前n项和公式:对于等比数列an=a1q^(n-1),其前n项和Sn=a1(1-q^n)/(1-q)。

5. 二项式定理:(a+b)^n = C0n a^n + C1n a^(n-1)b + C2n a^(n-2)b^2 + ... + Cnn b^n。

二、几何部分。

1. 直角三角形斜边长公式:对于直角三角形,斜边长c的计算公式为,c=√(a^2+b^2)。

2. 圆的面积和周长公式:圆的面积公式为,S=πr^2,周长公式为,C=2πr。

3. 三角形面积公式:对于三角形,其面积S可以通过海伦公式计算,S=√[p(p-a)(p-b)(p-c)],其中p为半周长,a、b、c为三边长。

4. 直线斜率公式:直线斜率的计算公式为,k=(y2-y1)/(x2-x1)。

5. 圆锥、圆柱、圆球体积公式:圆锥体积V=1/3πr^2h,圆柱体积V=πr^2h,圆球体积V=4/3πr^3。

三、概率与统计部分。

1. 事件的概率公式:对于事件A发生的概率P(A)的计算公式为,P(A)=n/N,其中n为A发生的次数,N为总次数。

2. 期望值公式:对于随机变量X的期望值E(X)的计算公式为,E(X)=∑(xP(x)),即所有可能取值的乘积再求和。

数学高考知识点及公式

数学高考知识点及公式

数学高考知识点及公式高考数学是学生们备战高考的重中之重,掌握数学知识点以及相关的公式是至关重要的。

本文将围绕数学高考知识点及公式展开,帮助大家系统地理解和掌握这些内容。

一、代数与函数1. 解一元一次方程:形式为ax + b = 0的方程,通常用一次函数的直线来表示。

2. 解一元二次方程:形式为ax^2 + bx + c = 0的方程,一般用抛物线来表示。

3. 四则运算法则:包括加减乘除。

4. 复数:包括复数的定义、运算和应用。

5. 指数与对数:掌握指数运算和对数运算的规律与性质。

二、几何与立体几何1. 数形综合:包括平面几何的一些基本概念、性质和定理,如三角形的三边关系、全等三角形的判定等。

2. 三角函数:了解正弦、余弦、正切等三角函数的定义、性质和基本公式。

3. 平面向量:掌握向量的基本概念和相关运算法则。

4. 空间几何:研究点、线、面在空间中的位置关系、方向问题及相关的计算方法。

5. 立体几何:学习立体几何中各种几何体的基本性质和计算方法。

三、概率与统计1. 排列与组合:了解排列和组合的概念及计算方法。

2. 概率论:学习概率的基本概念、性质和计算方法,如加法原理、乘法原理等。

3. 统计学:掌握一些基本概念和统计方法,如样本的选择与处理、平均数、方差、标准差等。

四、导数与微积分1. 函数基本性质:了解函数的性质,如奇偶性、周期性等。

2. 极限与连续:掌握极限的概念和相关计算方法,了解连续函数的性质与判定方法。

3. 导数与微分:学习导数的定义、基本运算法则和相关的计算方法,了解微分的概念和微分中值定理。

4. 积分学:了解积分的概念、性质和计算方法,如定积分、不定积分等。

以上所列举的知识点及公式只是数学高考中的部分内容,希望能够对大家备考高考有所帮助。

此外,高考数学还需要结合实际题目进行练习和复习,加深对知识点的理解和应用能力的培养。

希望大家在备考过程中保持良好的心态,积极备战,相信自己一定能够取得优异的成绩!。

高考数学必考知识点整理

高考数学必考知识点整理

高考数学必考知识点整理高考数学是整个高考中最为重要的科目之一,在高考中占据了不可忽视的位置,是高考成绩的重要组成部分。

因此,掌握高考数学必考知识点是每一位高中学生所必须具备的。

接下来,本文将整理高考数学必考知识点,以帮助同学们备战高考。

一、一元二次方程高考数学中最为常见的一元二次方程,要求同学们掌握解一元二次方程的方法。

一元二次方程的解法主要有两种,一是配方法,二是公式法。

配方法是指通过加减变形将一元二次方程化为完全平方数的形式,进而求得方程的解。

而公式法则通过求根公式直接计算出方程的解。

在高考数学中,一般都要求同学们掌握这两种方法。

二、函数的概念和性质在高考数学中,函数的概念和性质是必考的。

同学们需要掌握函数的定义、定义域、值域、奇偶性、单调性、最值等基本概念和性质。

此外,同学们还需要学会绘制函数图像,根据函数图像解题等相关方法。

三、导数与微分导数和微分也是高考数学中必考的知识点之一。

同学们需要掌握导数的定义、导数的基本性质和相关公式,另外还需要学会求解导数和微分等问题,了解导数与函数图像的关系及一般微分的意义。

四、立体几何高考中,立体几何也是一个非常重要的知识点,要求同学们掌握各种几何体的表面积和体积的计算方法。

在立体几何中,常见的几何体有球、圆柱、圆锥、棱柱、棱锥等,同学们需要掌握这些几何体的特征和计算方法。

五、三角函数和复数在高考数学中,三角函数和复数也是必考的知识点之一。

同学们需要掌握基本三角函数的定义、常用公式、正弦、余弦、正切函数等的性质,另外还需要学会利用三角函数解题。

而在复数中,同学们需要掌握复数的概念、基本性质和相关公式,以及掌握解题方法等方面的知识。

六、概率概率也是高考数学中的重点知识点之一,同学们需要掌握基本概率的概念、性质以及相关公式,还需要学会应用概率计算,如合并、排列、组合等问题。

除此之外,则需要了解统计学的一些相关知识,包括样本调查、数据分析等方面。

七、数列和数学归纳法数列和数学归纳法也是高考数学中必考的知识点之一。

备战高考数学复习考点知识与题型讲解75---二项式定理

备战高考数学复习考点知识与题型讲解75---二项式定理

备战高考数学复习考点知识与题型讲解第75讲二项式定理考向预测核心素养考查二项式定理的正用和逆用,二项式系数的性质与各项系数的和,尤其是二项展开式的通项公式的应用数学运算是高考考查的热点,题型仍将是选择题与填空题.一、知识梳理1.二项式定理二项式定理(a+b)n=C0n a n+C1n a n-1b1+…+C k n a n-k b k+…+C n n b n(n∈N*) 二项展开式的通项T k+1=C k n a n-k b k,它表示第k+1项二项式系数C k n(k=0,1,…,n)2.二项式系数的性质常用结论二项展开式的三个重要特征(1)字母a的指数按降幂排列由n到0.(2)字母b的指数按升幂排列由0到n.(3)每一项字母a的指数与字母b的指数的和等于n.二、教材衍化1.(人A选择性必修第三册P31练习T4)(x-1)10的展开式的第6项的系数是( )A.C610B.-C610C.C510D.-C510解析:选D.T6=C510x5(-1)5,所以第6项的系数是-C510.2.(人A选择性必修第三册P34习题6.3T1(1))在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是( )A.74 B.121C.-74D.-121解析:选D.展开式中含x3的项的系数为C35(-1)3+C36(-1)3+C37(-1)3+C38(-1)3=-121.3.(人A选择性必修第三册P38复习参考题6T3(5)改编)在(1-2x)10的展开式中,各项系数的和是________.解析:令x=1可得各项系数的和为(1-2)10=1.答案:14.(人A选择性必修第三册P30例2改编)二项式⎝⎛⎭⎪⎫x-1xn的展开式中只有第5项的二项式系数最大,则展开式中含x2项的系数是________.答案:-56一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)C k n a n-k b k是二项展开式的第k项.( )(2)在二项展开式中,系数最大的项为中间一项或中间两项.( )(3)在(a+b)n的展开式中,每一项的二项式系数与a,b无关.( )(4)在(a+b)n展开式的通项T r+1=C r n a n-r b r中,a和b不能互换.( )答案:(1)×(2)×(3)√(4)√二、易错纠偏1.(混淆二项式系数与系数致误)在⎝ ⎛⎭⎪⎫2x 2-1x n的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为________.解析:因为所有二项式系数的和是32,所以2n =32,解得n =5. 在⎝ ⎛⎭⎪⎫2x 2-1x 5中,令x =1可得展开式中各项系数的和为(2-1)5=1.答案:12.(系数考虑不周致误)(x +1)5(x -2)的展开式中x 2的系数为________. 解析:(x +1)5(x -2)=x (x +1)5-2(x +1)5展开式中含有x 2的项为-20x 2+5x 2=-15x 2.故x 2的系数为-15.答案:-153.(公式配凑不当致误)已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=________.解析:因为(1+x )10=[2-(1-x )]10,所以其展开式的通项为T r +1=(-1)r 210-r ·C r 10(1-x )r ,令r =8,得a 8=4C 810=180.答案:180考点一 二项展开式的通项的应用(多维探究)复习指导:理解二项式定理,会用二项展开式的通项解决一些和项有关的问题. 角度1 求二项展开式的特定项(1)(链接常用结论)(2022·栖霞模拟)⎝ ⎛⎭⎪⎫x -2x 6的展开式中的常数项为( )A .-150 B.150 C.-240D.240(2)在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.【解析】 (1)⎝ ⎛⎭⎪⎫x -2x 6的二项展开式的通项为T k +1=C k 6x 6-k ·⎝ ⎛⎭⎪⎫-2x k =C k 6x6-k·(-2)k·x -k 2=(-2)k C k 6x 6-32k .令6-32k =0,解得k =4,故所求的常数项为T 5=(-2)4·C 46=240.(2)该二项展开式的第k +1项为T k +1=C k 9(2)9-k x k ,当k =0时,第1项为常数项,所以常数项为(2)9=162;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.【答案】 (1)D (2)16 2 5角度2 形如(a +b )m (c +d )n (m ,n ∈N *)的展开式(1)(2020·高考全国卷Ⅰ)⎝ ⎛⎭⎪⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为( )A .5 B.10 C.15D.20(2)(2020·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.【解析】 (1)因为(x +y )5的展开式的第r +1项T r +1=C r 5x 5-r y r,所以(x +y 2x )(x +y )5的展开式中x 3y 3的系数为C 35+C 15=15.故选C.(2)(ax +1)6的展开式中x 2项的系数为C 46a 2,x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25.【答案】 (1)C (2)25角度3 形如(a +b +c )n (n ∈N *)的展开式(1)(x 2-x +1)10的展开式中x 3项的系数为( ) A .-210 B.210 C.30D.-30(2)(2022·河南省重点中学三模)⎝ ⎛⎭⎪⎫1+2x -y 28的展开式中x 2y 2项的系数是( )A .420 B.-420 C.1 680D.-1 680【解析】 (1)(x 2-x +1)10=[x 2-(x -1)]10=C 010(x 2)10-C 110(x 2)9(x -1)+…-C 910x 2(x -1)9+C 1010(x -1)10,所以含x 3项的系数为-C 910C 89+C 1010(-C 710)=-210.(2)⎝⎛⎭⎪⎫1+2x -y 28表示8个因式⎝⎛⎭⎪⎫1+2x -y 2的乘积,故其中有2个因式取2x ,有2个因式取-y2,其余的4个因式都取1,可得x 2y 2项.故展开式中x 2y 2项的系数是C 28×22×C 26⎝ ⎛⎭⎪⎫-122×C 44=420,故选A. 【答案】 (1)A (2)A二项展开式通项的应用策略(1)求二项展开式中的特定项,一般是化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代入通项公式即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.(3)对于三项式问题一般先变形化为二项式再解决.|跟踪训练|1.在⎝⎛⎭⎪⎫x -1x (2x -1)6的展开式中,x 3的系数是________.(用数字作答)解析:由题意得,⎝ ⎛⎭⎪⎫x -1x (2x -1)6的展开式中含x 3的项为x C 46(2x )2(-1)4+⎝ ⎛⎭⎪⎫-1x C 26(2x )4(-1)2=-180x 3,所以展开式中x 3的系数为-180.答案:-1802.⎝⎛⎭⎪⎫3x -123x 10的展开式中所有的有理项为________.解析:二项展开式的通项为T k +1=C k 10⎝ ⎛⎭⎪⎫-12kx 10-2k 3,由题意得10-2k 3∈Z ,且0≤k ≤10,k ∈N .令10-2k 3=r (r ∈Z ),则10-2k =3r ,k =5-32r ,因为k ∈N ,所以r 应为偶数.所以r 可取2,0,-2,即k 可取2,5,8,所以第3项,第6项与第9项为有理项,它们分别为454x 2,-638,45256x -2.答案:454x 2,-638,45256x -23.(1+2x -3x 2)5展开式中x 5的系数为________.解析:(1+2x -3x 2)5=(1-x )5(1+3x )5,所以x 5的系数为C 05C 5535+C 15(-1)C 4534+C 25(-1)2C 3533+C 35(-1)3C 2532+C 45(-1)4C 1531+C 55(-1)5C 0530=92.答案:92考点二 各二项式系数和与各项系数和(综合研析)复习指导:(a +b )n 的展开式的各二项式系数的和等于2n ,二项展开式的各项系数和常用赋值法解决.(1)(2022·广州中学联考)已知二项式⎝⎛⎭⎪⎪⎫2x x -13x n 的展开式的二项式系数和为64,则展开式中的有理项系数和为________.(2)(2022·宣城调研)若(2-x )7=a 0+a 1(1+x )+a 2(1+x )2+…+a 7(1+x )7,则a 0+a 1+a 2+…+a 6的值为________.【解析】 (1)因为二项式⎝⎛⎭⎪⎪⎫2x x -13x n 的展开式的二项式系数和为64,所以2n =64,即n =6,所以展开式的通项为T r +1=C r 6(2x x )6-r ·⎝ ⎛⎭⎪⎪⎫-13x r =C r 626-r (-1)r x 9-116r ,r=0,1,2,3,4,5,6.所以展开式中有理项是r =0或r =6时对应的项,所以展开式中有理项系数和为C 0626(-1)0+C 6620(-1)6=65.(2)令x =0得a 0+a 1+a 2+…+a 7=27=128, 又(2-x )7=[3-(x +1)]7,则a 7(1+x )7=C 77·30·[-(x +1)]7,解得a 7=-1.故a 0+a 1+a 2+…+a 6=128-a 7=128+1=129. 【答案】 (1)65 (2)129赋值法求系数和的应用技巧(1)对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),偶次项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,奇次项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.令x =0,可得a 0=f (0).|跟踪训练|1.在⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数和与二项式系数和之比为64∶1,则x 3的系数为( )A .15 B.45 C.135D.405解析:选 C.由题意知4n 2n =64,得n =6,展开式的通项为T r +1=C r 6x 6-r⎝ ⎛⎭⎪⎫3x r =3r C r 6x 6-3r 2,令6-3r2=3,得r =2,则x 3的系数为32C 26=135.故选C. 2.若(1-x )9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 1|+|a 2|+|a 3|+…+|a 9|=( ) A .1 B.513 C.512D.511解析:选D.令x =0,得a 0=1,令x =-1,得|a 1|+|a 2|+|a 3|+…+|a 9|=[1-(-1)]9-1=29-1=511.考点三 二项展开式中的系数最值问题(综合研析)复习指导:求解此类题的关键:一是方程引入,利用已知二项式系数的最大值,求出参数的值;二是公式应用,即利用二项展开式的通项公式,即可求出指定项或指定项的系数.(1)二项式(3x +13x)n 的展开式中只有第11项的二项式系数最大,则展开式中x 的指数为整数的项的个数为( )A .3B.5C.6D.7(2)(2022·佛山一模)已知(3x +x 2)2n 的展开式的二项式系数和比(3x -1)n 的展开式的二项式系数和大992,则在⎝ ⎛⎭⎪⎫2x -1x 2n 的展开式中,二项式系数最大的项为________,系数的绝对值最大的项为________.【解析】 (1)由题意得n =20, 所以⎝ ⎛⎭⎪⎪⎫3x +13x n 的展开式的通项为 T r +1=C r 20·(3x )20-r ·⎝ ⎛⎭⎪⎪⎫13x r=(3)20-r·C r20·x 20-4r 3,要使x 的指数是整数,需r 是3的倍数, 所以r =0,3,6,9,12,15,18, 所以x 的指数是整数的项共有7项.(2)由题意知,22n -2n =992,即(2n -32)·(2n +31)=0,故2n =32,解得n =5.由二项式系数的性质知,⎝ ⎛⎭⎪⎫2x -1x 10的展开式中第6项的二项式系数最大,故二项式系数最大的项为T 6=C 510(2x )5·⎝ ⎛⎭⎪⎫-1x 5=-8 064.设第k +1项的系数的绝对值最大,则T k +1=C k 10·(2x )10-k ·⎝ ⎛⎭⎪⎫-1x k =(-1)k C k 10·210-k ·x 10-2k,令⎩⎨⎧C k 10·210-k ≥C k -110·210-k +1,C k 10·210-k ≥C k +110·210-k -1, 得⎩⎨⎧C k 10≥2C k -110,2C k 10≥C k +110,即⎩⎨⎧11-k ≥2k ,2(k +1)≥10-k ,解得83≤k ≤113,因为k ∈Z ,所以k =3.故系数的绝对值最大的项是第4项,T 4=-C 310·27·x 4=-15 360x 4.故二项式系数最大的项为-8 064,系数的绝对值最大的项为-15 360x 4. 【答案】 (1)D (2)-8 064 -15 360x 4求解二项展开式中系数的最值策略(1)求二项式系数的最大值,则依据(a +b )n 中n 的奇偶及二项式系数的性质求解. (2)求展开式中项的系数的最大值,由于展开式中项的系数是离散型变量,设展开式各项的系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,因此在系数均为正值的前提下,求展开式中项的系数的最大值只需解不等式组⎩⎨⎧A k ≥A k -1,A k ≥A k +1即得结果.|跟踪训练|1.在⎝⎛⎭⎪⎪⎫x 2-13x n的展开式中,只有第5项的二项式系数最大,则展开式的常数项是( )A .-7 B.7 C.-28D.28解析:选B.因为只有第5项的二项式系数C 4n 最大,所以n2=4,即n =8.⎝⎛⎭⎪⎪⎫x 2-13x 8的展开式的通项公式为T r +1=C r8⎝ ⎛⎭⎪⎫x 28-r ⎝⎛⎭⎪⎪⎫-13x r =(-1)r C r828-r x 8-43r,令8-43r =0,解得r =6,故常数项为T 7=(-1)6C 6822=7.故选B. 2.已知二项式⎝⎛⎭⎪⎫3x -1x n 的展开式中所有项的系数和为512,函数f (r )=C r n ,r ∈[0,n ]且r ∈N ,则函数f (r )取最大值时r 的取值为( )A .4 B.5 C.4或5D.6解析:选C.因为二项式⎝ ⎛⎭⎪⎫3x -1x n 的展开式中所有项的系数和为512,令x =1,得(3-1)n =2n =512⇒n =9, 所以f (r )=C r 9,二项式展开式有10项,则由二项式系数最值性可知第5项和第6项的二项式系数最大, 所以当r =4或5时,f (r )最大.[A 基础达标]1.(2022·广东省高三一轮复习)⎝ ⎛⎭⎪⎫3x +1x 6展开式中的常数项为( )A .90 B.20 C.540D.600解析:选C.由二项式⎝ ⎛⎭⎪⎫3x +1x 6的展开式的通项为T r +1=C r 636-r x 6-r x -r =C r 636-r x 6-2r.当r =3时,可得T 4=C 36×33=540,所以⎝⎛⎭⎪⎫3x +1x 6展开式中的常数项为540.故选C.2.已知()1+x n=a 0+a 1x +a 2x 2+…+a n x n ,若a 0+a 1+a 2+…+a n =16,则自然数n =( )A .6 B.5 C.4D.3解析:选C.因为(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,且a 0+a 1+a 2+…+a n =16,令x =1,则(1+1)n =2n = a 0+a 1+a 2+…+a n =16,所以n =4,故选C.3.已知(1+ax )3+(1-x )5的展开式中含x 3的系数为-2,则a 等于( ) A .2 3 B.2 C.-2D.-1解析:选B.(1+ax )3+(1-x )5的展开式中x 3的系数为C 33a 3+C 35(-1)3=a 3-10=-2,则a 3=8,解得a =2.4.(1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B.16 C.20D.24解析:选A.展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34+2C 14=4+8=12.5.1+(1+x )+(1+x )2+…+(1+x )n 的展开式的各项系数之和为( ) A .2n -1 B.2n -1 C.2n +1-1D.2n解析:选C.令x =1,得1+2+22+ (2)=1×(2n +1-1)2-1=2n +1-1.6.⎝ ⎛⎭⎪⎫x +1x +15的展开式中的常数项为( )A .1 B.21 C.31D.51解析:选D.因为⎝⎛⎭⎪⎫x +1x +15=⎣⎢⎡⎦⎥⎤(x +1)+1x 5=C 05(x +1)5+C 15(x +1)4·1x +C 25(x +1)3·⎝ ⎛⎭⎪⎫1x 2+C 35(x +1)2·⎝ ⎛⎭⎪⎫1x 3+C 45(x +1)1·⎝ ⎛⎭⎪⎫1x 4+C 55⎝ ⎛⎭⎪⎫1x 5. 所以⎝ ⎛⎭⎪⎫x +1x +15展开式中的常数项为C 05·C 55·15+C 15·C 34·13+C 25·C 13·11=51.故选D.7.(多选)⎝⎛⎭⎪⎪⎫x +124x 8展开式中系数最大的项是( ) A .第2项 B.第3项 C .第4项D.第5项解析:选BC.⎝ ⎛⎭⎪⎪⎫x +124x 8的展开式的通项为T r +1=C r 8(x )8-r ·⎝ ⎛⎭⎪⎪⎫124x r=⎝ ⎛⎭⎪⎫12r C r 8x 4-34r,所以其展开式中各项的系数依次为1,4,7,7,358,74,716,116,1256,所以展开式中系数最大的项是第3项和第4项.故选BC.8.(多选)(2022·威海调研)若⎝ ⎛⎭⎪⎫x 2+1ax 6的展开式中x 3的系数是-160,则( )A .a =-12B.所有项系数之和为1C .二项式系数之和为64 D.常数项为-320解析:选ABC.对选项A ,⎝ ⎛⎭⎪⎫x 2+1ax 6的展开式中x 3项为C 36(x 2)3·⎝ ⎛⎭⎪⎫1ax 3,所以C 36·⎝ ⎛⎭⎪⎫1a 3=-160,解得a =-12,故A 正确;由A 知:⎝ ⎛⎭⎪⎫x 2+1ax 6=⎝ ⎛⎭⎪⎫x 2-2x 6,令x =1,所有项系数之和为(1-2)6=1,故B 正确;对选项C ,二项式系数之和为26=64,故C 正确;对选项D ,⎝ ⎛⎭⎪⎫x 2-2x 6的常数项为C 26(x 2)2·⎝ ⎛⎭⎪⎫-2x 4=24C 26=240,故D 错误. 9.(2022·辽宁葫芦岛兴城高级中学模拟)已知⎝ ⎛⎭⎪⎫2x -1x n 的展开式中第2项与第3项的二项式系数之比是2∶5,则x 3的系数为________.解析:⎝ ⎛⎭⎪⎫2x -1x n 的展开式的通项公式为T r +1=C r n ·(2x )n -r·⎝⎛⎭⎪⎫-1x r ,由展开式中第2项与第3项的二项式系数之比是2∶5,可得C 1n ∶C 2n =2∶5,解得n =6,所以T r +1=(-1)r C r 626-r·x 6-32r ,令6-32r =3,解得r =2,所以x 3的系数为C 2626-2(-1)2=240. 答案:24010.S =C 127+C 227+…+C 2727除以9的余数为________.解析:依题意S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1=9×(C 09×98-C 19×97+…+C 89)-2.因为C 09×98-C 19×97+…+C 89是正整数,所以S 被9除的余数为7.答案:711.(2021·高考浙江卷)已知多项式(x -1)3+(x +1)4=x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 1=________;a 2+a 3+a 4=________.解析:(x -1)3展开式的通项T r +1=C r 3x 3-r ·(-1)r ,(x +1)4展开式的通项T k +1=C k 4x4-k,则a 1=C 03+C 14=1+4=5;a 2=C 13(-1)1+C 24=3;a 3=C 23(-1)2+C 34=7;a 4=C 33(-1)3+C 44=0.所以a 2+a 3+a 4=3+7+0=10.答案:5 1012.(2022·山东青岛三模)若(2-x )17=a 0+a 1(1+x )+a 2(1+x )2+…+a 16(1+x )16+a 17(1+x )17,则(1)a 0+a 1+a 2+…+a 16=________; (2)a 1+2a 2+3a 3+…+16a 16=________.解析:令1+x =t ,则已知条件为(3-t )17=a 0+a 1t +a 2t 2+…+a 17t 17.(*)(1)令t =1,可得a 0+a 1+a 2+…+a 17=217,其中a 17=C 1717(-1)17=-1,所以a 0+a 1+a 2+…+a 16=217+1.(2)在(*)两边求导可得-17(3-t )16=a 1+2a 2t +…+16a 16t 15+17a 17t 16,令t =1,可得-17×216=a 1+2a 2+…+16a 16+17a 17,所以-17×216=a 1+2a 2+…+16a 16-17,解得a 1+2a 2+3a 3+…+16a 16=17-17×216.答案:(1)217+1 (2)17-17×216[B 综合应用]13.(多选)已知(2x -m )7=a 0+a 1(1-x )+a 2(1-x )2+…+a 7(1-x )7,若a 0+a 12+a 222+…+a 727=-128,则有( )A .m =2B .a 3=-280C .a 0=-1D .-a 1+2a 2-3a 3+4a 4-5a 5+6a 6-7a 7=14解析:选BCD.令1-x =12,即x =12,可得(2×12-m )7=(1-m )7=a 0+a 12+a 222+…+a 727=-128,解得m =3,故A 错误;令x =1,得a 0=(-1)7=-1,(2x -3)7=[-1-2(1-x )]7,所以a 3=C 37×(-1)4×(-2)3=-280,故B ,C 正确;(2x -3)7=a 0+a 1(1-x )+a 2(1-x )2+…+a 7(1-x )7,等式两边求导得14(2x -3)6=-a 1-2a 2(1-x )-…-7a 7(1-x )6,令x =2得-a 1+2a 2-3a 3+4a 4-5a 5+6a 6-7a 7=14,故D 正确.故选BCD.14.(2022·武汉市高三调研测试)若⎝ ⎛⎭⎪⎫x 4-1x x n 的展开式中含有常数项,则n 的最小值等于( )A .8 B.10 C.11D.12解析:选C.⎝ ⎛⎭⎪⎫x 4-1x x n 的展开式的通项T r +1=C r n (x 4)n -r ⎝ ⎛⎭⎪⎫-1x x r =(-1)r C r n x 4n -112r,当4n -112r =0,即n =118r 时展开式中含有常数项,所以n 的最小值为11.15.设a ∈Z ,且0≤a <13,若512 020+a 能被13整除,则a =( )A .0 B.1 C.11D.12解析:选D.512 020+a =(52-1)2 020+a =C 02 020522 020-C 12 020522 019+…+C 2 0192 020×52×(-1)2 019+C 2 0202 020×(-1)2 020+a .因为52能被13整除,所以只需C 2 0202 020×(-1)2 020+a 能被13整除,即a +1能被13整除,所以a =12.。

专题56 二项式的定理-备战2021年高考数学(理)一轮复习考点通

专题56  二项式的定理-备战2021年高考数学(理)一轮复习考点通

专题56 二项式定理基础知识要夯实1.二项式定理(1)二项式定理:(a +b )n =0n C a n +1n C a n -1b +…+k n C a n -k b k +…+nn C b n (n ∈N *)❶;(2)通项公式:T k +1=kn C a n -k b k ,它表示第k +1项;(3)二项式系数:二项展开式中各项的系数为0n C ,1n C ,…,n n C ❷.2.二项式系数的性质(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .二项式系数与项的系数的区别二项式系数是指0n C ,1n C ,…,nn C ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.如(a +bx )n 的二项展开式中,第k +1项的二项式系数是k n C ,而该项的系数是kn C a n -k b k .当然,在某些二项展开式中,各项的系数与二项式系数是相等的.基本技能要落实一、判断题(对的打“√”,错的打“×”)(1)C r n an -r b r是(a +b )n 的展开式中的第r 项.( ) (2)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( ) (3)二项展开式中,系数最大的项为中间一项或中间两项.( )(4)(a +b )n 某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.( ) 答案:(1)× (2)√ (3)× (4)√ 二、选填题1.二项式(x -2)5展开式中x 的系数为( ) A.5 B.16 C.80D.-80解析:选C 由二项式定理知,其展开式中含x 的项为T 5=45C x (-2)4,故其系数为45C (-2)4=80.2.x⎛ ⎝6的展开式中的常数项为( ) A.-150 B.150 C.-240D.240解析:选D x⎛ ⎝6的二项展开式的通项公式为T k +1=6k C x 6-k ·⎛ ⎝k =6k C x 6-k ·(-2)k·x -2k =(-2)k 6k C x 6-32k .令6-32k =0,解得k =4,故所求的常数项为T 5=(-2)4·16C =240.3.二项式2x ⎫-⎪⎪⎝⎭10的系数是( ) A.152B.-152C.15D.-15解析:选B 22x ⎛⎫- ⎪⎪⎝⎭10的二项展开式的通项公式为T r +1=10rC 2⎛ ⎝⎭10-r ·2x ⎛⎫- ⎪⎝⎭r=(-1)r 22r-1035210rC x-,令5-32r =12,得r =3的系数是(-1)3·2-4·310C =-152. 4.若3x⎛ ⎝n的展开式的所有二项式系数之和为128,则n =________. 解析:由题意,可知2n =128,解得n =7. 答案:75.若(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n =________. 解析:(1+3x )n 的展开式中含x 5的项为5n C (3x )5=5n C 35x 5,展开式中含x 6的项为6n C 36x 6. 由两项的系数相等得5n C ·35=6n C ·36,解得n =7. 答案:7典型例题剖析考点一 二项展开式中特定项或系数问题[全析考法过关][考法全析]考法(一) 求解形如(a +b )n (n ∈N *)的展开式中与特定项相关的量 [例1] (1)(2018·全国卷Ⅲ)22x x ⎛⎫+ ⎪⎝⎭5的展开式中x 4的系数为( ) A.10 B.20 C.40D.80(2)(2019·合肥调研)若(2x -a )5的二项展开式中x 3的系数为720,则a =________. (3)(2019·甘肃检测)已知x⎛ ⎝5的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11,则a =________.[解析] (1) 22x x ⎛⎫+⎪⎝⎭5的展开式的通项公式为T r +1=25C ·(x 2)5-r ·2x ⎛⎫ ⎪⎝⎭r =25C ·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为25C ·22=40.(2)(2x -a )5的展开式的通项公式为T r +1=(-1)r ·5r C ·(2x )5-r ·a r =(-1)r ·5rC ·25-r ·a r ·x 5-r ,令5-r=3,解得r =2,由(-1)2·25C ·25-2·a 2=720,解得a =±3.(3) 22xx ⎛⎫+ ⎪⎝⎭5的展开式的通项公式为T r +1=5r C x 5-r ·r⎛ ⎝=5r C (-a )rx 5-32r .由5-32r =5,得r =0,由5-32r =2,得r =2,所以A =05C ×(-a )0=1,B =25C ×(-a )2=10a 2,则由1+10a 2=11,解得a =±1.[答案] (1)C (2)±3 (3)±1 [解题技法]求形如(a +b )n (n ∈N *)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤 第一步,利用二项式定理写出二项展开式的通项公式T r +1=rn C a n -r b r ,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r ;第三步,把r 代入通项公式中,即可求出T r +1,有时还需要先求n ,再求r ,才能求出T r +1或者其他量.考法(二) 求解形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量[例2] (1)(1)6(1)4的展开式中x 的系数是( ) A.-4 B.-3 C.3D.4(2)(2019·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)法一:(16的展开式的通项为6m C ·(m=6m C (-1)m2m x ,(1)4的展开式的通项为4n C )n=4n C 2n x ,其中m =0,1,2,…,6,n =0,1,2,3,4.令2m +2n=1,得m +n =2,于是(1)6(1+)4的展开式中x 的系数等于06C ·(-1)0·24C +16C ·(-1)1·14C +26C ·(-1)2·04C =-3.法二:(1-)6(1)4=[(1)(1)]4(1-)2=(1-x )4(1-+x ).于是(1-6(1)4的展开式中x 的系数为04C ·1+14C ·(-1)1·1=-3.(2)(ax +1)6的展开式中含x 2项的系数为46C a 2,含x 项的系数为56C a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-46C a 2+56C a =0,因为a 为正实数,所以15a =6,所以a =25. [答案] (1)B (2) 25[解题技法]求形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量的步骤 第一步,根据二项式定理把(a +b )m 与(c +d )n 分别展开,并写出其通项公式;第二步,根据特定项的次数,分析特定项可由(a +b )m 与(c +d )n 的展开式中的哪些项相乘得到; 第三步,把相乘后的项合并即可得到所求特定项或相关量. 考法(三) 求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量 [例3] (1)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A.10 B.20 C.30 D.60(2)将44x x ⎛⎫+- ⎪⎝⎭3展开后,常数项是________. [解析] (1)(x 2+x +y )5的展开式的通项为T r +1=15C (x 2+x )5-r ·y r ,令r =2,则T 3=25C (x 2+x )3y 2,又(x 2+x )3的展开式的通项为T k +1=3k C (x 2)3-k ·x k =3kC x 6-k ,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为2153C C =30.(2)44xx ⎛⎫+- ⎪⎝⎭3=6展开式的通项是66kkkC -⎛⋅ ⎝=(-2)k·6k C x 3-k .令3-k =0,得k =3.所以常数项是36C (-2)3=-160.[解析] (1)C (2)-160 [解题技法]求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量的步骤 第一步,把三项的和a +b +c 看成是(a +b )与c 两项的和; 第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r 相乘得到的;第四步,把相乘后的项合并即可得到所求特定项或相关量. 考点二 二项式系数的性质及各项系数和[师生共研过关][典例精析](1)若n的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )C.4D.或4 (2)若21x x ⎛⎫-⎪⎝⎭n的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解析] (1)令x =1,可得n的展开式中各项系数之和为2n ,即8<2n<32,解得n=4,故第3项的系数最大,所以展开式中系数最大的项是24C 22=.(2) 21x x ⎛⎫- ⎪⎝⎭n 的展开式的通项公式为T r +1=r n C (x 2)n -r ·1rx ⎛⎫- ⎪⎝⎭=rn C (-1)r x 2n -3r ,因为含x 的项为第6项,所以r =5,2n -3r =1,解得n =8, 在(1-3x )n 中,令x =1,得a 0+a 1+…+a 8=(1-3)8=28, 又a 0=1,所以a 1+…+a 8=28-1=255.(3)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5,② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x的奇数次幂项的系数之和为a1+a3+a5=8(a+1),所以8(a+1)=32,解得a=3.[答案](1)A(2)255(3)3[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x,y的一切值都成立.因此,可将x,y设定为一些特殊的值.在使用赋值法时,令x,y等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax+b)n,(ax2+bx+c)m(a,b,c∈R)的式子,求其展开式的各项系数之和,只需令x=1即可.(2)形如(ax+by)n(a,b∈R)的式子,求其展开式各项系数之和,只需令x=y=1即可.2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法若f(x)=a0+a1x+a2x2+…+a n x n,则f(x)的展开式中(1)各项系数之和为f(1).(2)奇数项系数之和为a0+a2+a4+…=(1)(1)2f f+-.(3)偶数项系数之和为a1+a3+a5+…=(1)(1)2f f--. [过关训练]1.(2019·包头模拟)已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|=()A.1B.243C.121D.122解析:选B令x=1,得a5+a4+a3+a2+a1+a0=1,①令x=-1,得-a5+a4-a3+a2-a1+a0=-243,②①+②,得2(a4+a2+a0)=-242,即a4+a2+a0=-121.①-②,得2(a5+a3+a1)=244,即a5+a3+a1=122.所以|a0|+|a1|+…+|a5|=122+121=243.2.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3+…+a9)2=39,则实数m的值为________.解析:令x=0,则(2+m)9=a0+a1+a2+…+a9,令x=-2,则m9=a0-a1+a2-a3+…-a9,又(a0+a2+…+a8)2-(a1+a3+…+a9)2=(a0+a1+a2+…+a9)(a0-a1+a2-a3+…+a8-a9)=39,∴(2+m)9·m9=39,∴m(2+m)=3,∴m =-3或m =1. 答案:-3或1考点三 二项展开式的应用[师生共研过关][典例精析]设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( ) A.0 B.1 C.11D.12[解析] 由于51=52-1,512 018=(52-1)2 018=02018C 522 018-12018C 522 017+…-20172018C 521+1, 又13整除52, 所以只需13整除1+a , 又0≤a <13,a ∈Z , 所以a =12. [答案] D[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a =cr +b ,其中余数b ∈[0,r ),r 是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.[过关训练]1.使得多项式81x 4+108x 3+54x 2+12x +1能被5整除的最小自然数x 为( ) A.1 B.2 C.3D.4解析:选C ∵81x 4+108x 3+54x 2+12x +1=(3x +1)4,∴上式能被5整除的最小自然数为3. 2.1-90110C +902210C -903310C +…+(-1)k 90k 10kC +…+90101010C 除以88的余数为________. 解析:∵1-90C 110C +902210C +…+(-1)k 90k 10kC +…+90101010C =(1-90)10=8910, ∴8910=(88+1)10=8810+110C 889+…+910C 88+1, ∵前10项均能被88整除,∴余数为1. 答案:1达标检测要扎实一、单选题1.(2020·河南省高三二模(理))已知23450123455(1)a a x a x a x a x x x a =++++++,则34a a +的值为( ) A .7 B .8 C .15 D .16【答案】C【解析】由题得5(1)x +的展开式的通项为515r r r T C x -+=令23553,2,10r r a C -=∴=∴==;令14554,1,5r r a C -=∴=∴==所以3410515a a +=+=.故选:C.2.(2020·辽宁省辽宁实验中学高三其他(理))()1311nx x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为14,则正整数n 的值为( ) A .4 B .5C .6D .7【答案】B【解析】11n x ⎛⎫- ⎪⎝⎭展开式的通项公式为()()1111n rrrr r r nr nn T C C x x --+⎛⎫=-=- ⎪⎝⎭,故其常数项为()()111nnnn n T C +=-=-,包含1x -的项为()()111111111n n n n n T C x nx ------+=-=-,所以()1311nx x ⎛⎫+- ⎪⎝⎭展开式的常数项为()()113114n n n --+-=.当n 为奇数时,有3114n -=,解得5n =; 当n 为偶数时,有3114n -+=,解得133n =-(舍) 故正整数n 的值为5.故选:B.3.(2020·山东省高三期末)二项式2()nx x-的展开式中,第3项的二项式系数比第2项的二项式系数大9,则该展开式中的常数项为( )A .160-B .80-C .80D .160【答案】A【解析】由题第3项的二项式系数比第2项的二项式系数大9,即()21219,,2,9,61802n n n n C C n N n n n n *--=∈≥-=--= 解得:6n =,二项式62()x x-的展开式中,通项6162()r r rr T C x x-+=-,当r =3时,取得常数项,3333162()160T C x x+=-=-.故选:A 4.(2019·河北省辛集中学高三月考(理))将二项式6(x +展式式各项重新排列,则其中无理项互不相邻的概率是( ) A .27B .37C .835D .724【答案】A【解析】二项式6(x +展开式通项为:36621662r r r r r rr T C x C x --+==,知当r=0,2,4,6时为有理项,则二项式6(x +展开式中有4项有理项,3项无理项,所以基本事件总数为77A ,无理项互为相邻有4345A A,所以所求概率P=43457727A A A =Ⅲ故选A . 5.(2020·湖北省黄冈中学高三其他(理))已知622a x x ⎛⎫+ ⎪⎝⎭展开式的中间项系数为20,则由曲线13y x=和ay x =围成的封闭图形的面积为( ) A .512B .53C .1D .1312【答案】A【解析】622a x x ⎛⎫+ ⎪⎝⎭展开式的中间项为第4项且第4项为()3332462a T C x x ⎛⎫= ⎪⎝⎭, 因为系数为20,所以336C 202a ⎛⎫⋅= ⎪⎝⎭,解得2a =,由213x x =的0x =或1x =,所以封闭图形的面积为1412333010314135|2x x dx x x ⎛⎫= ⎪⎝⎭⎛⎫-=- ⎪⎝⎭⎰,故选:A .6.(2020·湖南省雅礼中学高三其他(理))如果()3*1nx n x ⎛⎫-∈ ⎪⎝⎭N 的展开式中存在正的常数项,则n 的最小值为( )A .2B .4C .8D .28【答案】C【解析】二项式()3*1n x n x ⎛⎫-∈ ⎪⎝⎭N 的展开式通项为()()334111kk n k k k n kk n n T C x C x x --+⎛⎫=-=- ⎪⎝⎭, 令340n k -=,则43n k =,由于展开式中存在正的常数项,则k 为偶数, 设()6k t t N*=∈,8n t ∴=,当1t =时,n 取最小值8.故选:C.7.(2020·河北省衡水中学高三其他(理))在()8311x x ⎛- ⎝的展开式中,含21x 项的系数等于( ) A .98 B .42 C .98- D .42-【答案】D【解析】81x ⎛- ⎝二项展开式的通项公式38821881()((1)rr r r r r r T C C xx --+==-, 令3852r-=-,得2r ,则含5x -项的系数为28C , 令3822r-=-,得4r =,则含2x -项的系数为48C , 故含21x与项的系数等于248842C C -=-.故选:D. 8.(2020·湖南省湖南师大附中高三三模(理))()6321x x ⎫-⎪⎭的展开式中的常数项为( ) A .-60 B .240C .-80D .180【答案】D【解析】由题意,62x⎫⎪⎭中常数项为2426260Cx⎛⎫=⎪⎝⎭,62x⎫⎪⎭中31x项为4246321240Cx x⎛⎫=⎪⎝⎭,所以()6321xx⎫-⎪⎭的展开式中的常数项为:3x⨯31240160180x-⨯=.故选:D9.(2020·湖南省长郡中学高三其他(理))(101-的二项展开式中,x的系数与4x的系数之差为()A.220-B.90-C.90D.0【答案】D【解析】∵(101的二项展开式中,通项公式为()21101rrrrT C x+=⋅-,故x的系数与4x的系数之差为281010C C-=,故选:D.10.(2020·浙江省高三其他)多项式396xx⎛⎫+-⎪⎝⎭的常数项是()A.216B.216-C.540D.540-【答案】D【解析】因为332669xx⎡⎤==⎢⎥⎛⎫+-⎪⎝⎭⎢⎥⎣⎦所以()631663rr rr r rrT C C x--+⎛==-⎝,令30r-=,得3r=,所以常数项为:()3363540C-=-.故选:D.11.(2020·黑龙江省哈尔滨市第六中学校高三三模(理))在12202011xx⎛⎫++⎪⎝⎭的展开式中, 2x项的系数为( )A.10B.25C.35D.66【答案】D【解析】12202011x x ⎛⎫++ ⎪⎝⎭的展开式考虑12个202011x x ⎛⎫++ ⎪⎝⎭, 每个括号内各取202011,,x x 之一进行乘积即可得到展开式的每一项,要得到2x 项,就是在12个202011x x ⎛⎫++⎪⎝⎭中,两个括号取x ,10个括号取1,所以其系数为21266C =.故选:D12.(2020·山东省高三其他)若nx⎛+ ⎝的展开式中各项系数之和为256,则展开式中x 的系数是( ) A .54 B .81C .96D .106【答案】A【解析】因为nx⎛+ ⎝的展开式中各项系数之和为256,所以8(213)256n +==,解得4n =,因此4x⎛+ ⎝的展开式的通项是432442214433r r r r r r r r T C x x C x -----+==, 由3212r -=得2r ,所以,展开式中x 的系数为224354C ⨯=.故选:A.二、填空题13.(2020·河南省高三三模(理))(3x ﹣2x)4的展开式中的常数项为_____. 【答案】216【解析】44421442(3)()3(2)---+=⋅⋅-=⋅⋅-⋅rrr r r r r r T C x C x x令420r -=,解得2r常数项为2422343(2)=216-=⋅⋅-T C故答案为:21614.(2020·嘉祥县第一中学高三其他)已知()()7210ax a ->的展开式中第6项的系数为-189,则展开式中各项的系数和为______. 【答案】128【解析】由题意,通项为:7777177()(1)(1)k k k k k k kk T C ax a C x ----+=-=-, 由于()()7210ax a ->的展开式中第6项的系数为-189,则第六项系数为:57527(1)189a C --=-,解得:3a =, 故该二项式为27(31)x -,令1x =得展开式各项系数的和为:72128=. 故答案为:128.15.(2020·河南省高三其他(理))522a x x ⎛⎫- ⎪⎝⎭的展开式中,含x 项的系数为40,则a =_________.【答案】1【解析】522a x x ⎛⎫- ⎪⎝⎭的展开式中通项公式:()()5253515522 rrrr r r r r a T x a x x C C ---+⎛⎫=-=- ⎪⎝⎭ ,令351r -=,解得2r.∵含x 项的系数是40,∴()2325240C a -=, 解得1a = .故答案为:1.16.(2020·河南省高三二模(理))在2(1)nx x⎛++ ⎝的展开式中,各项系数的和为512,则2x 项的系数是___________.(用数字作答) 【答案】28【解析】因为2(1)nx x⎛++ ⎝的展开式中,各项系数的和为512,所以令1x =,得()(11)15112n++=, 即:1922n +=, 解得8n =,所以原式为:82(1)x x⎛++ ⎝,所以82x⎛+ ⎝展开式的通项为()516821882rr r r r r x xT C C -+-==,当51612r -=或51622r -=,符合题意, 解得6r =或285r =(舍去),所以2x 项的系数为:2828C =.故答案为:28 三、解答题17.(2019·山东省高三月考)设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,展开式21()m x y ++的二项式系数的最大值为b Ⅲa 与b 满足137a b =(1)求m 的值; (2)求2()()m x y x y +-+的展开式中27x y 的系数。

备战高考数学复习考点知识与题型讲解29---同角三角函数的基本关系与诱导公式

备战高考数学复习考点知识与题型讲解29---同角三角函数的基本关系与诱导公式

备战高考数学复习考点知识与题型讲解第29讲同角三角函数的基本关系与诱导公式考向预测核心素养考查利用同角三角函数的基本关系、诱导公式解决条件求值问题,常与三角恒等变换相结合起到化简三角函数关系的作用,强调利用三角公式进行恒等变换的技能以及基本的运算能力.数学运算、逻辑推理一、知识梳理1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:tan α=sin αcos α⎝⎛⎭⎪⎫其中α≠kπ+π2,k∈Z.2.三角函数的诱导公式组数一二三四五六角α+2kπ(k∈Z)π+α-απ-απ2-απ2+α正弦sin α-sinα-sinαsinαcosαcosα余弦cos α-cosαcosα-cosαsinα-sinα正切tan αtanα-tanα-tanα常用结论1.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.2.同角三角函数的基本关系式的几种变形(1)sin2α=1-cos2α=(1+cos α)(1-cos α);cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α.(2)sin α=tan αcos α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .(3)sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1; cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1.二、教材衍化1.(人A 必修第一册P 185习题5.2T 6(2)改编)已知α是第二象限角,sin α=513,则cos α=( )A .-1213B.-513C.513D.213解析:选A.因为α是第二象限角,所以cos α<0,又sin 2α+cos 2α=1,所以cos α=-1-sin 2α=-1213. 2.(人A 必修第一册P 195习题5.3T 8改编)已知sin ⎝ ⎛⎭⎪⎫π3-α=12,则cos ⎝ ⎛⎭⎪⎫π6+α=________;sin ⎝ ⎛⎭⎪⎫23π+α=________. 解析:因为⎝ ⎛⎭⎪⎫π3-α+⎝ ⎛⎭⎪⎫π6+α=π2,所以cos ⎝ ⎛⎭⎪⎫π6+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π3-α=12. sin ⎝ ⎛⎭⎪⎫23π+α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫23π+α=sin ⎝ ⎛⎭⎪⎫π3-α=12. 答案:12123.(人A 必修第一册P 194练习T 3(1)改编)化简cos ⎝⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫52π+α·cos (2π-α)的结果为________.解析:原式=sin αcos α·cos α=sin α.答案:sin α一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)对任意的角α,β,都有sin 2α+cos 2β=1.( ) (2)若α∈R ,则tan α=sin αcos α恒成立.( ) (3)sin (π+α)=-sin α成立的条件是α为锐角.( ) (4)若cos(n π-θ)=13(n ∈Z ),则cos θ=13.( )答案:(1)× (2)× (3)× (4)× 二、易错纠偏1.(多选)(应用平方关系致误)已知cos (π+α)=23,则tan α=( )A.52B.255 C.-52D.-255解析:选AC.因为cos (π+α)=23,所以cos α=-23,则α为第二或第三象限角,所以sin α=±1-cos 2α=±53.所以tan α=sin αcos α=±53-23=∓52.2.(忽视诱导公式符号致误)已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2} B.{-1,1}C .{2,-2}D.{1,-1,0,2,-2}解析:选C.当k 为偶数时,A =sin αsin α+cos αcos α=2; 当k 为奇数时,A =-sin αsin α-cos αcos α=-2.3.(忽视角的范围致误)已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为________.解析:因为sin θ+cos θ=43,所以sin θcos θ=718.又因为(sin θ-cos θ)2=1-2sin θcos θ=29,θ∈⎝⎛⎭⎪⎫0,π4,所以sin θ-cos θ=-23. 答案:-23考点一 同角三角函数的基本关系(自主练透)复习指导:理解同角三角函数的基本关系:sin 2α+cos 2α=1,sin αcos α=tan α(其中α≠k π+π2,k ∈Z ).1.已知α是第四象限角,tan α=-815,则sin α=( )A.1517B.-1517C.817D.-817 解析:选D.因为tan α=-815,所以sin αcos α=-815, 所以cos α=-158sin α,代入sin 2α+cos 2α=1,得sin 2α=64289, 又α是第四象限角,所以sin α=-817. 2.(多选)(2022·湛江二十一中9月月考)已知sin α+3cos α3cos α-sin α=5,下列计算结果正确的是( )A .tan α=12B.tan α=2C .cos 2α+sin αcos α=35 D.2sin 2α-cos 2α=65解析:选BC.由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,解得tan α=2,故A 错误,B 正确;cos 2α+sin αcos α=cos 2α+sin αcos αsin 2α+cos 2α=1+tan αtan 2α+1=1+24+1=35,故C 正确;2sin 2α-cos 2α=2sin 2α-cos 2αsin 2α+cos 2α=2tan 2α-1tan 2α+1=75,故D 错误.3.已知π2<α<π,化简:cos α1-cos 2α+sin α1-sin 2α1-cos 2α=________. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以原式=cos αsin α-sin αcos αsin 2α=cos αsin α-cos αsin α=0.答案:04.已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为________.解析:由tan α=-13,得sin α=-13cos α,且sin α>0,cos α<0,将其代入sin 2α+cos 2α=1,得109cos 2α=1,所以cos α=-31010,sin α=1010, 故sin α+cos α=-105.答案:-105同角三角函数的基本关系的应用策略(1)利用sin 2α+cos 2α=1可实现α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)由一个角的任意一个三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论.考点二 诱导公式的应用(综合研析)复习指导:借助单位圆中的三角函数线推导出诱导公式⎝ ⎛⎭⎪⎫π2±α、π±α的正弦、余弦、正切. (1)在平面直角坐标系xOy 中,角α的终边经过点P (3,4),则sin ⎝⎛⎭⎪⎫α-2 021π2=( )A .-45B.-35C.35D.45(2)(2022·江西临川九校联考)已知α∈(0,π),且cos α=-1517,则sin ⎝ ⎛⎭⎪⎫π2+α·tan (π+α)=( ) A .-1517B.1517C.-817 D.817(3)已知角θ的顶点在坐标原点,始边与x 轴非负半轴重合,终边在直线3x -y =0上,则sin ⎝ ⎛⎭⎪⎫3π2+θ+2cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin (π-θ)=________.【解析】 (1)由题意知sin α=45,cos α=35,所以sin ⎝ ⎛⎭⎪⎫α-2 021π2=sin ⎝⎛⎭⎪⎫α-π2=-cos α=-35. (2)sin ⎝ ⎛⎭⎪⎫π2+α·tan(π+α)=cos α·tan α=sin α,因为α∈(0,π),且cos α=-1517,所以sin α=1-cos 2α=817,即sin ⎝ ⎛⎭⎪⎫π2+α·tan (π+α)=817 . (3)由题可知tan θ=3,原式=-cos θ-2cos θcos θ-sin θ=-31-tan θ=32.【答案】 (1)B (2)D (3)32(1)诱导公式用法的一般思路①化负为正,化大为小,化到锐角为止; ②角中含有加减π2的整数倍时,用公式去掉π2的整数倍. (2)常见的互余和互补的角 ①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等; ②常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等. |跟踪训练|1.已知cos α=13,且-π2<α<0,则cos (-α-π)sin (2π+α) tan (2π-α)sin ⎝ ⎛⎭⎪⎫3π2-αcos ⎝ ⎛⎭⎪⎫π2+α=________.解析:因为cos α=13,且-π2<α<0,所以sin α=-1-⎝ ⎛⎭⎪⎫132=-223,所以原式=-cos αsin α(-tan α)-cos α(-sin α)=tan α=sin αcos α=-2 2.答案:-2 22.(2022·江西上饶模拟)已知sin ⎝ ⎛⎭⎪⎫α-π12=13,则cos ⎝ ⎛⎭⎪⎫α+17π12的值为________.解析:由sin ⎝⎛⎭⎪⎫α-π12=13,得cos ⎝ ⎛⎭⎪⎫α+17π12=cos ⎝ ⎛⎭⎪⎫α+3π2-π12=sin ⎝ ⎛⎭⎪⎫α-π12=13. 答案:13考点三 同角三角函数的基本关系和诱导公式的综合应用(思维发散)复习指导:利用同角三角函数的基本关系和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.(1)(2022·聊城模拟)已知α为锐角,且2tan (π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan (π+α)+6sin (π+β)-1=0,则sin α的值是( )A.355B.377C.31010D.13(2)已知-π<x <0,sin (π+x )-cos x =-15.求sin 2x +2sin 2x1-tan x 的值.【解】 (1)选C.由已知得⎩⎨⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,所以sin α=3cos α,代入sin 2α+cos 2α=1, 化简得sin 2α=910,则sin α=31010(α为锐角). (2)由已知,得sin x +cos x =15,两边平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425. 因为(sin x -cos x )2=1-2sin x cos x =4925, 由-π<x <0知,sin x <0, 又2sin x cos x =-2425<0, 所以cos x >0,所以sin x -cos x <0, 故sin x -cos x =-75.sin 2x +2sin 2x 1-tan x =2sin x (cos x +sin x )1-sin xcos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.本例(2)中若将条件“-π<x <0”改为“0<x <π”,求sin x -cos x 的值. 解:若0<x <π,又2sin x cos x =-2425,所以sin x >0,cos x <0,所以sin x -cos x >0,故sin x -cos x =75.求解诱导公式与同角关系综合问题的基本思路和化简要求基本 思路 ①分析结构特点,选择恰当的公式; ②利用公式化成单角三角函数; ③整理得最简形式. 化简 要求①化简过程是恒等变换;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.|跟踪训练|1.(2022·潍坊调研)已知3sin ⎝ ⎛⎭⎪⎫33π14+α=-5cos ⎝ ⎛⎭⎪⎫5π14+α,则tan ⎝ ⎛⎭⎪⎫5π14+α=( )A .-53B.-35C.35D.53解析:选A.由3sin ⎝ ⎛⎭⎪⎫33π14+α=-5cos ⎝ ⎛⎭⎪⎫5π14+α, 得sin ⎝⎛⎭⎪⎫5π14+α=-53cos ⎝ ⎛⎭⎪⎫5π14+α, 所以tan ⎝ ⎛⎭⎪⎫5π14+α=sin ⎝⎛⎭⎪⎫5π14+αcos ⎝ ⎛⎭⎪⎫5π14+α=-53cos ⎝ ⎛⎭⎪⎫5π14+αcos ⎝ ⎛⎭⎪⎫5π14+α=-53.2.已知函数f (x )=a sin (πx +α)+b cos (πx +β),且f (4)=3,则f (2 023)的值为________.解析:由题意得f (4)=a sin (4π+α)+b cos (4π+β) =a sin α+b cos β=3,所以f (2 023)=a sin (2 023π+α)+b cos (2 023π+β) =a sin(π+α)+b cos (π+β) =-a sin α-b cos β=-3. 答案:-3[A 基础达标]1.sin 1 050°=( ) A.12B.-12C.32D.-32解析:选B.sin 1 050°=sin (3×360°-30°)=-sin 30°=-12.2.(2022·河北冀州中学期末)若sin ⎝ ⎛⎭⎪⎫5π2+α=15,则cos (π+α)=( ) A .-25B.-15C.15D.25解析:选B.因为sin ⎝⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫2π+π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=15, 所以cos (π+α)=-cos α=-15.3.已知tan θ=2,则sin ⎝ ⎛⎭⎪⎫π2+θ-cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin (2π+θ)=( )A .2 B.-2 C.0D.23解析:选B.sin ⎝ ⎛⎭⎪⎫π2+θ-cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin (2π+θ)=cos θ+cos θcos θ-sin θ=21-tan θ=21-2=-2.4.(2022·天津西青区模拟)已知sin α+cos α=-2,则tan α+1tan α等于( )A .2 B.12 C.-2D.-12解析:选A.由已知得1+2sin αcos α=2, 所以sin αcos α=12,所以tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=112=2. 5.(多选)在平面直角坐标系中,若角α的终边与单位圆交于点P ⎝ ⎛⎭⎪⎫45,n (n >0),将角α的终边按逆时针方向旋转π2后得到角β的终边,记角β的终边与单位圆的交点为Q ,则下列结论正确的为( )A .tan α=34B.sin β=45C .tan β=43D.Q 的坐标为⎝ ⎛⎭⎪⎫-35,45解析:选ABD.由题意知cos α=45,角α的终边在第一象限,则n =sin α=1-cos 2α=35,所以tan α=sin αcos α=34,A 正确.由题意知β=α+π2,所以cos β=cos ⎝ ⎛⎭⎪⎫α+π2=-sin α=-35,sin β=sin ⎝ ⎛⎭⎪⎫α+π2=cos α=45, tan β=sin βcos β=-43,即Q 点的坐标为⎝ ⎛⎭⎪⎫-35,45,所以可得B ,D 正确,C 错误. 6.(多选)在△ABC 中,下列结论正确的是( ) A .sin(A +B )=sin C B .sinB +C2=cos A2C .tan(A +B )=-tan C ⎝ ⎛⎭⎪⎫C ≠π2D .cos(A +B )=cos C解析:选ABC.在△ABC 中,有A +B +C =π, 则sin(A +B )=sin (π-C )=sin C ,A 正确. sinB +C2=sin ⎝ ⎛⎭⎪⎫π2-A 2=cos A 2,B 正确. tan(A +B )=tan (π-C )=-tan C ⎝⎛⎭⎪⎫C ≠π2,C 正确. cos(A +B )=cos (π-C )=-cos C ,D 错误.7.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析:sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225. 因为0<α<π4,所以0<sin α<cos α. 又因为sin 2α+cos 2α=1,所以sin α=35,cos α=45.答案:35458.化简1-2sin 40°cos 40°cos 40°-1-sin 250°=________.解析:原式=sin 240°+cos 240°-2sin 40°cos 40°cos 40°-cos 50°=|sin 40°-cos 40°|sin 50°-sin 40° =|sin 40°-sin 50°|sin 50°-sin 40° =sin 50°-sin 40°sin 50°-sin 40° =1. 答案:19.已知α为第三象限角,f (α)=sin ⎝ ⎛⎭⎪⎫α-π2·cos ⎝⎛⎭⎪⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos ⎝⎛⎭⎪⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α.(2)因为cos ⎝⎛⎭⎪⎫α-3π2=15,所以-sin α=15,从而sin α=-15.又α为第三象限角,所以cos α=-1-sin 2α=-265,所以f (α)=-cos α=265. 10.已知-π2<α<0,且函数f (α)=cos ⎝⎛⎭⎪⎫3π2+α-sin α·1+cos α1-cos α-1.(1)化简f (α);(2)若f (α)=15,求sin αcos α和sin α-cos α的值.解:(1)f (α)=sin α-sin α·(1+cos α)21-cos 2α-1=sin α+sin α·1+cos αsin α-1=sin α+cos α.(2)由f (α)=sin α+cos α=15,平方可得sin 2α+2sin α·cos α+cos 2α=125,即2sin α·cos α=-2425. 所以sin αcos α=-1225. 又-π2<α<0,所以sin α<0,cos α>0,所以sin α-cos α<0,因为(sin α-cos α)2=1-2sin α·cos α=4925,所以sin α-cos α=-75. [B 综合应用]11.已知sin (π+θ)=-3cos (2π-θ),|θ|<π2,则θ=( ) A .-π6B.-π3C.π6D.π3解析:选D.因为sin (π+θ)=-3cos (2π-θ), 所以-sin θ=-3cos θ, 所以tan θ=3,因为|θ|<π2,所以θ=π3. 12.(2022·南阳第一中学高三月考)已知tan(α+β)=-1,tan(α-β)=12,则sin 2αsin 2β的值为( )A.13B.-13C.3D.-3解析:选A.因为tan(α+β)=-1,tan(α-β)=12,sin 2αsin 2β=sin[(α+β)+(α-β)]sin[(α+β)-(α-β)]=sin (α+β)cos (α-β)+cos (α+β)sin (α-β)sin (α+β)cos (α-β)-cos (α+β)sin (α-β) =tan (α+β)+tan (α-β)tan (α+β)-tan (α-β)=-1+12-1-12=13. 13.(2022·河北六校联考)若sin α是方程5x 2-7x -6=0的根,则sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝⎛⎭⎪⎫3π2-αtan 2(2π-α)cos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin (π+α)=( )A.35B.53C.45D.54解析:选B.由题解得方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,则sin α=-35.原式=cos α(-cos α)tan 2αsin α(-sin α)(-sin α)=-1sin α=53.14.(2022·杭州新东方高三数学考试)已知cos ⎝ ⎛⎭⎪⎫π6-α=33,则cos ⎝⎛⎭⎪⎫5π6+α-sin ⎝⎛⎭⎪⎫α+4π3的值为________.解析:因为cos ⎝ ⎛⎭⎪⎫π6-α=33, 所以cos ⎝ ⎛⎭⎪⎫5π6+α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α =-cos ⎝ ⎛⎭⎪⎫π6-α=-33,sin ⎝⎛⎭⎪⎫α+4π3=-sin ⎝ ⎛⎭⎪⎫α+π3=-sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-α =-cos ⎝ ⎛⎭⎪⎫π6-α=-33,所以cos ⎝⎛⎭⎪⎫5π6+α-sin ⎝ ⎛⎭⎪⎫α+4π3=-33-⎝ ⎛⎭⎪⎫-33=0. 答案:0[C 素养提升]15.若k ∈Z 时,sin (k π-α)·cos (k π+α)sin[(k +1)π+α]·cos[(k +1)π+α]的值为________.解析:当k 为奇数时,原式=sin α·(-cos α)sin α·cos α=-1;当k 为偶数时,原式=-sin α·cos α-sin α·(-cos α)=-1.答案:-116.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈()0,π使等式sin (3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos (π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在角α,β满足条件.由已知条件可得⎩⎪⎨⎪⎧sin α=2sin β,①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2. 所以cos 2α=12,所以cos α=±22.因为α∈⎝ ⎛⎭⎪⎫-π2,π2,所以α=±π4.当α=π4时,由②式知cos β=32, 又β∈(0,π),所以β=π6,此时①式成立; 当α=-π4时,由②式知cos β=32,又β∈(0,π), 所以β=π6,此时①式不成立,故舍去. 所以存在α=π4,β=π6满足条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战高考---高考数学常用公式精选汇总 一、函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。

注:减一个真子集,减一个空集二次函数c bx ax y ++=2的图象的对称轴方程是a bx 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac ab 4422, 二、 三角函数1、 以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tan α=xy ,ctan α=y x ,sec α=xr,csc α=y r 。

提斜)sin(cos sin 22ϕθθθ++=+b a b a (abtg =ϕ) 2、同角三角函数的关系中,平方关系是:1cos sin 22=+αα,, 倒数关系是:1cot tan =⋅αα, 相除关系是:αααcos sin tan =, 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。

如:=-)23sin(απαcos -,)215cot(απ-=αtan ,=-)3tan(απαtan -。

4、 函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是Tf 1=,相位是ϕω+x ,初相是ϕ; 5、 三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是 []πππ+k k 22,)(Z k ∈,6、=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos μ=±)tan(βαβαβαtan tan 1tan tan ⋅±μ7、二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos -=1cos 22-α=α2sin 21- tan2α=αα2tan 1tan 2- 8、22cos 1sin 2αα-=22cos 1cos 2αα+=。

910、正弦定理是(其中R 表示三角形的外接圆半径):R CB A 2sin sin sin === S ⊿=21底*高=21ab C sin =21bc A sin =21ac B sin 11、由余弦定理第一形式,2b =B ac c a cos 222-+由余弦定理第二形式,cosB=acb c a 2222-+12、在△ABC 中,B A B A sin sin <⇔<,… 13、在△ABC 中:-tanC B)+tan(A -cosC B)+cos(A sinC =B)+sin(A ==三、不等式均值定理:正数a ,b 则ab b a 2≥+四、 数列1、等差数列的通项公式是d n a a n )1(1-+=, 2)(1n n a a n S +=2、等比数列的通项公式是11-=n n q a a ,前n 项和公式是:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn3、若m 、n 、p 、q ∈N ,且q p n m +=+,那么: 当数列{}n a 是等差数列时,有q p n m a a a a +=+; 当数列{}n a 是等比数列时,有q p n m a a a a ⋅=⋅。

五、 排列组合1、 加法原理、乘法原理各适用于什么情形?有什么特点? 加法分类,类类加;乘法分步,步步乘。

2、排列数公式是:m n A =)1()1(+--m n n n Λ=!!)(m n n -;组合数公式是:m n C =!m A mn 组合数性质:mn C =mn nC - m n C +1-m n C =mn C 1+六、解析几何1、 A B x x AB -=2、 数轴上两点间距离公式:A B x x AB -=3、 直角坐标平面内的两点间距离公式:22122121)()(y y x x P P -+-=4、 若点P 分有向线段21P P 成定比λ,则λ=21PP PP 5、 若点),(),(),(222111y x P y x P y x P ,,,点P 分有向线段21P P 成定比λ,则: x =λλ++121x x y =λλ++121y y若),(),(),(332211y x C y x B y x A ,,,则△ABC的重心G的坐标是⎪⎭⎫ ⎝⎛++++33321321y y y x x x ,。

6、 求直线斜率的定义式为k=αtan ,两点式为k=1212x x y y --。

7、直线方程的几种形式:点斜式:)(00x x k y y -=-, 斜截式:b kx y += 两点式:121121x x x x y y y y --=--, 截距式:1=+bya x一般式:0=++C By Ax直线222111b x k y l b x k y l +=+=:,:,则从直线1l 到直线2l 的角θ满足:21121tan k k k k +-=θ直线1l 与2l 的夹角θ满足:21121tan k k k k +-=θ8、 点),(00y x P 到直线0=++C By Ax l :的距离:2200BA CBy Ax d +++=10、两条平行直线002211=++=++C By Ax l C By Ax l :,:距离是2221BA C C d +-=11、圆的标准方程是:222)()(r b y a x =-+-圆的一般方程是:)04(02222>-+=++++F E D F Ey Dx y x12、圆),(00222y x P r y x 的以=+为切点的切线方程是200r y y x x =+此点在曲线上14、研究圆与直线的位置关系最常用的方法有两种,即:①判别式法:Δ>0,Δ=0,Δ<0,等价于直线与圆相交、相切、相离;②考查圆心到直线的距离与半径的大小关系:距离大于半径、等于半径、小于半径,等价于直线与圆相离、相切、相交。

15、抛物线标准方程的四种形式是:,,px y px y 2222-==。

,py x py x 2222-==16、抛物线px y 22=的焦点坐标是:⎪⎭⎫⎝⎛02,p ,准线方程是:2p x -=。

过该抛物线的焦点且垂直于抛物线对称轴的弦(称为通径)的长是:p 2。

17、椭圆标准方程的两种形式是:12222=+b y a x 和12222=+bx a y )0(>>b a 。

18、椭圆12222=+by a x )0(>>b a 的焦点坐标是)0(,c ±,准线方程是c a x 2±=,离心率是ac e =,其中222b a c -=。

19、双曲线标准方程的两种形式是:12222=-b y a x 和12222=-b x a y )00(>>b a ,。

20、双曲线12222=-by a x 的焦点坐标是)0(,c ±,准线方程是c a x 2±=,离心率是a ce =, 渐近线方程是02222=-by a x 。

其中222b a c +=。

21、与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222by a x )0(≠λ。

22、若直线b kx y +=与圆锥曲线交于两点A(x 1,y 1),B(x 2,y 2),则弦长为2212))(1(x x k AB -+=;七、参数方程1、圆心在点)(b a C ,,半径为r 的圆的参数方程是:⎩⎨⎧+=+=)(sin cos 是参数αααr b y r a x 。

2、横椭圆的参数方程是:⎩⎨⎧==)(sin cos 是参数αααb y a x八、简易逻辑1. 可以判断真假的语句叫做命题.2.3. 逻辑连接词有“或”、“且”和“非”.4.5.6. 命题的四种形式及其相互关系原命题与逆否命题同真同假;逆命题与否命题同真同假.九、 平面向量1.运算性质:()()a a a cb ac b a a b b a =+=+++=+++=+00,, 2.坐标运算:设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.3.实数与向量的积的运算律:()()→→→→→→→→→+=⎪⎭⎫⎝⎛++=+=⎪⎭⎫ ⎝⎛b a b a a a a a a λλλμλμλλμμλ,, 设()y x a ,=→,则λ()()y x y x a λλλ,,==→,4.平面向量的数量积:定义:()001800cos ≤≤⋅=⋅→→→→θθb a b a 00=⋅→→a .注意向量夹角可为钝角运算律:⎪⎭⎫⎝⎛⋅=⎪⎭⎫ ⎝⎛⋅=⋅⎪⎭⎫ ⎝⎛⋅=⋅→→→→→→→→→→b a b a b a a b b a λλλ,→→→→→→→⋅+⋅=⋅⎪⎭⎫ ⎝⎛+c b c a c b a坐标运算:设()()2211,,,y x b y x a ==→→,则2121y y x x b a +=⋅→→5.重要定理、公式:(1) 平面向量的基本定理如果→1e 和→2e 是同一平面内的两个不共线向量 ,那么对该平面内的任一向量→a ,有且只有一对实数 21,λλ ,使→→→+=2211e e a λλ (2) 两个向量平行的充要条件→→→→=⇔b a b a λ// )(R ∈λ ⇔→→b a // 01221=-y x y x(3) 两个非零向量垂直的充要条件0=⋅⇔⊥→→→→b a b a 02121=+⇔⊥→→y y x x b a(4) 线段的定比分点坐标公式设P (x ,y ) ,P 1(x 1,y 1) ,P 2(x 2,y 2) ,且→→=21PP P P λ ,则⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x 中点坐标公式⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x(5) 平移公式如果点 P (x ,y )按向量()k h a ,=→平移至P ′(x ′,y ′),则⎪⎩⎪⎨⎧+=+=.,''k y y h x x 新=旧+旧十、 概率(1)若事件A 、B 为互斥事件,则P (A+B )=P (A )+P (B )(2)若事件A 、B 为相互独立事件,则P (A ·B )=P (A )·P (B )(3)若事件A 、B 为对立事件,则()()A P A p -=1 (4)如果在一次试验中某事件发生的概率是p,那么在n 次独立重复试验中这个事恰好发生K 次的概率 ()()kn kk n n p p C K P --=1十一、文科导数(1)函数()x f y =在点0x 处的导数的几何意义,就是曲线()x f y =在点P (0x ,f (0x ))处的切线的斜率.(2)几个重要函数的导数①0'=C ,(C 为常数)②()()Q n nx x n n ∈=-1'(3)导数应用①使()x f'>0的区间为增区间,使()x f '<0的区间为减区间.②函数...()x f 求极值的步骤: ⅰ.求导数()x f 'ⅱ.求方程()x f'=0的根n x x x ,,,21Λⅲ.研究单调性判断极大或极小值 ③闭区间求最值ⅰ. 求极值ⅱ.求端点函数值,比大小。

相关文档
最新文档