银州区第一高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

银州区第一高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
A .
B .
C .
D .
2. 直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为( )
A .
B .
C .
D .
3. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8
C .6
D .4
4. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin
2
,则该数列的前10项和为( )
A .89
B .76
C .77
D .35
5. 如果双曲线经过点P (2,),且它的一条渐近线方程为y=x ,那么该双曲线的方程是( )
A .x 2﹣
=1 B .

=1 C .

=1 D .

=1
6. 若偶函数y=f (x ),x ∈R ,满足f (x+2)=﹣f (x ),且x ∈[0,2]时,f (x )=1﹣x ,则方程f (x )=log 8|x|在[﹣10,10]内的根的个数为( ) A .12
B .10
C .9
D .8
7. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )
A .96
B .48
C .24
D .0
8. 求值:
=( )
A .tan 38°
B .
C .
D .﹣
9. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当
]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则
实数的取值范围是( )111] A .)2
2,
0( B .)33,0( C .)55,0( D .)66,0(
10.向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )
A .
B .
C .
D .
11.若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )
A .06=--y x
B .06=++y x
C .06=+-y x
D .06=-+y x 12.已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆2
2
5x y +=上,则
|2|a b +=( )
A B . C . D .二、填空题
13.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 .
14.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,
()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是__________.
15.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 . 16.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .
17.已知点M(x,y)满足,当a>0,b>0时,若ax+by的最大值为12,则+的最小值是.
18.若关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,则
k=.
三、解答题
19.在中,,,.
(1)求的值;
(2)求的值。

20.已知椭圆:,离心率为,焦点F1(0,﹣c),F2(0,c)过F1的直线交椭圆
于M,N两点,且△F2MN的周长为4.
(Ⅰ)求椭圆方程;
(Ⅱ)直线l与y轴交于点P(0,m)(m≠0),与椭圆C交于相异两点A,B且.若,求m的取值范围.
21.已知函数f (x )=|2x+1|,g (x )=|x|+a (Ⅰ)当a=0时,解不等式f (x )≥g (x );
(Ⅱ)若存在x ∈R ,使得f (x )≤g (x )成立,求实数a 的取值范围.
22.(本题12分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(*
n N ∈,p ,为常数),且145x x x ,,成等差数列,求:
(1)p q ,的值;
(2)数列{}n x 前项和n S 的公式.
23.(本小题满分10分)选修4-1:几何证明选讲
如图,直线PA 与圆O 相切于点A ,PBC 是过点O 的割线,CPE APE ∠=∠,点H 是线段ED 的中 点.
(1)证明:D F E A 、、、四点共圆; (2)证明:PC PB PF ⋅=2
.
24.已知函数f(x)=ax3+bx2﹣3x在x=±1处取得极值.求函数f(x)的解析式.
银州区第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,
其中只有(3,4,5)为勾股数,
故这3个数构成一组勾股数的概率为.
故选:C
2.【答案】A
【解析】直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),
直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;
故.
故选A.
【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.
3.【答案】B
【解析】解:展开式通项公式为T r+1=•(﹣1)r•x3n﹣4r,
则∵二项式(x3﹣)n(n∈N*)的展开式中,常数项为28,
∴,
∴n=8,r=6.
故选:B.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
4.【答案】C
【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.
一般地,当n=2k﹣1(k∈N*)时,a2k+1=[1+cos2]a2k﹣1+sin2=a2k﹣1+1,即a2k+1﹣a2k﹣1=1.
所以数列{a2k﹣1}是首项为1、公差为1的等差数列,因此a2k﹣1=k.
当n=2k(k∈N*)时,a2k+2=(1+cos2)a2k+sin2=2a2k.
所以数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k.
该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77
故选:C.
5.【答案】B
【解析】解:由双曲线的一条渐近线方程为y=x,
可设双曲线的方程为x2﹣y2=λ(λ≠0),
代入点P(2,),可得
λ=4﹣2=2,
可得双曲线的方程为x2﹣y2=2,
即为﹣=1.
故选:B.
6.【答案】D
【解析】解:∵函数y=f(x)为
偶函数,且满足f(x+2)=﹣f(x),
∴f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),
∴偶函数y=f(x)
为周期为4的函数,
由x∈[0,2]时,
f(x)=1﹣x,可作出函数f(x)在[﹣10,10]的图象,
同时作出函数f(x)=log8|x|在[﹣10,10]的图象,交点个数即为所求.数形结合可得交点个为8,
故选:D.
7.【答案】
B
【解析】
排列、组合的实际应用;空间中直线与直线之间的位置关系.
【专题】计算题;压轴题.
【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.
【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.
分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,
(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)
那么安全存放的不同方法种数为2A44=48.
故选B.
【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.
8.【答案】C
【解析】解:=tan(49°+11°)=tan60°=,
故选:C.
【点评】本题主要考查两角和的正切公式的应用,属于基础题.
9. 【答案】B 【解析】
试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,
()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,
()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,
()x g 在()+∞,0上单调递减,则⎩⎨
⎧-><<2
3log 10a a ,解得:33
0<<a 故选A .
考点:根的存在性及根的个数判断.
【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的
图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.
10.【答案】 A
【解析】解:考虑当向高为H 的水瓶中注水为高为H 一半时,注水量V 与水深h 的函数关系.
如图所示,此时注水量V 与容器容积关系是:V <水瓶的容积的一半.
对照选项知,只有A 符合此要求.
故选A .
【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
11.【答案】D
【解析】
考点:直线方程
12.【答案】A
【解析】
考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.
二、填空题
13.【答案】.
【解析】解:∵a是甲抛掷一枚骰子得到的点数,
∴试验发生包含的事件数6,
∵方程x2+ax+a=0 有两个不等实根,
∴a2﹣4a>0,
解得a>4,
∵a 是正整数, ∴a=5,6,
即满足条件的事件有2种结果,
∴所求的概率是=,
故答案为:
【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.
14.【答案】()(),10,1-∞-⋃
【解析】
15.【答案】 .
【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,
其中4个点构成平行四边形的选法有3个,
∴4个点构成平行四边形的概率P==

故答案为:

【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.
16.【答案】1
ln 2
【解析】
试题分析:()()111ln 2ln 2
f x k f x ''=
∴== 考点:导数几何意义
【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.
(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 17.【答案】 4 .
【解析】解:画出满足条件的平面区域,如图示:

由,解得:A(3,4),
显然直线z=ax+by过A(3,4)时z取到最大值12,
此时:3a+4b=12,即+=1,
∴+=(+)(+)=2++≥2+2=4,
当且仅当3a=4b时“=”成立,
故答案为:4.
【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.
18.【答案】﹣1或0.
【解析】解:满足约束条件的可行域如下图阴影部分所示:
kx﹣y+1≥0表示地(0,1)点的直线kx﹣y+1=0下方的所有点(包括直线上的点)
由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,
可得直线kx﹣y+1=0与y轴垂直,此时k=0或直线kx﹣y+1=0与y=x垂直,此时k=﹣1
综上k=﹣1或0
故答案为:﹣1或0
【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx﹣y+1=0与y 轴垂直或与y=x垂直,是解答的关键.
三、解答题
19.【答案】
【解析】
解:(Ⅰ)在中,根据正弦定理,,
于是
(Ⅱ)在中,根据余弦定理,得
于是
所以
20.【答案】
【解析】解:(Ⅰ)由题意,4a=4,=,
∴a=1,c=,
∴=,
∴椭圆方程方程为;
(Ⅱ)设l与椭圆C交点为A(x1,y1),B(x2,y2)
由得(k2+2)x2+2kmx+(m2﹣1)=0
△=(2km)2﹣4(k2+2)(m2﹣1)=4(k2﹣2m2+2)>0(*)
∴x1+x2=﹣,x1x2=,
∵,,
∴λ=3
∴﹣x1=3x2
∴x1+x2=﹣2x2,x1x2=﹣3x22,
∴3(x1+x2)2+4x1x2=0,
∴3(﹣)2+4•=0,
整理得4k2m2+2m2﹣k2﹣2=0
m2=时,上式不成立;m2≠时,,
由(*)式得k2>2m2﹣2
∵k≠0,
∴>0,
∴﹣1<m<﹣或<m<1
即所求m的取值范围为(﹣1,﹣)∪(,1).
【点评】本题主要考查椭圆的标准方程、基本性质和直线与椭圆的综合问题.直线和圆锥曲线的综合题是高考的重点题目,要强化学习.
21.【答案】
【解析】解:(Ⅰ)当a=0时,由f (x )≥g (x )得|2x+1|≥x ,两边平方整理得3x 2
+4x+1≥0,
解得x ≤﹣1 或x ≥﹣∴原不等式的解集为 (﹣∞,﹣1]∪[﹣,+∞)
(Ⅱ)由f (x )≤g (x ) 得 a ≥|2x+1|﹣|x|,令 h (x )=|2x+1|﹣|x|,即 h (x )=,
故 h (x )min =h (﹣)=﹣,故可得到所求实数a 的范围为[﹣,+∞).
【点评】本题主要考查带有绝对值的函数,绝对值不等式的解法,求函数的最值,属于中档题.
22.【答案】(1)1,1==q p ;(2)2
)
1(22
1
++
-=-n n S n n .

点:等差,等比数列通项公式,数列求和. 23.【答案】(1)证明见解析;(2)证明见解析. 【



11
11]
试题解析:解:(1)∵PA 是切线,AB 是弦,∴C BAP ∠=∠,CPE APD ∠=∠, ∴CPE C APD BAP ∠+∠=∠+∠,
∵CPE C AED APD BAP ADE ∠+∠=∠∠+∠=∠, ∴AED ADE ∠=∠,即ADE ∆是等腰三角形
又点H 是线段ED 的中点,∴ AH 是线段ED 垂直平分线,即ED AH ⊥
又由CPE APE ∠=∠可知PH 是线段AF 的垂直平分线,∴AF 与ED 互相垂直且平分, ∴四边形AEFD 是正方形,则D F E A 、、、四点共圆. (5分) (2由割线定理得PC PB PA ⋅=2
,由(1)知PH 是线段AF 的垂直平分线,
∴PF PA =,从而PC PB PF ⋅=2
(10分)
考点:与圆有关的比例线段. 24.【答案】
【解析】解:(1)f'(x )=3ax 2
+2bx ﹣3,依题意,f'(1)=f'(﹣1)=0,
即,解得a=1,b=0.
∴f (x )=x 3
﹣3x .
【点评】本题考查了导数和函数极值的问题,属于基础题.。

相关文档
最新文档