新初中数学概率真题汇编及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新初中数学概率真题汇编及答案解析
一、选择题
1.动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是()
A.3
5
B.
3
8
C.
5
8
D.
3
10
【答案】B
【解析】
【分析】
先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.
【详解】
解:设共有这种动物x只,则活到20岁的只数为0.8x,活到30岁的只数为0.3x,
故现年20岁到这种动物活到30岁的概率为0.3
0.8
x
x
=
3
8
.
故选:B.
【点睛】
本题考查概率的简单应用,用到的知识点为:概率=所求情况数与总情况数之比.
2.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()
A.1
6
B.
1
8
C.
1
12
D.
1
16
【答案】C
【解析】
【分析】
根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率.【详解】
解:由列表法,得:
∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种,
∴投放正确的概率为:
1
12 P ;
故选择:C.
【点睛】
本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数.
3.下列诗句所描述的事件中,是不可能事件的是()
A.黄河入海流 B.锄禾日当午 C.大漠孤烟直 D.手可摘星辰
【答案】D
【解析】
【分析】
不可能事件是指在一定条件下,一定不发生的事件.
【详解】
A、是必然事件,故选项错误;
B、是随机事件,故选项错误;
C、是随机事件,故选项错误;
D、是不可能事件,故选项正确.
故选D.
【点睛】
此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()
A.1
5
B.
2
5
C.
3
5
D.
4
5
【答案】B
【解析】
试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况
数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到
负数的概率是2 5 .
故选B.
考点:概率.
5.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以构酌油之,自钱孔入,而钱不湿”,可见卖油的技艺之高超.如图,若铜钱半径为,中间有边长为的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是()
A.B.C.D.
【答案】D
【解析】
【分析】
用中间正方形小孔的面积除以圆的总面积即可得.
【详解】
∵铜钱的面积为4π,而中间正方形小孔的面积为1,
∴随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是,
故选:D.
【点睛】
考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
6.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()
A.1
36
B.
1
6
C.
1
12
D.
1
3
【答案】A
【解析】
【分析】
本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,
a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率.
【详解】
P(a,b,c正好是直角三角形三边长)=
61 21636
故选:A
【点睛】
本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.
7.下列事件中,是必然事件的是( )
A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心
C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D
【解析】
【分析】
先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.
【详解】
A.购买一张彩票中奖,属于随机事件,不合题意;
B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;
C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;
D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;
故选D.
【点睛】
本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.
8.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()
A.2
3
B.
1
2
C.
1
3
D.
1
4
【答案】C
【解析】
【分析】
【详解】
用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团,
于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,
A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种,
所以,所求概率为31
93
,故选C.
考点:简单事件的概率.
9.将一枚质地均匀的骰子掷两次,则两次点数之和等于9的概率为()
A.1
3
B.
1
6
C.
1
9
D.
1
12
【答案】C
【解析】
【分析】
【详解】
解:画树状图为:
共有36种等可能的结果数,其点数之和是9的结果数为4,
所以其点数之和是9的概率=
4
36
=
1
9
.
故选C.
点睛:本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结
果求出n,再从中选出符合事件A的结果数目m,则事件A的概率P(A)=m
n
.
10.下列判断正确的是()
A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上
B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件
D.“a是实数,|a|≥0”是不可能事件
【答案】C
【解析】
【分析】
直接利用概率的意义以及随机事件的定义分别分析得出答案.
【详解】
A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;
B 、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;
C 、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;
D 、“a 是实数,|a|≥0”是必然事件,故此选项错误. 故选C . 【点睛】
此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.
11.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是( ).
A .
2
B .
2
π C .
π
D .
2π
【答案】D 【解析】 【分析】
先得出圆内接正方形的边长,再用正方形的面积除以圆的面积即可得. 【详解】
∵半径为2的圆内接正方形边长为 ∴圆的面积为4π,正方形的面积为8, 则石子落在此圆的内接正方形中的概率是82=4ππ
, 故选D . 【点睛】
本题考查了几何概率的求法:求某事件发生在某个局部图形的概率等于这个局部的面积与整个图形的面积的比.
12.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8x x π-=3x+88
x
x -的解为整数的概率是( ) A .
12
B .
13
C .
14
D .
2
3
【答案】B 【解析】 【分析】
求出使得一次函数y=(-m+1)x+11-m 经过一、二、四象限且关于x 的分式方程8
x
x π-=3x+
88
x
x -的解为整数的数,然后直接利用概率公式求解即可求得答案.
【详解】
解:∵一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限,﹣m+1<0,11﹣m >0, ∴1<m <11,
∴符合条件的有:2,5,7,8, 把分式方程
m 8x x -=3x+88
x
x -去分母,整理得:3x 2﹣16x ﹣mx =0, 解得:x =0,或x =163
π
+, ∵x ≠8,
∴
163π
+≠8, ∴m ≠8,
∵分式方程
8mx x -=3x+88
x
x -的解为整数, ∴m =2,5,
∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8
mx
x -=3x+
88
x
x -的解为整数的整数有2,5, ∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程
8
mx
x -=3x+
88
x x -的解为整数的概率为26=1
3;
故选:B . 【点睛】
本题考查了概率公式的应用、一次函数的图象与系数的关系以及分式方程的解,熟练掌握是解题的关键.
13.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( ) A .
16
B .
13
C .
23
D .
14
【答案】A 【解析】 【分析】
根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案. 【详解】
根据题意画树状图如下:
∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况,
∴这两个球上的数字之积为奇数的概率是
21
= 126
.
故选A.
【点睛】
此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
14.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()
A.3
4
B.
1
3
C.
1
2
D.
1
4
【答案】C
【解析】
【分析】
算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】
解:设小正方形的边长为1,则其面积为1.
Q圆的直径正好是大正方形边长,
∴22,∴2,
222
=,则小球停在小正方形内部(阴影)区域的概率为1
2
.
故选:C.
【点睛】
概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.
15.下列事件是必然事件的是()
A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50
C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180︒
【答案】D
【解析】
【分析】
直接利用随机事件以及必然事件的定义分别判断得出答案.
【详解】
A、打开电视机正在插放动画片为随机事件,故此选项错误;
B、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;
C、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;
D、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确.
故选:D.
【点睛】
此题考查随机事件以及必然事件,正确把握相关定义是解题关键.
16.在10盒红色的笔芯中混放了若干支黑色的笔芯,每盒20支笔芯,每盒中混放入的黑色笔芯数如下表:
下列结论:
①黑色笔芯一共有16支;
②从中随机取一盒,盒中红色笔芯数不低于14是必然事件;
③从中随机取一盒,盒中黑色笔芯数不超过4的概率为0.7;
④将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是0.12.
其中正确的结论有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
根据表格的信息分别验证算出黑色笔芯的数量,由每盒黑色笔芯的数量可以算出每盒红色笔芯的数量,即可验证①②的正确性,再算出盒中黑色笔芯数不超过4的概率,即可判断③,用黑色的数量除以总的笔数,可验证④.
【详解】
解:① 根据表格的信息,得到
⨯+⨯+⨯+⨯+⨯=,
黑色笔芯数=021*********
故①错误;
② 每盒笔芯的数量为20支,
∵每盒黑色笔芯的数量都≤6,
∴每盒红色笔芯≥14,
因此从中任取一盒,盒中红色笔芯数不低于14是必然事件,
故②正确;
③ 根据图表信息,得到黑色笔芯不超过4的一共有7盒,因此
从中随机取一盒,盒中黑色笔芯数不超过4的概率为7÷10=0.7
故③正确
④ 10盒笔芯一共有10×20=200(支),
由详解①知黑色笔芯共有24支,
将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是24÷200=0.12,
故④正确;
综上有三个正确结论,
故答案为C.
【点睛】
本题主要考查了与概率有关的知识点. 在本题中求出黑色笔芯的数量是关键,求某事件的概率时,主要求该事件的数量与总数量的比值;还需要掌握必然事件的概念,即必然事件是一定会发生的事件.
17.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()
A.两个转盘转出蓝色的概率一样大
B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了
C.先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同
D.游戏者配成紫色的概率为1 6
【答案】D 【解析】
A、A盘转出蓝色的概率为1
2
、B盘转出蓝色的概率为
1
3
,此选项错误;
B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;
C、由于A、B两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;
D 、画树状图如下:
由于共有6种等可能结果,而出现红色和蓝色的只有1种, 所以游戏者配成紫色的概率为16
, 故选D .
18.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).
A .
16 B .6π C .8π D .5
π 【答案】B
【解析】
【分析】
由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=
4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论. 【详解】
解:∵AB=5,BC=4,AC=3,
∴AB 2=BC 2+AC 2,
∴△ABC 为直角三角形,
∴△ABC 的内切圆半径=
4+3-52=1, ∴S △ABC =
12AC•BC=12
×4×3=6, S 圆=π,
∴小鸟落在花圃上的概率=
6
π , 故选B .
【点睛】 本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.
19.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是( ) A .0.1
B .0.2
C .0.3
D .0.6 【答案】D
【解析】
【分析】
直接利用概率公式进行求解,即可得到答案.
【详解】
解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个. ∴1张抽奖券中奖的概率是:
102030100
++=0.6, 故选:D .
【点睛】
本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.
20.下列说法正确的是( )
A .检测某批次灯泡的使用寿命,适宜用全面调查
B .可能性是1%的事件在一次试验中一定不会发生
C .数据3,5,4,1,-2的中位数是4
D .“367人中有2人同月同日出生”为确定事件
【答案】D
【解析】
【分析】
根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.
【详解】
A 、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;
B 、可能性是1%的事件在一次试验中可能发生,此选项错误;
C 、数据3,5,4,1,-2的中位数是3,此选项错误;
D 、“367人中有2人同月同日出生”为必然事件,此选项正确;
故选D .
【点睛】
本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.。