八年级上册数学 全等三角形单元测试卷 (word版,含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学 全等三角形单元测试卷 (word 版,含解析)
一、八年级数学轴对称三角形填空题(难)
1.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.
【答案】①③④
【解析】
【分析】
①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则
∠C=12
∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于
∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.
【详解】
∵∠BAC=90°,AD ⊥BC ,
∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,
∴∠ABC=∠DAC ,∠BAD=∠C ,
故①正确;
若∠EBC=∠C ,则∠C=
12
∠ABC , ∵∠BAC=90°,
那么∠C=30°,但∠C 不一定等于30°,
故②错误;
∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,
∴∠ABF=∠EBD ,
∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,
又∵∠BAD=∠C ,
∴∠AFE=∠AEF ,
∴AF=AE ,
故③正确;
∵AG是∠DAC的平分线,AF=AE,
∴AN⊥BE,FN=EN,
在△ABN与△GBN中,

90
ABN GBN
BN BN
ANB GNB
∠=∠


=

⎪∠=∠=︒


∴△ABN≌△GBN(ASA),
∴AN=GN,
又∵FN=EN,∠ANE=∠GNF,
∴△ANE≌△GNF(SAS),
∴∠NAE=∠NGF,
∴GF∥AE,即GF∥AC,
故④正确;
∵AE=AF,AE=FG,
而△AEF不一定是等边三角形,
∴EF不一定等于AE,
∴EF不一定等于FG,
故⑤错误.
故答案为:①③④.
【点睛】
本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.
2.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD,当△AOD是等腰三角形时,求α的角度为______
【答案】110°、125°、140°
【解析】
【分析】
先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则
∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可.
【详解】
解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,
则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,
∴b ﹣d=10°,
∴(60°﹣a )﹣d=10°,
∴a+d=50°,
即∠DAO=50°,
分三种情况讨论:
①AO=AD ,则∠AOD=∠ADO ,
∴190°﹣α=α﹣60°,
∴α=125°;
②OA=OD ,则∠OAD=∠ADO ,
∴α﹣60°=50°,
∴α=110°;
③OD=AD ,则∠OAD=∠AOD ,
∴190°﹣α=50°,
∴α=140°;
所以当α为110°、125°、140°时,三角形AOD 是等腰三角形,
故答案为:110°、125°、140°.
【点睛】
本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.
3.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.
【答案】(-4,2)或(-4,3)
【解析】
【分析】
【详解】
把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.
故答案为(-4,2)或(-4,3).
4.如图,点P 是AOB 内任意一点,5OP cm =,点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,连接CD 交OA 于点E ,交OB 于点F ,当PEF 的周长是5cm 时,AOB ∠的度数是______度.
【答案】30
【解析】 【分析】
根据轴对称得出OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,根据线段垂直平分线性质得出12COA AOP COP ,12
POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,求出△COD 是等边三角形,即可得出答案. 【详解】
解:如图示:连接OC ,OD ,
∵点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,
∴OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,
∵OP=5cm ,
∴12COA AOP COP ,12
POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,
∵△PEF 的周长是5cm ,
∴PE+EF+PF=CE+EF+FD=CD=5cm ,
∴CD=OD=OD=5cm ,
∴△OCD 是等边三角形,
∴∠COD=60°,

111
222
30
AOB AOP BOP COP DOP COD,
故答案为:30.
【点睛】
本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.
5.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出下列四个结论:
①AE=CF;
②△EPF是等腰直角三角形;
③EF=AB;

1
2ABC
AEPF
S S

=
四边形
,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).
【答案】①②④
【解析】
试题分析:∵∠APE、∠CPF都是∠APF的余角,
∴∠APE=∠CPF,
∵AB=AC,∠BAC=90°,P是BC中点,
∴AP=CP,
∴∠PAE=∠PCF,
在△APE与△CPF中,
{?
PAE PCF
AP CP
EPA FPC
∠=∠
=
∠=∠

∴△APE≌△CPF(ASA),
同理可证△APF≌△BPE,
∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=1
2
S△ABC,①②④正确;
而AP=
1
2
BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,
∴故③不成立.
故始终正确的是①②④.
故选D .
考点:1.全等三角形的判定与性质;2.等腰直角三角形.
6.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,
,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.
【答案】30°
【解析】
【分析】
先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.
【详解】
解:∵AB AC =,82BAC ∠=︒,∴180492
BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,
作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,
∴∠EBC=11°+11°+38°=60°,
∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,
又∵AB=AC ,EA=EA ,
∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =
1302
BEC ∠=︒, ∴∠ADB =30°.
【点睛】
本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D 关于直线AB 的对称点E ,构造等边三角形和全等三角形的模型是解题的关键.
7.如图,已知,点E 是线段AB 的中点,点C 在线段BD 上,8BD =,2DC =,线段AC 交线段DE 于点F ,若AF BD =,则AC =__________.
【答案】10.
【解析】
【分析】
延长DE 至G ,使EG=DE ,连接AG ,证明BDE AGE ∆≅∆,而后证明AFG ∆、CDF ∆是等腰三角形,即可求出CF 的长,于是可求AC 的长.
【详解】
解:如图,延长DE 至G ,使EG=DE ,连接AG ,
∵点E 是线段AB 的中点,
∴AE=BE,
∴在BDE
∆和AGE
∆中,
BE AE
BED AEG
DE EG
=


∠=∠

⎪=

,
∴BDE AGE
∆≅∆,
∴AG=BD, BDE AGE
∠=∠,
∵AF=BD=8,
∴AG=AF,
∴AFG AGE
∠=∠
∵AFG DFC
∠=∠,
∴BDE DFC
∠=∠,
∴FC=DC,
∴FC=2,
∴AC=AF+FC=8+2=10.
【点睛】
本题考查了等腰三角形的性质与判定以及全等三角形的判定与性质,能利用中点条件作辅助线构造全等三角形是解题的关键.
8.如图,Rt△ABC 中,AB=AC,∠BAC=90°,AD 是 BC 边上的高,E 是 AD 上的一点。

连接EC,过点 E 作 EF⊥EC 交射线 BA 于点 F,EF、AC 交于点 G。

若 DE=3,△EGC 与△AFG 面积的差是 2,则 BD=_____.
【答案】5
【解析】
【分析】
在DC上取点M,使DM=DE,连接EM,通过证明∆FAE≅∆EMC,根据△EGC 与△AFG 面积的差是 2,推出△EAC 与△EMC 面积的差是 2,然后设MC=x,则AE=x,AD=x+3,利用面积差即可求出x,即可求出BD.
【详解】
解:在DC上取点M,使DM=DE,连接EM
∵Rt △ABC ,AB=AC ,AD ⊥ BC
∴BD=CD=AD ,∠EAF=135°
同理∠E MC=135°
∴AE=CM
∠AEF+∠CED=∠ECM+∠CED=90°
∴∠AEF=∠ECM
∴∆FAE ≅∆EMC
∵S △EGC -S △AFG =2
∴S △EAC -S △FAE =2
∴S △EAC -S △EMC =2
设MC=x ,则AE=x ,AD=x+3
∵S △EAC =
()132x x ⋅⋅+ ,S △MEC =132x ⋅⋅ ∴()132x x ⋅⋅+-132
x ⋅⋅=2 解得x=2(x>0,负值舍去),
∴AD=2+3=5
∴BD=AD=5
故答案为:5.
【点睛】
本题主要考查了三角形全等的性质与判定,等腰直角三角形的性质以及三角形面积计算,熟练掌握各知识点,学会综合应用,正确添加辅助线是关键.
9.如图,正五边形ABCDE 中,对角线AC 与BE 相交于点F ,则AFE ∠=_______度.
【答案】72.
【解析】
【分析】
根据五边形的内角和公式求出EAB ∠,根据等腰三角形的性质,三角形外角的性质计算即可.
【详解】
解:∵五边形ABCDE 是正五边形,
(52)1801085EAB ABC ︒

-⨯∴∠=∠==

BA BC =

36BAC BCA ︒∴∠=∠=

同理36ABE ∠︒=,
363672AFE ABF BAF ∴∠∠+∠︒+︒︒===.
故答案为:72
【点睛】
本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰三角形的性质是解题的关键.
10.如图,在△ABC 中,AB =AC =10,BC =12,AD =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是_____.
【答案】9.6.
【解析】
【分析】
由等腰三角形的三线合一可得出AD 垂直平分BC ,过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长.在△ABC 中,利用面积法可求出BQ 的长度,此题得解.
【详解】
∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP .
过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的
长,如图所示.
∵S △ABC 12=
BC •AD 12=AC •BQ ,∴BQ 12810
BC AD AC ⋅⨯===9.6. 故答案为:9.6.
【点睛】
本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC +PQ 的最小值为BQ 是解题的关键.
二、八年级数学轴对称三角形选择题(难)
11.已知∠AOB =30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点构成的三角形是 ( )
A .直角三角形
B .钝角三角形
C .等边三角形
D .等腰三角形 【答案】C
【解析】
【分析】
根据题意,作出相应的图形,然后对相应的角进行标记;本题先证明P 1,O ,P 2三点构成的三角形中1260POP ∠=︒,然后证边12OP OP OP ==,得到P 1,O ,P 2三点构成的三角形为等腰三角形,又因为该等腰三角形有一个角为60︒,故得证P 1,O ,P 2三点构成的三角形是等边三角形。

【详解】
如图所示,根据题意,作出相应的图形,可知:
∵P 和1p 点关于OB 对称,p 和2p 关于OA 对称
∴可得1
1POB POB ∠=∠=∠,22P OA POA ∠=∠=∠ 12OP OP OP ==(垂线段的性质)
∴12POP △为等腰三角形
∵1230AOB ∠=∠+∠=︒
1221222(12)60POP ∠=∠+∠=∠+∠=︒
∴等腰12POP △为等边三角形.故本题选C.
【点睛】
本题主要考查垂线段的性质和定理,以及等边三角形的证明方法(有一个角为60︒的等腰三角形为等边三角形).
12.如图,等腰 Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,∠ABC 的平分线分别交 AC ,AD 于E ,F ,点M 为 EF 的中点,AM 的延长线交 BC 于N ,连接 DM ,NF ,EN .下列结论:①△AFE 为等腰三角形;②△BDF ≌△ADN ;③NF 所在的直线垂直平分AB ;④DM 平分∠BMN ;⑤AE =EN =NC ;⑥AE BN EC BC
=.其中正确结论的个数是( )
A .2个
B .3个
C .4个
D .5个
【答案】D
【解析】
【分析】 ①由等腰三角形的性质得∠BAD=∠CAD=∠C=45°,再根据三角形外角性质得
∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,则得到∠AEF=∠AFE ,可判断△AEF 为等腰三角形,于是可对①进行判断;求出BD=AD ,∠DBF=∠DAN ,∠BDF=∠ADN ,证△DFB ≌△DAN ,由题意可得BF>BD=AD,所以BF ≠AF,所以点F 不在线段AB 的垂直平分线上,所以③不正确,由
∠ADB=∠AMB=90°, 可知A 、B 、D 、M 四点共圆, 可求出∠ABM=∠ADM=22.5°,继而可得∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°, 即可求出DM 平分∠BMN ,所以④正确;根据全等三角形的性质可得△AFB ≌△CAN , 继而可得AE=CN ,根据线段垂直平分线的性质和等腰三角形的判定可得△ENC 是等腰直角三角形,继而可得AE=CN=EN ,所以⑤正确;根据等腰三角形的判定可得△BAN 是等腰三角形,可得BD=AB ,继而可得
BD BC A BC B ==由⑤可得AE EN EC EC ==所以⑥正确. 【详解】
解:∵等腰Rt △ABC 中,∠BAC=90°,AD ⊥BC ,
∴∠BAD=∠CAD=∠C=45°,
∵BE 平分∠ABC ,
∴∠ABE=∠CBE=12
∠ABC=22.5°, ∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5° ∴∠AEF=∠AFE ,
∴△AEF 为等腰三角形,所以①正确;
∵∠BAC=90°,AC=AB ,AD ⊥BC ,
∴∠ABC=∠C=45°,AD=BD=CD ,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD ,
∵BE 平分∠ABC ,
∴∠ABE=∠CBE= 12
∠ABC=22.5°, ∴∠BFD=∠AEB=90°-22.5°=67.5°,
∴AFE=∠BFD=∠AEB=67.5°,
∴AF=AE ,AM ⊥BE ,
∴∠AMF=∠AME=90°,
∴∠DAN=90°-67.5°=22.5°=∠MBN ,
在△FBD 和△NAD 中,
∠FBD =∠DAN ,BD =AD ,∠BDF =∠ADN ,
∴△FBD ≌△NAD ,所以②正确;
因为BF>BD=AD,
所以BF ≠AF,
所以点F 不在线段AB 的垂直平分线上,所以③不正确
∵∠ADB=∠AMB=90°,
∴A 、B 、D 、M 四点共圆,
∴∠ABM=∠ADM=22.5°,
∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,
∴DM 平分∠BMN ,所以④正确;
在△AFB 和△CNA 中,
∠BAF =∠C =45°,AB =AC, ∠ABF =∠CAN =22.5°,
∴△AFB ≌△CAN (ASA ),
∴AF=CN ,
∵AF=AE ,
∴AE=CN ,
∵AE=AF ,FM=EM ,
∴AM ⊥EF ,
∴∠BMA=∠BMN=90°,
∵BM=BM ,∠MBA=∠MBN ,
∴△MBA ≌△MBN ,
∴AM=MN , ∴BE 垂直平分线段AN ,
∴AB=BN ,EA=EN ,
∵BE=BE ,
∴△ABE ≌△NBE , ∴∠ENB=∠EAB=90°,
∴EN ⊥NC . ∴△ENC 是等腰直角三角形,
∴AE=CN=EN ,所以⑤正确;
∵AF=FN,
所以∠FAN =∠FNA,
因为∠BAD =∠FND=45°
, 所以∠FAN+ ∠BAD =∠FNA+∠FND,
所以∠BAN =∠BNA,
所以AB=BN,
所以2BD BC A BC B == 由⑤可知,△ENC 是等腰直角三角形,AE=CN=EN ,
∴22
AE EN EC EC == 所以
AE BN EC BC =,所以⑥正确, 故选D.
【点睛】
本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜质的应用,能正确证明推出两个三角形全等是解此题的关键.
13.在Rt ABC ∆中,90ACB ∠=︒,点D E 、是AB 边上两点,且CE 垂直平分,AD CD 平分,6BCE AC cm ∠=,则BD 的长为( )
A .6cm
B .7cm
C .8cm
D .9cm
【答案】A
【解析】
【分析】 根据CE 垂直平分AD ,得AC=CD ,再根据等腰在三角形的三线合一,得
ACE ECD ∠=∠,结合角平分线定义和90ACB ︒∠=,得
30ACE ECD DCB ︒∠=∠=∠=,则BD CD AC ==.
【详解】
∵CE 垂直平分AD
∴AC=CD =6cm ,ACE ECD ∠=∠
∵CD 平分BCE ∠
∴BCD ECD ∠=∠
∴30ACE ECD DCB ︒∠=∠=∠=
∴60A ︒∠=
∴30B BCD ︒∠==∠
∴6CD BD AC cm ===
故选:A
【点睛】
本题考查的知识点主要是等腰三角形的性质的“三线合一”性质定理及判定“等角对等边”,熟记并能熟练运用这些定理是解题的关键.
14.等边△ABC ,在平面内找一点P ,使△PBC 、△PAB 、△PAC 均为等腰三角形,具备这样条件的P 点有多少个?( )
A .1个
B .4个
C .7个
D .10个
【答案】D
【解析】
试题分析:根据点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.
解:由点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,
可知P 点为等边△ABC 的垂心;
因为△ABC 是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,
每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.
故选D.
点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.
15.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()
A.4 B.24
5
C.5 D.6
【答案】C
【解析】
试题解析:如图,
∵AD是∠BAC的平分线,
∴点B关于AD的对称点B′在AC上,
过点B′作B′N⊥AB于N交AD于M,
由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,
∵AC=10,S△ABC=25,
∴1
2
×10•BE=25,
解得BE=5,
∵AD是∠BAC的平分线,B′与B关于AD对称,
∴AB=AB′,
∴△ABB′是等腰三角形,
∴B′N=BE=5,
即BM+MN的最小值是5.
故选C.
16.如图钢架中,∠A=a,焊上等长的钢条P1P2, P2P3, P3P4, P4P5……来加固钢架.著P1A= P1P2,且恰好用了4根钢条,则α的取值范圈是( )
A .15°≤ a <18°
B .15°< a ≤18°
C .18°≤ a <22.5°
D .18° < a ≤ 22.5°
【答案】C
【解析】
【分析】
由每根钢管长度相等,可知图中都是等腰三角形,利用等腰三角形底角一定是锐角,可推出取值范围.
【详解】
∵AB=BC=CD=DE=EF
∴∠P 1P 2A=∠A=a
由三角形外角性质,可得∠P 2P 1P 3=2∠A=2a
同理可得,∠P 1P 3P 2=∠P 2P 1P 3=2a ,
∠P 3P 2P 4=∠P 3P 4P 2=∠A+∠P 1P 3P 2=3a ,
∠P 4P 3P 5=∠P 4P 5P 3=∠A+∠P 3P 4P 2=4a ,
在△P 4P 3P 5中,∠P 3P 4P 5=180°-2∠P 4P 3P 5=180°-8a
当∠P 5P 4B ≥90°即∠P 5P 4A ≤90°时,不能再放钢管,
∴3180890+-≤a a ,解得a ≥18°
又∵等腰三角形底角只能是锐角,
∴4a <90°,解得a <22.5
∴1822.5οο≤<a
故选C.
【点睛】
本题考查等腰三角形的性质,掌握等腰三角形的底角只能是锐角是关键.
17.如图所示,在等边△ABC 中,E 是AC 边的中点,AD 是BC 边上的中线,P 是AD 上的动点,若AD =3,则EP +CP 的最小值为( )
A .2
B .3
C .4
D .5
【答案】B
【解析】
由等边三角形的性质得,点B,C关于AD对称,连接BE交AD于点P,则EP+CP=BE最小,又BE=AD,所以EP+CP的最小值是3.
故选B.
点睛:本题主要考查了等边三角形的性质和轴对称的性质,求一条定直线上的一个动点到定直线的同旁的两个定点的距离的最小值,常用的方法是,①确定两个定点中的一个关于定直线的对称点;②连接另一个定点与对称点,与定直线的交点就是两线段和的值最小时,动点的位置.
18.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()
A.①②B.①②③C.①②④D.①②③④
【答案】C
【解析】
【分析】
由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明
△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.
【详解】
∵∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
又∵AC=BC,CE=CD,
∴△BCD≌△ACE,
∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,
∴∠BAE=120°,
∴∠EAD=60°,②正确,
∵∠BCD=90°,∠BCA=60°,
∴∠ACD=∠ADC=30°,
∴AC=AD,
∵CE=DE,
∴CE2+AD2=AC2+DE2,④正确,
当D点在BA延长线上时,∠BDE-∠BDC=60°,
∵∠AEC=∠BDC,
∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,
∴∠BDE-∠BDC=∠BDC+∠AED
∴∠BDE-∠AED=2∠BDC,
如图,当点D在AB上时,
∵△BCD≌△∠ACE,
∴∠CAE=∠CBD=60°,
∴∠DAE=∠BAC+∠CAE=120°,
∴∠BDE-∠AED=∠DAE=120°,③错误
故正确的结论有①②④,
故选C.
【点睛】
此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握
19.如图,在△ABC中,AB=AC=8,BC=5,AB的垂直平分线交AC于D,则△BCD的周长为()
A.13B.15C.18D.21
【答案】A
【解析】
根据线段垂直平分线的性质,可由AB=AC=8,BC=5,AB的垂直平分线交AC于D,得到
AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.
故选A.
点睛:此题主要考查了线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.
20.如图,已知长方形ABCD,AB=1,BC=2,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )
A.1 B.3C.3D.3
【答案】B
【解析】
【分析】
将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E 也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE的值.
【详解】
将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,
∴AM=MM’,
∴MA+MD+ME=D’M+MM’+ME,
∴D′M、MM′、ME共线时最短,
由于点E也为动点,
∴当D’E⊥BC时最短,此时易求得3
∴MA+MD+ME的最小值为3
故选B.
【点睛】
本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.。

相关文档
最新文档