2023年人教版数学六年级上册比的应用教案模板(推荐3篇)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学六年级上册比的应用教案模板(推荐3篇)〖人教版数学六年级上册比的应用教案模板第【1】篇〗
设计说明
1.注重培养学生学习的自主性。
引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。
本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。
2.培养学生的解题能力。
本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。
课前准备
多媒体课件
教学过程
⊙创设情境,提出问题
1.介绍“物物交换”的背景知识。
人类使用货币的历史产生于最早出现物质交换的时代。
在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。
我们今天所学的数学知识就从“物物交换”开始。
2.呈现问题。
同学们算一算,14个玩具汽车可以换多少本小人书?
设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。
⊙尝试解决,体会联系
1.想一想。
师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。
2.说一说。
教师引导学生交流各自的`想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的关系。
预设
方法一 14÷4=3.5,3.5×10=35(本)。
方法二 10÷2=5,14÷2=7,5×7=35(本)。
方法三 4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35(本)。
方法四4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14(个),30+5=35(本)。
⊙自主学习,探究新知
1.提出新的要求。
师:假设14个玩具汽车可以换x本小人书,你能尝试用比例的知识解决问题吗?
2.学生尝试列式。
预设
方法一 4∶10=14∶x。
方法二 10∶4=x∶14。
方法三 14∶4=x∶10。
方法四 4∶14=10∶x。
3.交流汇报写出比例的主要依据。
4.学生独立解比例。
5.汇报结果。
预设
生1:根据在比例里,两个内项的积等于两个外项的积,可以把这个比例转化成4x=10×14。
生2:我是这样计算的:
4∶10=14∶x
解:4x=140
x=35
6.出示课堂活动卡,组织学生先和同伴交流,再独立解决。
(师巡视,适时指导)
7.验算:把求出的结果代入比例验算一下,看等式是否成立。
(学生自主验算)
8.教师小结。
解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。
设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。
〖人教版数学六年级上册比的应用教案模板第【2】篇〗
教学内容:
冀教版小学数学六年级上二单元第5课时(比的应用)
教学目标:
1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;
2、培养学生应用所学数学知识解决实际问题的能力,使学生真正成为课堂的主人;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。
教学重点:
1、正确理解按比例分配的意义。
2、掌握按比例分配应用题的特征和解题方法。
教学难点:
能正确、熟练地解答按比例分配的实际问题。
课前准备:
布置学生预习
教学过程:
一、创设情境
1、回顾以前学习过的平均分,由平均分的“公平”引出今天的题目如果还按照平均分,反而不公平。
(两人共同合作劳动,完成份额不同,所得分配问题)
2、小结:刚才两位如果劳动资额相同,所以他们获得的报酬要按1:1来分配,这种分配方式也就叫平均分。
如果完成劳动份额不相同,所以他们获得的报酬要按1:1来分配就不公平,怎么办?
(组织交流)
师:这里的报酬要完成份额的比进行分配比较合理。
像这样,把一个数量按一定的比来进行分配,通常叫做按比例分配。
(揭示课题:按比例分配)
二、初步感知
1、想一想,两位应该按怎样的比来分配劳动所得?(板书:按完成的比3:2进行分配)
2、谁能用自己的语言说说3:2的具体含义。
3、谁能用算式表示两位各应分得多少元?
4、小结:通过刚才的生活实例,你认识了什么?(什么是按比例分配)
三、自主探究,合作研习
1、谈话:其实,在生活中,像这样的按比例分配的例子是很多的,你有没有遇到过?说一个给大家听听,今天,我们学习第19页内容,由于我们昨天已经布置了预习,所以我们按以下提纲进行交流。
2、此时用PPT出示“学习内容”“学习目标”和“导学提纲”
学习内容:冀教版小学数学六年级上册第19页。
学习目标
1、认识按比例分配的'实际问题,掌握这类实际问题的解答方法。
2、认识连比,理解三个数量连比的意义。
导学提纲
1、例1中“紫色与红色方块数的比是3:5”的含义是什么?
2、与同学说说例题中每种方法的解题思路。
3、你能画图理解这两种解题方法与同学交流吗?
4、你怎样理解例2“按照2:3:5配置混凝土”这句话的含义?
5、“练一练”第3题是把1200千克培养料按怎样的比来分配?
学生根据导学提纲进行下列活动,教师巡视,深入各小组交流,关注学困生。
(1)独立思考,尝试解答。
(2)小组交流,说说想法。
(3)组织交流,形成思路。
(4)选好内容,进行预展示。
四、集中展示
1、例1中“紫色与红色块数的比是3:5”的含义是什么?
预设:(1)这里的3:5,也就是在8个方块,紫色占3份,红色占5份,一共有8份,紫色占了方块总数的83,红色占方块总数的85。
求紫色(茄子)有多少平方米,就是求984平方米的83是多少,求红色(西红柿)有多少平方米,就是求984的85是多少。
(2)把984平方米平均分成5份,3份是茄子,5份西红柿。
总份数3+5=8,
茄子为984÷8×3=369(平方米),西红柿为984÷8×5=615(平方米)。
2、展示例2的解题思路及方法……
3、展示“练一练3”的解题方法
小结:通过刚才的生活实例,你又有什么新的收获?你觉得按比例分配应用题的解答关键是什么?
预设:
(1)关键是根据已知的比表示的份数关系,找出各种数量占总数量的几分之几,也就是把比转化成分数,再按求一个数的几分之几是多少乘法计算。
(2)根据份数先求总份数,再求每份数,最后求几份数。
五、反馈检测
1、本次校运动会上共有644人报名参加各项目比赛,其中男女运动员人数的比是4:3,你知道参加各项比赛的女运动员有多少名吗?
2、低年级老师用一根长40厘米的铁丝围成一个三条边的比是4:7:9的三角形,请你帮低年级老师算算三条边的长度各是多少?
3、六(1)班有学生35人,六(2)班有学生36人,六(3)班有学生34人。
在第十二届田径运动会入场式上需要制作210面彩旗,按照六年级各班学生人数的比,六年级三个班各需要做多少面彩旗?
4、一个标准的篮球场是长方形,它的周长是86米。
长与宽的比是28:15。
求这个标准的篮球场的面积。
六、课堂小结
学了这节课,你有什么收获?
七、课堂作业
20页,1、2、4、5。
板书设计:
按比例分配的解题方法
一要知道分配的数量,二要知道按怎样的比分配
〖人教版数学六年级上册比的应用教案模板第【3】篇〗
教学内容
教科书第27页的第4~5题,练习六的第4~6题.
教学目的
1.进一步理解用比例知识解答应用题的方法,用比例的方法正确解答有关应用题.
2.沟通整数、分数、比和比例等知识的联系,会用不同知识,从不同角度,多种方法解答有关应用题.
3.通过一题多解,培养学生思维的变通性和灵活性.
教具、学具准备
自制多媒体课件.
教学过程
一、揭示课题
今天我们复习用比例的知识解答应用题.
二、回忆
用比例解应用题,具体步骤有哪些呢?让学生互相说一说,再指名说,最后教师总结如下:
(1)判断.概括出题中两种有关联的量,找出题中隐蔽的定量,从而确定两种相关联的量成什么比例.
(2)设未知数x,列方程.如果成正比例关系,列式是:x∶y=x1∶y1;如果成反比例关系,列式是:xy=x1y1.
(3)解方程.
(4)验算.
(5)答题.
三、分层练习
1.基本练习.
(1)判断下面每题中的两种量成什么比例.
①速度一定,所行的路程和时间.
②一本书的总字数一定,每行的字数与行数.
③苹果的单价一定,购买的数量和总价.
④工作总量一定,工作效率和魇奔洌/P>
(2)实际运用.
①晶晶借了一本112页的《安徒生童话》,她4天看了28页.以这样的速度,预计几天可以看完?
学生独立练习后,小组内交流思考的'过程,教师巡视指导.
②用一批纸装订同样大小的练习本,如果每本16张,可以装订300本.如果每本18张,可以装订多少本?
学生独立练习后,小组内交流思考的过程,教师巡视指导.
③蚯蚓能消化许多垃圾,有人将7.5吨垃圾运到一个蚯蚓养殖厂,78天后,这些垃圾全部被消化了.这个养殖厂一年可以消化约多少吨垃圾呢?
学生独立练习后,小组内交流思考的过程,教师巡视指导,此题有两种答案.
2.综合练习.
(1)一篇文章原稿每行30个字,共96行,如果改为每行32个字,一页纸35行的版式,那么这篇文章需打印多少行?共需几页纸?
提醒学生理解题目的意思后再独立解答,然后全班交流,教师评价.
解:设需打印x行.
30×96=32x
x=90
90÷35=2(页)……20(行)
答:这篇文章需打印90行,共需3页纸.
(2)扬扬骑车从家经过游乐场到少年宫,全程需1.5小时,如果她以同一速度从家骑车直接到少年宫,可以省多少时间?
学生独立解答后,先在小组内交流思考的过程,再在全班交流,教师评价.
可能出现的答案有:
(1)解:设从家直接到少年宫,要x小时.(2)解:设可以省x小时.
(11+7)∶1.5=15∶x (11+7)∶1.5=15∶(1.5-x)
18x=1.5×15 或(11+7)∶1.5=(11+7-15)∶x
18x=22.5 解答过程略.
x=1.25
1.5-1.25=0.25(小时)
答:可以省0.25小时.
3.发展练习.
六(2)中队少先队员订《少年科学》杂志,全中队共交了792元,各小队订阅情况如下表,请用自己喜欢的方法算出各小队应交的钱数.第一小队 10本()元
第二小队 12本()元
第三小队 11本()元
学生独立用各种方法算,算完后互相交流各自的方法及思路,再在全班交流.
可能的方法有:
方法一:792÷(10+12+11)=24(元)方法二:792×10/33=240(元)
24×10=240(元) 792×12/33=288(元)
24×12=288(元) 792×11/33=264(元)
24×11=264(元)答(略).
答(略).
方法三:解:设第一小队应交x元.
792∶(10+12+11)=x∶10
x=240
答(略).。