泰来县一中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰来县一中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为
A[]
B[]
C[]
D[]
2.“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的()
A.充要条件B.充分不必要条件
C.必要不充分条件D.不充分不必要条件
3.在△ABC中,已知a=2,b=6,A=30°,则B=()
A.60°B.120°C.120°或60°D.45°
4.若a>0,b>0,a+b=1,则y=+的最小值是()
A.2 B.3 C.4 D.5
5.已知全集U=R,集合M={x|﹣2≤x﹣1≤2}和N={x|x=2k﹣1,k=1,2,…}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有()
A.3个B.2个C.1个D.无穷多个
6.已知数列{a n}满足log3a n+1=log3a n+1(n∈N*),且a2+a4+a6=9,则log(a5+a7+a9)的值是()
A.﹣B.﹣5 C.5 D.
7.已知直线mx﹣y+1=0交抛物线y=x2于A、B两点,则△AOB()
A.为直角三角形B.为锐角三角形
C .为钝角三角形
D .前三种形状都有可能
8. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}
|3003x x x -<<<<或
C .{}|33x x x <->或
D . {}
|303x x x <-<<或
9. 自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )
A .86210x y --=
B .86210x y +-=
C .68210x y +-=
D .68210x y --=
【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.
10.椭圆22
:143
x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的
取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )
A .3
1,42⎡⎤--⎢⎥⎣
⎦ B .33,48
⎡⎤--⎢⎥⎣
⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤
⎢⎥⎣⎦
【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.
11.已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )
A .
B .
C .1:
D (1
12.如图给出的是计算
的值的一个流程图,其中判断框内应填入的条件是( )
A.i≤21 B.i≤11 C.i≥21 D.i≥11
二、填空题
13.已知集合M={x||x|≤2,x∈R},N={x∈R|(x﹣3)lnx2=0},那么M∩N=.
14.已知sinα+cosα=,且<α<,则sinα﹣cosα的值为.
15.如图,在正方体ABCD﹣A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的射影可能是.
16.如果椭圆+=1弦被点A(1,1)平分,那么这条弦所在的直线方程是.
17.如图,是一回形图,其回形通道的宽和OB1的长均为1,回形线与射线OA交于A1,A2,A3,…,若从点O到点A3的回形线为第1圈(长为7),从点A3到点A2的回形线为第2圈,从点A2到点A3的回形线为第3圈…依此类推,第8圈的长为.
18.当时,4x<log a x,则a的取值范围.
三、解答题
19.已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.
20.已知集合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(m+9﹣x)>0} (1)求A∩B
(2)若A∪C=C,求实数m的取值范围.
:坐标系与参数方程选讲
21.本小题满分10分选修44
在直角坐标系xoy
中,直线的参数方程为3x y ⎧=⎪⎪⎨⎪=⎪⎩为参数,在极坐标系与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴中,圆C
的方程为ρθ=. Ⅰ求圆C 的圆心到直线的距离;
Ⅱ设圆C 与直线交于点A B 、,若点P
的坐标为(3,,求PA PB +.
22.在直角坐标系xOy 中,圆C
的参数方程(φ为参数).以O 为极点,x 轴的非负半轴为极
轴建立极坐标系.
(Ⅰ)求圆C 的极坐标方程; (Ⅱ)直线l 的极坐标方程是ρ(sin θ
+)
=3
,射线OM :θ
=
与圆C 的交点为O ,P ,与直线l
的交点为Q ,求线段PQ 的长.
23.设函数f (x )=lnx ﹣
ax+
﹣1.
(Ⅰ)当a=1时,求曲线f (x )在x=1处的切线方程;
(Ⅱ)当
a=时,求函数f (x )的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2﹣2bx﹣,若对于∀x1∈[1,2],∃x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.
24.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
泰来县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】B
【解析】当x≥0时,
f(x)=,
由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;
当a2<x<2a2时,f(x)=﹣a2;
由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。
∴当x>0时,。
∵函数f(x)为奇函数,
∴当x<0时,。
∵对∀x∈R,都有f(x﹣1)≤f(x),
∴2a2﹣(﹣4a2)≤1,解得:。
故实数a的取值范围是。
2.【答案】C
【解析】解:若双曲线C的方程为﹣=1,则双曲线的方程为,y=±x,则必要性成立,
若双曲线C的方程为﹣=2,满足渐近线方程为y=±x,但双曲线C的方程为﹣=1不成立,即充分性不成立,
故“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的必要不充分条件,
故选:C
【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.
3.【答案】C
【解析】解:∵a=2,b=6,A=30°,
∴由正弦定理可得:sinB===,
∵B∈(0°,180°),
∴B=120°或60°.
故选:C.
4.【答案】C
【解析】解:∵a>0,b>0,a+b=1,
∴y=+=(a+b)=2+=4,当且仅当a=b=时取等号.
∴y=+的最小值是4.
故选:C.
【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.
5.【答案】B
【解析】解:根据题意,分析可得阴影部分所示的集合为M∩N,
又由M={x|﹣2≤x﹣1≤2}得﹣1≤x≤3,
即M={x|﹣1≤x≤3},
在此范围内的奇数有1和3.
所以集合M∩N={1,3}共有2个元素,
故选B.
6.【答案】B
【解析】解:∵数列{a n}满足log3a n+1=log3a n+1(n∈N*),
∴a n+1=3a n>0,
∴数列{a n}是等比数列,公比q=3.
又a2+a4+a6=9,
∴=a5+a7+a9=33×9=35,
则log(a5+a7+a9)==﹣5.
故选;B.
7.【答案】A
【解析】解:设A (x 1,x 12),B (x 2,x 22
),
将直线与抛物线方程联立得
, 消去y 得:x 2
﹣mx ﹣1=0,
根据韦达定理得:x 1x 2=﹣1,
由=(x 1,x 12),
=(x 2,x 22),
得到=x 1x 2+(x 1x 2)2=﹣1+1=0,
则
⊥
,
∴△AOB 为直角三角形.
故选A
【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.
8. 【答案】B 【解析】
试题分析:因为()f x 为奇函数且()30f -=,所以()30f =,又因为()f x 在区间()0,+∞上为增函数且()30f =,所以当()0,3x ∈时,()0f x <,当()3,x ∈+∞时,()0f x >,再根据奇函数图象关于原点对称
可知:当()3,0x ∈-时,()0f x >,当(),3x ∈-∞-时,()0f x <,所以满足()0x f x ⋅<的x 的取值范围是:()3,0x ∈-或()0,3x ∈。
故选B 。
考点:1.函数的奇偶性;2.函数的单调性。
9. 【答案】D
【解析】由切线性质知PQ CQ ⊥,所以2
2
2
PQ PC QC =-,则由PQ PO =,得,
2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,
10.【答案】B
11.【答案】D
【解析】
考点:1、抛物线的定义;2、抛物线的简单性质.
【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M到焦点的距离转化为到准线的距离后进行解答的.
12.【答案】D
【解析】解:∵S=
并由流程图中S=S+
故循环的初值为1
终值为10、步长为1
故经过10次循环才能算出S=的值,
故i≤10,应不满足条件,继续循环
∴当i≥11,应满足条件,退出循环
填入“i≥11”.
故选D.
二、填空题
13.【答案】{1,﹣1}.
【解析】解:合M={x||x|≤2,x∈R}={x|﹣2≤x≤2},
N={x∈R|(x﹣3)lnx2=0}={3,﹣1,1},
则M∩N={1,﹣1},
故答案为:{1,﹣1},
【点评】本题主要考查集合的基本运算,比较基础.
14.【答案】.
【解析】解:∵sinα+cosα=,<α<,
∴sin2α+2sinαcosα+cos2α=,
∴2sinαcosα=﹣1=,
且sinα>cosα,
∴sinα﹣cosα=
==.
故答案为:.
15.【答案】①④.
【解析】解:由所给的正方体知,
△PAC在该正方体上下面上的射影是①,
△PAC在该正方体左右面上的射影是④,
△PAC在该正方体前后面上的射影是④
故答案为:①④
16.【答案】x+4y﹣5=0.
【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),
由中点坐标公式知x1+x2=2,y1+y2=2,
把P(x1,y1),Q(x2,y2)代入x2+4y2=36,
得,
①﹣②,得2(x1﹣x2)+8(y1﹣y2)=0,
∴k==﹣,
∴这条弦所在的直线的方程y﹣1=﹣(x﹣1),
即为x+4y﹣5=0,
由(1,1)在椭圆内,则所求直线方程为x+4y﹣5=0.
故答案为:x+4y﹣5=0.
【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.
17.【答案】63.
【解析】解:∵第一圈长为:1+1+2+2+1=7
第二圈长为:2+3+4+4+2=15
第三圈长为:3+5+6+6+3=23
…
第n圈长为:n+(2n﹣1)+2n+2n+n=8n﹣1
故n=8时,第8圈的长为63,
故答案为:63.
【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形.
18.【答案】.
【解析】解:当时,函数y=4x的图象如下图所示
若不等式4x<log a x恒成立,则y=log a x的图象恒在y=4x的图象的上方(如图中虚线所示)
∵y=log a x的图象与y=4x的图象交于(,2)点时,a=
故虚线所示的y=log a x的图象对应的底数a应满足<a<1
故答案为:(,1)
三、解答题
19.【答案】
【解析】解:(Ⅰ)由f(x)=x﹣1+,得f′(x)=1﹣,
又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,
∴f′(1)=0,即1﹣=0,解得a=e.
(Ⅱ)f′(x)=1﹣,
①当a≤0时,f′(x)>0,f(x)为(﹣∞,+∞)上的增函数,所以f(x)无极值;
②当a>0时,令f′(x)=0,得e x=a,x=lna,
x∈(﹣∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;
∴f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,
故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.
综上,当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.
(Ⅲ)当a=1时,f(x)=x﹣1+,令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,
则直线l:y=kx﹣1与曲线y=f(x)没有公共点,
等价于方程g(x)=0在R上没有实数解.
假设k >1,此时g (0)=1>0,g
()=﹣
1+<0,
又函数g (x )的图象连续不断,由零点存在定理可知g (x )=0在R 上至少有一解, 与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1. 又k=1时,g (x )
=
>0,知方程g (x )=0在R 上没有实数解,
所以k 的最大值为1.
20.【答案】
【解析】解:由合A={x|x 2﹣5x ﹣6<0},集合B={x|6x 2
﹣5x+1≥0},集合C={x|(x ﹣m )(m+9﹣x )>0}. ∴A={x|﹣1<x <6}
,,C={x|m <x <m+9}. (1
)
,
(2)由A ∪C=C ,可得A ⊆C .
即
,解得﹣3≤m ≤﹣1.
21.【答案】
【解析】Ⅰ
∵:C ρθ=
∴2:sin C ρθ=
∴22:0C x y +-=,即圆C
的标准方程为22(5x y +=.
直线的普通方程为30x y +=. 所以,圆C
2
=
.
Ⅱ由22(53
x y y x ⎧+=⎪⎨=-+⎪⎩
,解得12x y =⎧⎪⎨=⎪⎩
或21x y =⎧⎪⎨=⎪⎩
所以 22.【答案】
【解析】解:(I )圆C
的参数方程
(φ为参数).消去参数可得:(x ﹣1)2+y 2
=1.
把x=ρcos θ,y=ρsin θ代入化简得:ρ=2cos θ,即为此圆的极坐标方程. (II )如图所示,由直线l 的极坐标方程是ρ(sin θ
+)
=3
,射线OM :θ
=
.
可得普通方程:直线
l
,射线
OM
.
||||PA PB +==
联立,解得,即Q.
联立,解得或.
∴P.
∴|PQ|==2.
23.【答案】
【解析】解:函数f(x)的定义域为(0,+∞),(2分)
(Ⅰ)当a=1时,f(x)=lnx﹣x﹣1,∴f(1)=﹣2,,
∴f′(1)=0,∴f(x)在x=1处的切线方程为y=﹣2(5分)
(Ⅱ)=(6分)
令f′(x)<0,可得0<x<1,或x>2;令f'(x)>0,可得1<x<2
故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+∞).
(Ⅲ)当时,由(Ⅱ)可知函数f(x)在(1,2)上为增函数,
∴函数f(x)在[1,2]上的最小值为f(1)=(9分)
若对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,等价于g(x)在[0,1]上的最小值不大于f(x)在(0,
e]上的最小值(*)(10分)
又,x∈[0,1]
①当b<0时,g(x)在[0,1]上为增函数,与(*)矛盾
②当0≤b≤1时,,由及0≤b≤1得,
③当b>1时,g(x)在[0,1]上为减函数,,
此时b>1(11分)
综上,b的取值范围是(12分)
【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,转化为g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值.
24.【答案】
【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.
(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,
∴当x=15时,S取最大值.
(2)V=a2
h=2(﹣x3+30x2),V′=6x(20﹣x),
由V′=0得x=20,
当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;
∴当x=20时,包装盒容积V(cm3)最大,
此时,.
即此时包装盒的高与底面边长的比值是.。