2018版高考数学(人教A版理科)一轮复习课时跟踪检测57含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(五十七)
1.某班级有男生20名,女生30名,从中抽取10名作为样本,其中一次抽样结果是:抽到了4名男生、6名女生,则下列命题正确的是()
A.这次抽样可能采用的是简单随机抽样
B.这次抽样一定没有采用系统抽样
C.这次抽样中每名女生被抽到的概率大于每名男生被抽到的概率
D.这次抽样中每名女生被抽到的概率小于每名男生被抽到的概率
答案:A
解析:利用排除法求解.这次抽样可能采用的是简单随机抽样,A正确;这次抽样可能采用系统抽样,男生编号为1~20,女生编号为21~50,间隔为5,依次抽取1号,6号,…,46号便可,B错误;这次抽样中每名女生被抽到的概率等于每名男生被抽到的概率,C 和D均错误,故选A.
2.某学校为了了解某年高考数学的考试成绩,在高考后对该校1 200名考生进行抽样调查,其中有400名文科考生,600名理科考生,
查为①;从10名家长中随机抽取3名参加座谈会,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是( )
A.分层抽样法,系统抽样法
B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法
D.简单随机抽样法,分层抽样法
答案:B
解析:在①中,文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好;在②中,抽取的样本个数较少,宜采用简单随机抽样法.
3.假设要考察某企业生产的袋装牛奶质量是否达标,现从500袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将500袋牛奶按000,001,…,499进行编号,如果从随机数表(下面摘取了随机数表第7行至第9行)第8行第4列的数开始按三位数连续向右读取,则依次写出最先检测的5袋牛奶的编号分别为( )
A.163,198,175,128,395
B.163,199,175,128,395
C.163,199,175,128,396
D.163,199,175,129,395
答案:B
解析:随机数表第8行第4列的数是1,从1开始读取:163 785 916 955 567 199 810 507 175 128 673 580 744 395。

标波浪线的5个即是所取编号.
4.将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()
A.26,16,8 B.25,17,8
C.25,16,9 D.24,17,9
答案:B
解析:由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).
令3+12(k-1)≤300,得k≤错误!,
因此第Ⅰ营区被抽中的人数是25;
令300<3+12(k-1)≤495,得错误!<k≤42,
因此第Ⅱ营区被抽中的人数是42-25=17;
第Ⅲ营区被抽中的人数为50-25-17=8.
5.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间的人做问卷A,编号落入区间的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为()
A.7 B.9
C.10 D.15
解析:由题意知,应将960人分成32组,每组30人.设每组选出的人的号码为30k+9(k=0,1,…,31).由451≤30k+9≤750,解得错误!≤k≤错误!,又k∈N,故k=15,16,…,24,共10人.
6.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是()
A.5 B.7
C.11 D.13
答案:B
解析:间隔数k=错误!=16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数为7。

故选B.
7.为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从A,B,C三所中学抽取60名教师进行调查,已知A,B,C三所学校中分别有180,270,90名教师,则从C学校中应抽取的人数为( )
A.10 B.12
C.18 D.24
解析:根据分层抽样的特征,从C学校中应抽取的人数为错误!×60=10.
8.从2 007名学生中选取50名学生参加全国数学联赛,若采用以下方法选取:先用简单随机抽样法从2 007名学生中剔除7名学生,剩下的2 000名学生再按系统抽样的方法抽取,则每名学生入选的概率( )
A.不全相等B.均不相等
C.都相等,且为错误!D.都相等,且为错误!
答案:C
解析:从N个个体中抽取M个个体,则每个个体被抽到的概率都等于错误!.
9.某学校对该校参加第二次模拟测试的2 100名考生的数学学科的客观题解答情况进行抽样调查,可以在每个试题袋中抽取一份(每考场的人数为30),则采取________抽样方法抽取一个容量为________的样本进行调查较为合适.
答案:系统70
解析:因为样本容量较大,且考生情况按照每考场抽取没有明显的层次性,又错误!=70,
10.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.
答案:37
解析:因为12=5×2+2,即第三组抽出的是第二个同学,所以每一组都相应抽出第二个同学.所以第8组中抽出的号码为5×7+2=37。

11.200名职工年龄分布如图所示,从中随机抽40名职工作样本,采用系统抽样方法,按1~200编号为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.
答案:37 20
解析:将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;
由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中抽取x人,则错误!=错误!,解得x=20。

12.一个总体中有90个个体,随机编号0,1,2,...,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3, (9)
现用系统抽样方法抽取一个容量为9的样本,规定:如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k 的个位数字相同,若m=8,则在第8组中抽取的号码是________.答案:76
解析:由题意知,m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76。

1.某校2017届有840名学生,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间的人数为()
A.11 B.12
C.13 D.14
答案:B
解析:使用系统抽样方法,从840名学生中抽取42人,即从20人中抽取1人.所以从编号1~480的人中,恰好抽取错误!=24(人),
接着从编号481~720共240人中抽取错误!=12(人).
2.从一个容量为N的总体中抽取一个容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同的方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1
C.p1=p3<p2D.p1=p2=p3
答案:D
解析:根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,所以p1=p2=p3。

3.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( )
A.480 B.481
C.482 D.483
答案:C
解析:根据系统抽样的定义可知,样本的编号成等差数列,令a1=7,a2=32,d=25,所以7+25(n-1)≤500,所以n≤20,最大编号为7+25×19=482。

81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2, (270)
使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中,正确的是()
A.②、③都不能为系统抽样
B.②、④都不能为分层抽样
C.①、④都可能为系统抽样
D.①、③都可能为分层抽样
答案:D
解析:①在1~108之间有4个,109~189之间有3个,190~270之间有3个,符合分层抽样的规律,可能是分层抽样,同时,从第二个数据起每个数据与前一个的差都为27,符合系统抽样的规律,则
抽样,同时,从第二个数据起每个数据与前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的,故选D.
5.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样的方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为________;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.
答案:50 1 015
解析:第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为1 020×0。

5+980×0.2+1 030×0.3=1 015(小时).6.某高中在校学生有2 000人.为了响应“阳光体育运动"的号召,学校开展了跑步和登山比赛活动,每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:
项目高一年级高二年高三年
其中a∶b错误!.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人.
答案:36
解析:根据题意知,样本中参与跑步的人数为200×错误!=120,所以从高二年级参与跑步的学生中应抽取的人数为120×错误!=36. 7.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n。

解:总体容量为6+12+18=36。

当样本容量是n时,由题意知,系统抽样的间隔为错误!,
分层抽样的比例是错误!,抽取的工程师人数为错误!×6=错误!,
技术员人数为错误!×12=错误!,技工人数为错误!×18=错误!。

所以n应是6的倍数,36的约数,即n=6,12,18。

当样本容量为(n+1)时,总体容量是35人,
系统抽样的间隔为错误!,因为错误!必须是整数,所以n只能取6.即样本容量为n=6。

相关文档
最新文档