北京大学 数学物理方法 课件01
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Superpositionability of Solutions General Solution of PDE’s
1
2
d’Lambert
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Laplace
∂ 2u ∂ 2u + =0 ∂x2 ∂y 2
Superpositionability of Solutions General Solution of PDE’s
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
∂ 2 u(x, y) =0 ∂x2 u(x, y) = c1 (y) + xc2 (y) c1 (y) c2 (y) ∂ 2 u(x, y) =0 ∂x∂y u(x, y) = c1 (x) + c2 (y) c1 (x) c2 (y)
Laplace
∂ 2u ∂ 2u + =0 ∂x2 ∂y 2
Superpositionability of Solutions General Solution of PDE’s
Superpositionability of Solutions General Solution of PDE’s
u L[u] = f
L[u] = f
u
u1
u2 L[u1 ] = 0
L[u] = 0 L[u2 ] = 0 c 1 u1 + c 2 u2 L[c1 u1 + c2 u2 ] = 0
Superpositionability of Solutions General Solution of PDE’s
L[u] = f u L f
f ≡0
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
u1
u2 L[u1 ] = f u1 − u2
L[u] = f L[u2 ] = f
L[u1 − u2 ] = 0
= +
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
C. S. Wu
Outline
1
2
d’Lambert
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
u1
u2 L[u1 ] = f u1 − u2
L[u1 − u2 ] = 0
= +
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
L[u] = f L[u2 ] = f
L[u1 − u2 ] = 0
= +
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
u L[u] = f
L[u] = f
1
2
d’Lambert
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
L
L ∂ 2u 2 2 ∂2 −a u = f L ≡ 2 −a2 2 ∂t ∂t ∂u ∂ −κ 2 u = f L ≡ −κ 2 ∂t ∂t Poisson
∂ 2 u(x, y) =0 ∂x2 u(x, y) = c1 (y) + xc2 (y) c1 (y) c2 (y) ∂ 2 u(x, y) =0 ∂x∂y u(x, y) = c1 (x) + c2 (y) c1 (x) c2 (y)
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
Superpositionability of Solutions General Solution of PDE’s
∂ 2 u(x, y) =0 ∂x2 u(x, y) = c1 (y) + xc2 (y) c1 (y) c2 (y) ∂ 2 u(x, y) =0 ∂x∂y u(x, y) = c1 (x) + c2 (y) c1 (x) c2 (y)
u
u1
u2 L[u1 ] = 0
L[u] = 0 L[u2 ] = 0 c 1 u1 + c 2 u2 L[c1 u1 + c2 u2 ] = 0
c1
c2
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Laplace
∂ 2u ∂ 2u + =0 ∂x2 ∂y 2
Superpositionability of Solutions General Solution of PDE’s
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
∂ 2 u(x, y) =0 ∂x2 u(x, y) = c1 (y) + xc2 (y) c1 (y) c2 (y) ∂ 2 u(x, y) =0 ∂x∂y u(x, y) = c1 (x) + c2 (y) c1 (x) c2 (y)
ξ = x + iy, η = x − iy
∂u ∂u ∂ξ ∂u ∂η ∂u ∂u = + = + ∂x ∂ξ ∂x ∂η ∂x ∂ξ ∂η ∂u ∂u ∂ξ ∂u ∂η ∂u ∂u = + =i − ∂y ∂ξ ∂y ∂η ∂y ∂ξ ∂η
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
L[u] = f u L f
f ≡0
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Laplace
∂ 2u ∂ 2u + =0 ∂x2 ∂y 2
Superpositionability of Solutions General Solution of PDE’s
ξ = x + iy, η = x − iy
∂u ∂u ∂ξ ∂u ∂η ∂u ∂u = + = + ∂x ∂ξ ∂x ∂η ∂x ∂ξ ∂η ∂u ∂u ∂ξ ∂u ∂η ∂u ∂u = + =i − ∂y ∂ξ ∂y ∂η ∂y ∂ξ ∂η
c1
c2
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
u1
u2 L[u1 ] = f u1 − u2
Superpositionability of Solutions General Solution of PDE’s
L[u] = f u L f
f ≡0
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
wavepropagationinin?nitestringdlambertsolution22?u?u?a20?t2?x2xatx?at?u?u??u??u?u?x??x??x???u?u??u??u?ua??t??t??t??c
Outline
2007
C. S. Wu
Outline
1
2
d’Lambert
2 2
u=f
L≡
2
L[α1 u1 +α2 u2 ] = α1 L[u1 ] + α2 L[u2 ]
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
L
L ∂ 2u 2 2 ∂2 −a u = f L ≡ 2 −a2 2 ∂t ∂t ∂u ∂ −κ 2 u = f L ≡ −κ 2 ∂t ∂t Poisson
2 2
u=f
L≡
2
L[α1 u1 +α2 u2 ] = α1 L[u1 ] + α2 L[u2 ]
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
ξ = x + iy, η = x − iy
∂u ∂u ∂ξ ∂u ∂η ∂u ∂u = + = + ∂x ∂ξ ∂x ∂η ∂x ∂ξ ∂η ∂u ∂u ∂ξ ∂u ∂η ∂u ∂u = + =i − ∂y ∂ξ ∂y ∂η ∂y ∂ξ ∂η
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
u1
u2 L[u1 ] = f1 L[u2 ] = f2 c 1 u1 + c 2 u2 L[c1 u1 + c2 u2 ] = c1 f1 + c2 f2
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String
Superpositionability of Solutions General Solution of PDE’s
L[u] = f u L f
f ≡0
C. S. Wu
Main Properties of Linear PDE’s Wave Propagation in Infinite String