七年级上册数学 压轴解答题复习练习(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学 压轴解答题复习练习(Word 版 含答案)
一、压轴题
1.[ 问题提出 ]
一个边长为 ncm(n ⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm 的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?
[ 问题探究 ]
我们先从特殊的情况入手 (1)当n=3时,如图(1)
没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个; 两面涂色的:在棱上,每个棱上有1个,共有12个; 三面涂色的:在顶点处,每个顶点处有1个,共有8个. (2)当n=4时,如图(2)
没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个… [ 问题解决 ]
一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。

[ 问题应用 ]
一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm 的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积. 2.概念学习:
规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.
如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作
32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次
商”.一般地,我们把n 个()0a a ≠相除记作n a ,读作“a 的n 次商”.
(1)直接写出结果:3
12
⎛⎫
=
⎪⎝⎭______,()42-=______. (2)关于除方,下列说法错误的是( ) A .任何非零数的2次商都等于1 B .对于任何正整数n ,()111n --=-
C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数
D .负数的奇数次商结果是负数,负数的偶数次商结果是正数. 深入思考:
除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式
()43-=______ 6
15⎛⎫
= ⎪⎝⎭______
(4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.
(5)算一算:2019
23420201111162366⎛⎫⎛⎫⎛⎫⎛⎫
÷-÷---⨯ ⎪ ⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭⎝⎭
3.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.
利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.
()1点A 表示的数为______,点B 表示的数为______.
()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______.
()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到
达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.
4.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到
AB a b =-:
(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .
(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .
①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索1
5c c 的最小值是 .
5.如图一,点C 在线段AB 上,图中有三条线段AB 、AC 和BC ,若其中一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.
(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决)
(2)如图二,点A 和B 在数轴上表示的数分别是20-和40,点C 是线段AB 的巧点,求点C 在数轴上表示的数。

(应用拓展)
(3)在(2)的条件下,动点P 从点A 处,以每秒2个单位的速度沿AB 向点B 匀速运动,同时动点Q 从点B 出发,以每秒4个单位的速度沿BA 向点A 匀速运动,当其中一点到达中点时,两个点运动同时停止,当A 、P 、Q 三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间()t s 的所有可能值.
6.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点
A ,P 是数轴上的一个动点.
(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;
(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的
数;
(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?
7.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度
(2)若点D 在数轴上,且3DA DB =,求点D 对应的数
(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =
8.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .
(1)求点C 表示的数;
(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.
(3)在(2)的条件下,当x 为何值时,2AP CM PC -=? 9.如图1,点A ,B ,C ,D 为直线l 上从左到右顺次的4个点.
(1) ①直线l 上以A ,B ,C ,D 为端点的线段共有 条;
②若AC =5cm ,BD =6cm ,BC =1cm ,点P 为直线l 上一点,则PA +PD 的最小值为 cm ;(2)若点A 在直线l 上向左运动,线段BD 在直线l 上向右运动,M ,N 分别为AC ,BD 的中点(如图2),请指出在此过程中线段AD ,BC ,MN 有何数量关系并说明理由; (3)若C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,E ,F 两点同时从C ,D 出发,分别以2cm/s ,1cm/s 的速度沿直线l 向左运动,Q 为EF 的中点,设运动时间为t ,当AQ+AE+AF=
3
2
AD 时,请直接写出t 的值. 10.已知:∠AOB =140°,OC ,OM ,ON 是∠AOB 内的射线.
(1)如图1所示,若OM 平分∠BOC ,ON 平分∠AOC ,求∠MON 的度数: (2)如图2所示,OD 也是∠AOB 内的射线,∠COD =15°,ON 平分∠AOD ,OM 平分∠BOC .当∠COD 绕点O 在∠AOB 内旋转时,∠MON 的位置也会变化但大小保持不变,请求出∠MON 的大小;
(3)在(2)的条件下,以∠AOC =20°为起始位置(如图3),当∠COD 在∠AOB 内绕点O 以每秒3°的速度逆时针旋转t 秒,若∠AON :∠BOM =19:12,求t 的值.
11.点O为直线AB上一点,在直线AB同侧任作射线OC、OD,使得∠COD=90°
(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是__________度;
(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE 的数量关系;
(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数
12.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)
(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:
(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ
AB
的值.
(3)在(1)的条件下,若C、D运动5秒后,恰好有
1
CD AB
2
,此时C点停止运动,
D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN
的值不变;②MN
AB
的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并
求值.
【参考答案】***试卷处理标记,请不要删除一、压轴题
1.[ 问题探究 ] (2)6,24;12,24;8,8;[ 问题解决](n-2)3,(n-2)2,12(n-2),8; [ 问题解决 ] 1000cm 3. 【解析】 【分析】
[ 问题探究 ] (2)根据(1)即可填写; [ 问题解决 ] 可根据(1)、(2)的规律填写;
[ 问题应用 ] 根据[ 问题解决 ]知两面涂色的为n-12(2),由此得到方程n-12(2)=96, 解得n 的值即可得到边长及面积. 【详解】 [ 问题探究 ]
(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×
2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 6个面,因此一面涂色的共有24个;
两面涂色的:在棱上,每个棱上有2个,正方体共有12 条棱,因此两面涂色的共有24个;
三面涂色的:在顶点处,每个顶点处有1个,正方体共有8 个顶点,因此三面涂色的共有8 个… [ 问题解决 ]
一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方
体,有_32n -() _____个小正方体;一面涂色的:在面上,共有__2
2n -()
____个; 两面涂色的:在棱上,共有__122n -()____个; 三面涂色的:在顶点处,共_8____个。

[ 问题应用 ]
由题意得,n-12(2)
=96,得n=10, ∴这个大正方体的边长为10cm ,
∴这个大正方体的体积为101010=1000⨯⨯(3cm ). 【点睛】
此题考查数字类规律探究,正确理解(1)是解题的关键,由(1)即可得到涂色的规律,由此解决其它问题. 2.(1)2,14;(2)B ;(3)21()3-,45;(4)21()n a -;(5)29
- 【解析】 【分析】
(1)利用题中的新定义计算即可求出值; (2)利用题中的新定义计算即可求出值; (3)将原式变形即可得到结果; (4)根据题意确定出所求即可; (5)原式变形后,计算即可求出值. 【详解】
(1)3
1111
11222222⎛⎫=÷÷=÷=
⎪⎝⎭, ()()()()()4111
222221224
-=-÷-÷-÷-=⨯
⨯=, 故答案为:2,
14
; (2)A .任何非零数的2次商都等于1,说法正确,符合题意;
B .对于任何正整数n ,当n 为奇数时,()111n --=-;当n 为偶数时,()111n --=,原说法错误,不符合题意;
C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数,说法正确,符合题意;
D .负数的奇数次商结果是负数,负数的偶数次商结果是正数,说法正确,符合题意. 故选:B ;
(3)()()()()()433333-=-÷-÷-÷-
111()()33
=⨯-⨯-
21
()3
=-;
611111115555555
⎛⎫=÷÷÷÷÷ ⎪⎝⎭ 15555=⨯⨯⨯⨯
45=;
故答案为:2
1()3
-,45; (4)由(3)得到规律:2
1()
n n a a
-=,
所以,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于2
1()n a
-,
故答案为:2
1()
n a
-;
(5)2019
23420201111162366⎛⎫⎛⎫⎛⎫⎛⎫
÷-÷---⨯ ⎪ ⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭⎝⎭
()
()
()
2019
32
42
20202
112366---⎛⎫=÷-÷---⨯ ⎪⎝⎭
2018
20181111162966⎛⎫⎛⎫⎛⎫
=⨯-⨯-⨯⨯ ⎪ ⎪
⎪⎝⎭⎝⎭
⎝⎭
2018
11161866⎛⎫⎛⎫=--⨯⨯ ⎪ ⎪⎝⎭
⎝⎭
11186
=-
- 29=-.
【点睛】
本题考查了有理数的混合运算,新定义的理解与运用;熟练掌握运算法则是解本题的关键.对新定义,其实就是多个数的除法运算,要注意运算顺序.
3.(1)2412--;
;(2)2t ;362t -;(3)P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226
,33
. 【解析】 【分析】
()1因为点A 在原点左侧且到原点的距离为24个单位长度,所以点A 表示数24-;点B 在点A 右侧且与点A 的距离为12个单位长度,故点B 表示:241212-+=-;()2因为点P
从点A 出发,以每秒运动2两个单位长度的速度向终点C 运动,则t 秒后点P 表示数
242t(0t 18-+≤≤,令242t 12-+=,则t 18=时点P 运动到点C),而点A 表示数
24-,点C 表示数12,所以()PA 242t 242t =-+--=,
PC 242t 12362t =-+-=-;()3以点Q 作为参考,则点P 可理解为从点B 出发,设点
Q 运动了m 秒,那么m 秒后点Q 表示的数是244m -+,点P 表示的数是122m -+,再分两种情况讨论:①点Q 运动到点C 之前;②点Q 运动到点C 之后. 【详解】
()1设A 表示的数为x ,设B 表示的数是y .
x 24=,x 0<
∴x 24=- 又
y x 12-=
y 241212.∴=-+=-
故答案为24-;12-.
()2由题意可知:
t 秒后点P 表示的数是()242t 0t 18-+≤≤,点A 表示数24-,点C
表示数12
()PA 242t 242t ∴=-+--=,PC 242t 12362t =-+-=-.
故答案为2t ;362t -.
()3设点Q 运动了m 秒,则m 秒后点P 表示的数是122m -+.
①当m 9≤,m 秒后点Q 表示的数是244m -+,则
()PQ 24m 4m 122m 2=-+--+=,解得m 5=或7,
当m=5时,-12+2m=-2, 当m=7时,-12+2m=2, ∴此时P 表示的是2-或2;
②当m 9>时,m 秒后点Q 表示的数是()124m 9--,
则()()PQ 124m 9122m 2=----+=, 解得2931m 33
或=, 当m=293时,-12+2m=223, 当m=
313时,-12+2m=263
, 此时点P 表示的数是
2226
33
或. 答:P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226
,33
. 【点睛】
本题考查了数轴上两点间的距离公式以及实数与数轴的相关概念,解题时同时注意数形结合数学思想的应用,解题关键是要读懂题目的意思,根据题目给出的条件,用代数式表示出数轴上的动点代表的数,找出合适的等量关系列出方程,再求解. 4.(1)3,3,1a -;(2)①42c -;②72-或15
2
;③6 【解析】 【分析】
(1)根据两点间的距离公式解答即可;
(2)①根据两点间的距离公式可得AC 与BC 的值,然后根据绝对值的性质化简绝对值,进一步即可求出结果;
②分电子蚂蚁在点A 左侧、在点A 、B 之间和在点B 右侧三种情况,先根据两点间的距离和绝对值的性质化简绝对值,再解方程即可求出答案; ③代数式1
5c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,
于是可确定当15c -≤≤时,代数式15c c 取得最小值,据此解答即可.
【详解】
解:(1)数轴上表示2和5的两点之间的距离是523-=; 数轴上表示﹣2和﹣5两点之间的距离是()()253---=; 数轴上表示1和a 的两点之间的距离是1a -;
故答案为:3,3,1a -; (2)①∵电子蚂蚁在点A 的左侧,
∴11AC c c =--=--,55BC c c =-=-, ∴1542AC BC c c c +=--+-=-;
②若电子蚂蚁在点A 左侧,即1c <-,则10c +<,50c -<, ∵1
511c c ,
∴()()1511c c -+--=,解得:72
c =-
; 若电子蚂蚁在点A 、B 之间,即15c -≤≤,则10c +>,50c -<, ∵1
511c c ,
∴15611c c ++-=≠,故此种情况不存在;
若电子蚂蚁在点B 右侧,即5c >,则10c +>,50c ->, ∵1
511c c ,
∴()()1511c c ++-=,解得:152
c =; 综上,c 表示的数是72-或152
; ③∵代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之
和,
∴当15c -≤≤时,代数式15c c 的最小值是()516--=,
即代数式15c c 的最小值是6.
故答案为:6. 【点睛】
本题考查了数轴上两点间的距离、绝对值的化简和应用以及简单的一元一次方程的解法等知识,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键. 5.(1)是;(2)10或0或20;(3) 152t =;t=6;607t =;t=12;907t =;45
4
t =. 【解析】 【分析】
(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;
(2)由题意设C 点表示的数为x ,再根据新定义列出合适的方程即可;
(3)根据题意先用t 的代数式表示出线段AP ,AQ ,PQ ,再根据新定义列出方程,得出合适的解即可求出t 的值. 【详解】
解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点,
故答案为:是;
(2)设C 点表示的数为x ,则AC=x+20,BC=40-x ,AB=40+20=60,
根据“巧点”的定义可知:
①当AB=2AC 时,有60=2(x+20),
解得,x=10;
②当BC=2AC 时,有40-x=2(x+20),
解得,x=0;
③当AC=2BC 时,有x+20=2(40-x ),
解得,x=20.
综上,C 点表示的数为10或0或20;
(3)由题意得()()60601026046601015t t AP t AQ t PQ t t -≤≤⎧⎪==-=⎨-≤⎪⎩
,,<, (i )、若0≤t ≤10时,点P 为AQ 的“巧点”,有
①当AQ=2AP 时,60-4t=2×2t , 解得,152
t =, ②当PQ=2AP 时,60-6t=2×2t ,
解得,t=6;
③当AP=2PQ 时,2t=2(60-6t ), 解得,607
t =; 综上,运动时间()t s 的所有可能值有152t =
;t=6;607
t =; (ii )、若10<t ≤15时,点Q 为AP 的“巧点”,有
①当AP=2AQ 时,2t=2×(60-4t ),
解得,t=12;
②当PQ=2AQ 时,6t-60=2×(60-4t ), 解得,907
t =; ③当AQ=2PQ 时,60-4t=2(6t-60), 解得,454
t =. 综上,运动时间()t s 的所有可能值有:t=12;907t =;454t =. 故,运动时间()t s 的所有可能值有:152t =
;t=6;607t =;t=12;907t =;454
t =. 【点睛】 本题是新定义题,是数轴的综合题,主要考查数轴上的点与数的关系,数轴上两点间的距离,一元一次方程的应用,解题的关键是根据新定义列出方程并进行求解.
6.(1)A 、B 位置见解析,A 、B 之间距离为30;(2)2或-6;(3)第20次P 与A 重合;点P 与点B 不重合.
【解析】
【分析】
(1)点B 距离原点10个单位长度,且位于原点左侧,得到点B 表示的数,再根据平移的过程得到点A 表示的数,在数轴上表示出A 、B 的位置,根据数轴上两点间的距离公式,求出A 、B 之间的距离即可;
(2)设P 点对应的数为x ,当P 点满足PB=2PC 时,得到方程,求解即可;
(3)根据第一次点P 表示-1,第二次点P 表示2,点P 表示的数依次为-3,4,-5,6…,找出规律即可得出结论.
【详解】
解:(1)∵点B 距离原点10个单位长度,且位于原点左侧,
∴点B 表示的数为-10,
∵将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,
∴点A 表示的数为20,
∴数轴上表示如下:
AB 之间的距离为:20-(-10)=30;
(2)∵线段OB 上有点C 且6BC =,
∴点C 表示的数为-4,
∵2PB PC =,
设点P 表示的数为x ,
则1024x x +=+,
解得:x=2或-6,
∴点P 表示的数为2或-6;
(3)由题意可知:
点P 第一次移动后表示的数为:-1,
点P 第二次移动后表示的数为:-1+3=2,
点P 第三次移动后表示的数为:-1+3-5=-3,
…,
∴点P 第n 次移动后表示的数为(-1)n •n ,
∵点A 表示20,点B 表示-10,
当n=20时,(-1)n •n=20;
当n=10时,(-1)n •n=10≠-10,
∴第20次P 与A 重合;点P 与点B 不重合.
【点睛】
本题考查的是数轴,绝对值,数轴上两点之间的距离的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系.
7.(1)3;(2)
12或74
-;(3)13秒或79秒 【解析】
【分析】 (1)根据数轴上两点间距离即可求解;
(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;
(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可.
【详解】
解:(1)∵A 、B 两点对应的数分别为-4,-1,
∴线段AB 的长度为:-1-(-4)=3;
(2)设点D 对应的数为x ,∵DA=3DB , 则314x x +=+,
则()314x x +=+或()314x x +=--,
解得:x=12或x=74
-, ∴点D 对应的数为
12或74-; (3)设t 秒后,OA=3OB , 则有:47312t t t t -+-=-+-, 则4631t t -+=-+,
则()4631t t -+=-+或()4631t t -+=--+,
解得:t=
13或t=79, ∴13秒或79
秒后,OA=3OB . 【点睛】
本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法.
8.(1)2;(2)52x MC =+
;(3)当25
x =-或6x =时,有2AP CM PC -=成立. 【解析】
【分析】
(1)根据中点的定义,即可求出点C 的坐标;
(2)先表示出点M 的数,然后利用线段上两点之间的距离,即可表示出MC 的长度; (3)分别求出AP ,MC 和PC 的长度,结合题意,分为三种情况进行讨论,即可求出x 的值.
【详解】
解:(1)点A 表示的数为10-,点B 表示的数为14,
∴线段AB=14(10)24--=,
∴点C 表示的数为:142422-÷=;
(2)根据题意,
点M 表示的数为:142
x +, ∴线段MC 的长度为:
142522x x +-=+; (3)根据题意,
线段AP 的长度为:10x +,
线段MC 的长度为:52
x +, 线段PC 的长度为:2x -,
∵2AP CM PC -=, ∴10(5)222x x x +-+=-, 整理得:15242
x x -=+, ①当点P 在点C 的左边时,2x <,则20x ->, ∴15242
x x -=+, 解得:25
x =-; ②当点P 与点C 重合时,2x =, ∴15042
x +=, 解得:10x =-(不符合题意,舍去);
③当点P 在点C 的右边时,2x >,则20x -<, ∴15242
x x -=+, 解得:6x =. ∴当25
x =-
或6x =时,有2AP CM PC -=成立. 【点睛】
本题考查了数轴上的动点的问题,数轴上两点之间的距离,解一元一次方程,以及绝对值的意义,解题的关键是掌握数轴上两点之间的距离.
9.(1) ①6条;②10;(2)1122MN AD BC =
-,证明见解析;(3) 1t =. 【解析】
【分析】 (1)①根据线段的定义结合图形即可得出答案;②PA +PD 最小,即P 为AD 的中点,求出AD 的长即可;
(2) 根据M ,N 分别为AC ,BD 的中点,得到12MC AC =,12
BN BD =,利用MN MC BN BC =+-代入化简即可;
(3) 根据C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,得到3AC =,6CD =,并可得到2EC t =,FD t =,62t EQ +=
,代入AQ+AE+AF=32
AD ,化简则可求出t . 【详解】
解:(1) ①线段有:AB ,AC ,AD ,BC ,BD ,CD ,共6条;
②∵BD =6,BC =1,
∴CD=BD-BC=6-1=5,
当PA +PD 的值最小时,P 为AD 的中点,
∴5510PA PD AD AC CD +==+=+=;
(2)1122MN AD BC =-. 如图2示:
∵M ,N 分别为AC ,BD 的中点,
∴12MC AC =
,12
BN BD = ∴MN MC BN BC =+- 1122AC BD BC =
+- ()12
AC BD BC =+- ()12AB BC BD BC =
++- 1122
AD BC =-; (3)如图示:
∵C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,
∴3AC =,6CD =,
根据E ,F 两点同时从C ,D 出发,速度是2cm/s ,1cm/s ,Q 为EF 的中点,运动时间为t , 则有:2EC t =,FD t =,6222EF AD AE FD t EQ --+=
== 当AQ+AE+AF=32
AD 时, 则有:32AE EQ AE AD FD AD +++-=
即是:()()6932329922
t t t t +-+
+-+-=⨯ 解之得:1t =.
【点睛】 本题主要考查了两点间的距离,解决问题的关键是依据线段的和差关系列方程.
10.(1)∠MON 的度数为70°.(2)∠MON 的度数为62.5°.(3)t 的值为20.
【解析】
【分析】
(1)根据角平分线的性质以及角的和差倍关系转化求出角的度数;
(2)根据角平分线的性质可以求得:∠MON =
12(∠AOB +∠COD )﹣∠COD ,代入数据即可求得;
(3)由题意得∠AON =
12(20°+3t +15°),∠BOM =12
(140°﹣20°﹣3t ),由此列出方程即可求解.
【详解】
(1)∵ON 平分∠AOC ,OM 平分∠BOC , ∴∠CON =
12∠AOC ,∠COM =12
∠BOC ∠MON =∠CON +∠COM =
12(∠AOC +∠BOC ) =12
∠AOB 又∠AOB =140°
∴∠MON =70°
答:∠MON 的度数为70°.
(2)∵OM 平分∠BOC ,ON 平分∠AOD ,
∴∠COM =
12∠BOC ,∠DON =12
∠AOD 即∠MON =∠COM +∠DON ﹣∠COD
=1
2
∠BOC+
1
2
∠AOD﹣∠COD
=1
2
(∠BOC+∠AOD)﹣∠COD.
=1
2
(∠BOC+∠AOC+∠COD)﹣∠COD
=1
2
(∠AOB+∠COD)﹣∠COD
=1
2
(140°+15°)﹣15°
=62.5°
答:∠MON的度数为62.5°.
(3)∠AON=1
2
(20°+3t+15°),
∠BOM=1
2
(140°﹣20°﹣3t)
又∠AON:∠BOM=19:12,
12(35°+3t)=19(120°﹣3t)
得t=20
答:t的值为20.
【点睛】
本题考查了与角平分线有关的计算,根据角平分线的定义得出所求角与已知角的关系转化,然后根据已知条件求解是解决问题的关键.
11.(1)135°;(2)∠BOD=2∠COE;(3)67.5°.
【解析】
【分析】
(1)由∠COD=90°,则∠AOC+∠BOD=90°,由OE平分∠AOC,OF平分∠BOD,得
∠COE+∠DOF=45°,即可求出∠EOF的度数;
(2)由题意得出∠BOD+∠AOC=90°,∠BOD=180°-∠AOD,再由角平分线的定义进行计算,即可得出结果;
(3)由角平分线定义得出∠AOC=∠COE,∠COF=∠DOF=45°,再由∠BOD+∠AOC=90°,设∠EOF=x,则∠EOC=3x,∠COF=4x,根据题意得出方程,解方程即可.
【详解】
解:(1)如图:
∵∠COD=90°,
∴∠AOC+∠BOD=90°,
∵OE平分∠AOC,OF平分∠BOD,
∴∠COE+∠DOF=11
()9045
22
AOC BOD
∠+∠=⨯︒=︒,
∴∠EOF=∠COE+∠COD+∠DOF=45°+90°=135°;故答案为:135°;
(2)∠BOD=2∠COE;
理由如下:如图,
∵∠COD=90°.
∴∠BOD+∠AOC=90°,
∵OE平分∠AOD,
∴∠AOE=∠DOE=1
2
∠AOD,
又∵∠BOD=180°-∠AOD,∴∠COE=∠AOE-∠AOC
=1
2
∠AOD-(90°-∠BOD)
=1
2
(180°-∠BOD)-90°+∠BOD
=1
2
∠BOD,
∴∠BOD=2∠COE;(3)如图,
∵OC为∠AOE的角平分线,OF平分∠COD,
∴∠AOC=∠COE,∠COF=∠DOF=45°,
∵∠EOC=3∠EOF,
设∠EOF=x,则∠EOC=3x,
∴∠COF=4x,
∴∠AOE=2∠COE=6x,∠DOF=4x,
∵∠COD=90°,
∴4x+4x=90°,
解得:x=11.25°,
∴∠AOE=6×11.25°=67.5°.
【点睛】
本题考查了角平分线定义、角的互余关系、邻补角定义以及角的计算;熟练掌握角平分线定义,得出角之间的关系是解决问题的关键.
12.(1)点P在线段AB上的1
3
处;(2)
1
3
;(3)②MN
AB
的值不变.
【解析】
【分析】
(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在
线段AB上的1
3
处;
(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;
(3)当点C停止运动时,有CD=1
2
AB,从而求得CM与AB的数量关系;然后求得以AB
表示的PM与PN的值,所以MN=PN−PM=
1
12
AB.
【详解】
解:(1)由题意:BD=2PC
∵PD=2AC,
∴BD+PD=2(PC+AC),即PB=2AP.
∴点P在线段AB上的1
3
处;
(2)如图:
∵AQ-BQ=PQ,
∴AQ=PQ+BQ,
∵AQ=AP+PQ,
∴AP=BQ,
∴PQ=
1
3
AB,

1
3
PQ
AB
=
(3)②MN
AB
的值不变.
理由:如图,
当点C停止运动时,有CD=
1
2
AB,
∴CM=
1
4
AB,
∴PM=CM-CP=
1
4
AB-5,
∵PD=
2
3
AB-10,
∴PN=
12
23
(AB-10)=
1
3
AB-5,
∴MN=PN-PM=
1
12
AB,
当点C停止运动,D点继续运动时,MN的值不变,
所以
1
1
12
12
AB
MN
AB AB
==.
【点睛】
本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.。

相关文档
最新文档